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Abstract 

We present Keyed HIP (KHIP), a secure, hierarchical multi- 
cast routing protocol. We show that other shared-tree mul- 
tic& routing protocols are subject to attacks against the 
multicast routing infrastructure that can isolate receivers or 
domains or introduce loops into the structure of the multi- 
cast routing tree. KHIP changes the multicast routing model 
so that only trusted members are able to join the multicast 
tree. This protects the multicast routing against attacks that 
could form branches to unauthorized receivers, prevents re- 
play attacks and limits the effects of flooding attacks. Un- 
trusted routers that are present on the path between trusted 
routers cannot change the routing and can mount no denial- 
of-service attack stronger than simply dropping control mes- 
sages. KHIP also provides a simple mechanism for distribut- 
ing data encryption keys while adding little overhead to the 
protocol. 

1 Introduction 

A multicast routing protocol provides efficient many-to- 
many delivery across a network by constructing a tree over 
all sources and receivers in the network. Multicasting pre 
serves bandwidth by sending data packets only once over any 
link of the multicast routing tree. There are two common 
ways to form the multicast routing tree. Sender-initiated 
protocols, such as DVMRP [8] and PIM-DM [9], build a 
separate tree from each source to all possible receivers us- 
ing a flood-and-prune mechanism. Data from any source is 
initially flooded to all possible receivers, and receivers that 
do not want to receive the multicast send explicit remove 
messages, called prunes, that travel back towads the source 
and remove unneeded branches corn the tree. These pro- 
tocols construct multiple source-routed trees, each rooted at 
and with minimum delivery latency from a particular source. 
However, they are more expensive in terms of router mem- 
ory requirements and control traflic overhead than the sec- 
ond type of multicast protocol. Receiver-initiated protocols, 
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such as CBT [4], OCIIT [20], and PIM-SM [9], require that 
each receiver that desires to participate in the multicast send 
an explicit join message towards a known point, frequently 
called a core. The core returns a message that forms a branch 
of the multicast tree back to the receiver. Instead of using 
a different tree for each source, these protocols build a sin- 
gle shared tree spanning all sources and receivers. While 
shared trees may increase the latency of packet delivery, 
they greatly reduce the memory requirements at routers and 
lower the amount of control traffic required. This reduction 
in routing overhead make shared trees ideal for routing be- 
tween heterogeneous routing domains, and more recent hier- 
archical, intro-domain multicast routing protocols use shared 
trees [21, 161. 

Multicast routing protocols today lack effective security 
mechanisms that allow for privacy or for safe transmission of 
proprietary information. This is due to the fact that multi- 
cast routing is fundamentally diierent than unicast routing, 
because multicasting involves a large number of participants 
whose identities are not known across the entire group; ac- 
cordingly, the mechanisms needed to multicast securely are 
correspondingly different [3] than those needed for secure 
unicarting. There are three problems that need to be solved 
to provide a solution for secure multicasting. The first is 
the problem of authentication, which requires that partic- 
ipants prove their identity before they are allowed to join 
the group and receive encryption keys for the session. The 
second problem is that of authorization, which implies that 
only those entities with specific permission may use or alter 
the multicast routing tree of a given group, preferably after 
they have been suitably authenticated. The third problem is 
integrity, which requires that data and control packets orig- 
inated at an authorized source not be intercepted or altered 
while traversing the multicast tree, and that the possibility 
of a denial-of-service attack preventing the transmission of 
such packets be minimized or eliminated. 

Many existing protocols focus on providing multicast- 
security services for data packets at the application layer [26, 
7, 241. These protocols typically assume that all group mem- 
bers know which other entities are allowed to send and re 
ceive data, and that each member has a known public key 
that can be used to exchange a symmetric key or to check 
a signature on data packets to verify the authenticity of the 
sources. While these protocols are very effective for their 
purpose, they use existing insecure multicast routing for data 
transmission, which permits many possible attacks against 
the protocol. First, the fact that multicast routing provides 
a very efficient way to distribute data also means that there 

53 



is a very efficient method of launching a denial-of-service at- 
tack against all members. If some malicious sender were to 
send data at a high rate to a multicast group using this type 
of security, that data would be copied and forwarded over all 
branches of the tree to all receivers. An attacker can disrupt 
service to all receivers by purposely saturating the multicast 
routing tree. This may occur because either the saturated 
network lacks capacity to carry the legitimate traffic, or the 
receivers become saturated because the verification of mes- 
sages must take place at the receivers. 

Additionally, any attacker can listen to the traffic gener- 
ated by the group members, because there is no control over 
the multicast group membership even though there is control 
over the secure group membership. While encryption is used 
to protect the data contents from exposure, there are situ* 
tions in which this may not meet a desired level of security. 
Because the use of encryption is often a political issue and 
because secure multicast group members might be located 
in diierent countries throughout the world, the strength of 
the encryption being used may be limited in some cases by 
the laws of one or multiple countries where the participants 
reside. It might also be true that the long-term secrecy of 
the data is desirable, or simply that it would be to an at- 
tacker’s advantage to know which parties were communicat- 
ing. There is also the small risk of exposure through attacks 
against the encryption [5, 251. Because of these attacks, it 
can sometimes be necessary to limit the ability of an attacker 
to access the secure traffic. To do this, the multicast model 
must be changed so that authentication, authorization and 
integrity checking occur in the routing protocol. In this way, 
the construction of tree branches occurs only between au- 
thorized senders and receivers. Current protocols do not do 
this; they only protect the data messages and not the control 
messages of the routing protocol. 

A number of attacks are possible when authentication, 
authorization and integrity checking of control messages xe 
not used, and any router in the multicast tree can send con- 
trol messages affecting the entire multicast routing tree. This 
is particularly true of receiver-initiated protocols that rely on 
a shared tree for data delivery. The problem arises because 
an individual router never receives any assurance that the 
routers that are forwarding its join message towards any core, 
rendezvous point or root domain’ being used to construct 
the multicast group. A corrupt router may choose instead 
to acknowledge the join message itself, without ever joining 
the tree. In this case, the corrupt router would have sole 
access to the data being transmitted from the new branch or 
could feed a particular receiver or subset of receivers on the 
branch below a false stream of data. A more active form of 
this attack, shown in Figure 1, could consist of several cor- 
rupted routers working together to isolate several multicast 
participants from the rest of the multicast tree by forwarding 
the join requests they receive towards one of the corrupted 
routers instead of the core. These types of attacks do not 
necessarily isolate only a few routers; with the introduction 
of hierarchical multicast routing protocols that use shared 
trees to form a backbone between domains, entire domains 
may be targeted [21, 161. It is possible to imagine many 
other similar scenarios, all of which spring from the lack of 
trusted multicast routing. 

Other attacks against the multicast routing may not be 

‘Each of which is just a specific name given by a particular protocol 
to label the known point that all members desiring multicast service 
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Figure 1: Establishment of a corrupted multicast tree 
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Figure 2: Corrupt router building a loop in the multic<ast 
tree 

designed to replace or limit access to the data packets sent 
along the tree. Instead, an attacker may want to deny multi- 
cast service over a wide area. In this case, a corrupted router 
could be used to introduce loops into the multicast tree, as 
shown in Figure 2. In this simplest case, the corrupt router 
joins the tree on it shortest path to the core, then sends an- 
other join request to another router which has a path to the 
core that does not pass through the corrupt router. This 
would cause each data packets to traverse the loop as long 
es their TTL allowed, with each active source adding to the 
trafhc, and receivers receiving multiple copies of each packet. 
While this would congest the corrupted router es much as 
any other, an attacker who gained illicit access might not 
care. There are less malicious reasons for wanting to alter 
the structure of the tree, as well. An attacker may want to 
reduce the costs of their routing, and by changing the shape 
of the tree by forging control messages, could reroute traf- 
fic so that it traveled a path for which the attacker was not 
financially responsible, placing the burden on elsewhere. 

To maintain security in the face of attacks, a secure 
multicast routing protocol must limit the construction of 
tree branches to those links required to connect authorized 
senders and receivers. This requires placing trust in some 
of the routers of the network, and ensuring that the trusted 
routers are able to communicate securely with each other, 
even across a series of untrusted routers. Though cornpro 
mise of a trusted router could result in the same type of 
attacks described above, it should be easier to harden and 
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monitor a relatively few trusted routers, limiting the points 
of possible attack. The protocol should also limit the effects 
of flooding attacks, and should provide a scalable method for 
distributing keys. The protocol must do this while maintain- 
ing an efficient multicast service that does not duplicate data 
packets over any link and minimizes the overhead required 
in terms of control traf&z and router memory. 

This paper presents a solution that meets all the above 
criteria. Using techniques similar to those proposed by Gong 
and Shacham [13], we present simple extensions to HIP [21], 
called Keyed HIP (KHIP), that creates a secure multicast 
routing service. KHIP provides security of multicast routing 
by adding several elements to the multicast model. First, 
KHIP creates an authentication service that is trusted to 
issue certificates to authenticated hosts and routers which 
meet the criteria for joining the group. These certificates are 
used in constructing the multicast tree. A router connecting 
to a parent higher in the tree (possibly through several un- 
trusted routers) signs the control message and includes its 
certificate to prove to its parent that it is authorized to mod- 
ify the tree routing; the parent includes its certificate in a 
signed reply so that the child may trust it has joined a se- 
cure tree. The tree is divided into a number of sub-branches, 
each with its own key shared between the trusted members 
within that branch. Using this key, the trusted members 
can protect against flooding or replay attacks and efficiently 
distribute data encryption keys if desired. 

Section 2 provides an overview of HIP, the hierarchical 
multicast routing protocol to be made secure. Section 3 
describes how the HIP tree is divided into sub-branches, 
describes the messages used to create the KHIP tree, and 
shows how HIP messages are made secure. Section 4 pro- 
vides an informal analysis of the effectiveness of different 
attacks against the routing. Section 5 presents a review of 
previous work. 

2 Overview of HIP 

HIP [21] is a hierarchical multicast routing protocol that uses 
the Ordered Core Based Tree protocol (OCBT) [20] to route 
multicast data between heterogeneous multicast domains. 
HIP aligns with existing multicast domains and makes each 
domain on the tree appear as an OCBT virtual router by 
organizing the border routers of the domain to simulate the 
output of a single OCBT router. The tree can thus be con- 
structed of routers and domains, and any domain may con- 
tain other domains within, recursion therefore providing as 
many levels of hierarchy as necessary. Figure 3 shows the 
structure of a hierarchical multicast routing tree constructed 
using HIP. In this figure there are five different multicast do- 
mains, each outlined with a dashed line and numbered one 
through five. Notice that domain number five is completely 
enclosed within domain four. Figure 4 shows the shape of 
the tree at the highest level, where each domain appears as 
a single router on the tree. 

While HIP does not solve the problem of multicast ad- 
dress allocation, it does provide a location service for dis- 
tributing the mapping of center point’ location to the mul- 
ticast address. In the figure, the center point is located at 
router A. The creator of the multicast group sends a message 
advertising the existence of the group and the center point 

‘The center point is a term for what serves as the core of the inter- 
domain multicast tree. It is not, called a core to differentiate it from 
cores that are local to some particular multicast domain. 

location of the group to the highest level of the hierarchy, 
where it is stored by a directory service. Receiver initiated 
domains with individual receivers wishing to join the group 
can later request and receive the location of the center point. 
For sender-initiated domains, the advertisement can be sent 
on a known multicast address which is subscribed to by all 
virtual routers containing sender initiated domains. The ad- 
vertisement, which can contain the first packet of multicast 
data, is sent over this all-virtual-router multicast address to 
all sender-initiated domains, where it is flooded throughout 
the domain. If the internal sourcerouted tree is not pruned 
back completely, the border routers making up the virtual 
router for the domain then issue a join request for the group. 

The multicast tree is formed between routers and do- 
mains using OCBT, a hard-state, receiver-initiated protocol 
that supports the use of multiple cores. Each core is labeled 
with a number representing that core’s logical level. Lower 
numbered cores join to higher numbered cores, and routers 
on the tree are labeled with the level of the core answering 
their join requests. Control messages carry the level of core 
they are attempting to reach, so that lower-level branches 
break to allow formation of higher-level branches. The l& 
beling guarantees loop freedom at all times. 

R.eceivers wishing to join the tree send a message called a 
join request towards the core they wish to join, labeled with 
the level zero to indicate that any on-tree member can an- 
swer. The join request travels hop-by-hop towards the spec- 
ified core, setting up transient state along the way. When 
the join request hits the core or some branch of the tree al- 
ready in place, the receiving router returns a message called 
a join acknowledgment that carries the level of core or branch 
the join request encountered. The join acknowledgment re- 
turns along the reverse path of the join request and forms 
a branch of the tree back to the original requester. Because 
OCBT is a hard-state protocol, once branches are formed 
they remain in place until explicitly removed from the tree, 
or a router or link failure requires that the tree be rebuilt. A 
node sensing that its parent link or router has failed sends a 
message called a flush that travels from parent to all children 
tearing down the tree. This process continues down to leaf 
routers or down-tree cores, which then rejoin as needed. If 
a node no longer has any children or receivers on a subnet 
that wish to get the multicast tree, it sends a message called 
a quit notice to its parent. Any node receiving a quit notice 
that has no other children also leaves the tree by sending a 
quit notice to its parent. Once the tree is constructed, data 
flows over the tree in a very simple fashion. Any node re- 
ceiving a data packet one one interface simply forwards it on 
over every other on-tree interface. In the event of a network 
partition, OCBT cores initiate a diffusing computation that 
returns the identities of the other cores within its partition. 
Using this information, a multicast tree can be constructed 
within each partition. Once the partition has merged, the 
trees within each partition merge. 

With any receiver initiated multicast protocol the prob- 
lem arises as to where to put the core. HIP solves this by 
using existing multicast domain border routers as cores. In 
any virtual router, the exit router that has the shortest path 
to the group center point is a level-two router, and all other 
routers are level-one routers. In Figure 3, routers F, N, Q 
and I would be exit routers for the center point at router A, 
as they have the shortest paths to the center point out of all 
border routers in their domains. A router wishing to join the 
multicast group simply directs its join request to any border 
router - it does not need to know the center point of the 
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Figure 3: The structure of a hierarchical multicast routing tree created by HIP 

On-tree 
Link 

Figure 4: The HIP tree as it appears at the highest level 

group. When the join request arrives at a border router that 
is not the exit router, it sends an acknowledgment and then 
joins the exit router itself. In the case in which a domain 
contains or is itself a center point, it is possible to use some 
internal router as the core. It will be the level-two core, and 
all border routers will be level-one cores. In Figure 3, router 
A will therefore be labeled with the level two, while routers 
B and C will be labeled level one. As border routers are 
generally fixed and change infrequently, using them as cores 
allows other routers in the domain to be given a lixed list of 
border routers to use as cores. 

3 Keyed HIP 

In extending HIP, the design goals are to provide scalable 
mechanisms for authentication and authorization, so that 
only privileged members are able to obtain the proper cryp- 
tographic credentials for retrieving keys and certificates that 
allow access to the multicast trees, and only those holding 
certificates can cause new branches to form in the tree for 
transmission or reception. We also wish to prevent or limit 
replay and flooding attacks. We assume that an attacker 
can be positioned along any link or control any non-trusted 
router so that they may drop, replay, delay, alter or issue 
any data or control packet. Additionally, we assume that an 
attacker may not be on a path used by the multicast tree and 
may send control messages to group members in an attempt 

to create branch of the tree to the attacker, either to receive 
data or to launch a denial-of-service attack via flooding. We 
do not require that clocks be synchronized tightly across the 
network. We do assume that some method of public key 
distribution and verification is possible. Finally, since HIP 
and OCBT use the existing unicast routing, we assume that 
some secure form of unicast routing is available, both for 
inter-domain and intradomain routing. A number of pro- 
posals have been made for each protocol type[ll, 23, 18, 221. 
We assume that secure unicast routing provides a reliable 
path between routers in the network. 

Keyed HIP (KHIP) creates a hierarchy of subbranches 
over all the branches of the multicast tree, which removes 
the need for a single shared key for the entire group. While 
a protocol that can compute a single key across all re- 
ceivers [24, 26, 71 may be used, and in some circumstances 
may be desirable, the natural organization of KHIP pro 
vides a simple, efficient mechanism for distributing encryp- 
tion keys. Each subbranch shares a common key among its 
members for use in encrypting sequence information within 
the sub-branch. Data packets can easily be reprocessed at 
the root of the sub-branch for transmission on the next sub- 
branch towards the center point; similarly, children of a sub- 
branch that are roots for another sub-branch reprocess that 
data before retransmission to their children. Reprocessing 
is made less expensive in terms of the amount of computa- 
tion needed by encrypting the data in a random key and 
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Figure 5: Secure sub-branches on the HIP tree 

encrypting that key in the shared branch key. Reprocessing 
consists of decrypting and re-encrypting only the random key 
and adding appropriate nonces for the new sub-branch. This 
encryption and decryption is necessary anyway to ensure the 
integrity of the sequence numbering and nonces; processing 
the random key only changes the size of the header that 
needs to be processed. 

When new members join the tree they need only authen- 
ticate themselves to the root of the sub-branch they are join- 
ing, distributing the load of processing new members across 
many participants already in the tree. The nature of HIP, 
which relies on the existing border routers of multicast do 
mains to serve as OCBT cores, provides a natural placement 
of trusted routers that act as the roots of sub-branches in the 
same location. A domain wishing to participate in a secure 
multicast session can therefore ensure its security and config- 
ure their border routers so that they posses a public/private 
key pair and exe able to request a certificate from the authen- 
tication service. The authentication service is a hierarchy of 
trusted servers that maintain an access list for each multi- 
cast group and issues certificates, signed with a well known 
authentication server key, for trusted members to present as 
proof they are eligible to join a particular group. 

Figure 5 shows how a HIP tree might be broken down 
into sub-branches. Router A is the center point of the tree 
and as such must possess a valid certificate to prove to re- 
ceivers joining that it is a valid center point. Figure 6 shows 
the structure of the secure tree. The border routers of do- 
main one are also trusted, and a sub-branch, labeled SB-1, is 
formed with router A as the root and routers B and C as its 
secure children. Router C is the root of its own subbranch, 
with child routers P and Q. Notice that a secure branch 
can traverse untrusted routers, and that the border routers 
of a domain do not need to be trusted in order to support 
internal trusted routers, es seen in domain two. However, 
it is recommended that a domain that is to contain a large 
number of members of the secure multicast group ensure 
that its border routers are secure, as this increases the scal- 
ability by lowering the number of children any one secure 
parent must service. Router & supports its own sub-branch 
that consists of the other border routers of domain three. 

Router B is also root of a sub-branch, with children E and 
F. Domain four contains a sub-domain, numbered five, and 
the sub-branch SB-5rooted at F traverses the virtual trusted 
router, which contains its own sub-branch, labeled SB-6. Se- 
cure data traversing the virtual trusted router from F to L 
will be reprocessed at router I for transmission across SB-6 
to router K, where they will be re-processed to appear as 
if it came directly from F. While this may seem strange, 
it is congruent with the operation of HIP, which requires a 
domain to act as a single router on the higher-level tree. In 
this case, domain five appears as a single router to both G 
and L, so the data that L receives must be the same as if 
the virtual router were a real one. 

3.1 Building a Secure Multicast Tree 

To describe the methods through which individual members 
request and receive certificates and then communicate with 
each other to build the multicast tree, we introduce the fol- 
lowing notation, similar to that used by Gong, Needham 
and Yahalom in their work commonly referred to as GNY 
logic [ll]. The communicating entities consist of the authen- 
tication service AS, the HIP center point location service 
LP, the group initiator I, receivers of the multicast group 
(who on a shared tree are also senders) R, roots of the sub 
branches within the structure of the tree C, one of which 
will be the center point for the tree CP. Roots preside over 
sub-branches, B made up of some number of receivers. Any 
member of the group, M, has a public key, K+M and the 
corresponding private key, K--M, and uses these to prove 
its identity to the authentication service and other group 
members. Two entities, say A and B, can share a common 
key KAB. The transmission of messages between entities 
is indicated with an arrow, A -+ B, with a message that 
is encrypted being enclosed with braces with the key as a 
subscript, {message}K,, . We also make use of digital sig- 
natures, which consist of a cryptographic hash of the message 
encrypted with the private key of the signer. Digitally-signed 
messages are indicated in brackets, with the key being used 
to sign it as a subscript, [mesaage]K-,. 
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Figure 6: The shape of the secure KHIP tree 

3.1.1 Authentication service and certificates 

The first necessary addition to the KHIP multicast model 
is an authentication service. This service maintains the list 
of who is allowed what access to specific multicast groups. 
The policies that it might enforce are beyond the scope of 
this paper; however, it is easy to envision that the access 
lists might consist only of those entities who have paid for 
service or who are part of some governmental or commercial 
group that wish to share data securely. The authentication 
service issues certificates, credentials that verify the holders 
identity and specify what type of access the holder is al- 
lowed to the multicast routing. The authentication service 
owns a well-known public key used to sign certificates and 
is assumed to be secure against compromise. This service 
might be a single server within a domain that regulates its 
internal multicast service, or it could be a robust hierarchy 
of world-wide servers, with lower-level trusted servers pos- 
sessing keys signed by the highest-level authority. Such a 
model has already been proposed [6]. 

When a member wishes to become part of the secure mul- 
ticast group, it must first secure a certificate for the group 
from the authentication service. It requests a certificate from 
the authentication service using its own public key to authen- 
ticate its identity. If authenticated and approves, it receives 
a certificate consisting of the member’s IP address, its public 
key, the multicest group or range of groups that the member 
is authorized to use, what permissions the member has for 
that group, and a time stamp and lifetime for the certificate. 
In the GNY notation, a certificate for some member M will 
appear as: 

CERTM = 

[IPM, K+M, MC, Perm,TS,Life]K-,, 

The possible permissions are Create, Join and Destroy. 
As the names imply, these allow a member to initiate a group 
with a particular address, subscribe to the group as a sender 
or receiver, and terminate a secure group. With modification 
to the routing protocol, it would also be possible to specify 
Listen and Send for finer granularity of access control. The 
time stamp and lifetime are used to expire the certificate, 
and should be reasonably short. Given that it is difficult to 
revoke issued certificates in a way that is scalable and can 
reliably reach all entities who could honor them, this will 
force a receiver to occasionally re-request a new certificate. If 

the access list has changed in the interim, it will be denied. A 
bad certificate will therefore never last more than the lifetime 
specified. This solution is deemed preferable as it is easier 
to expand the hierarchy of authentication services than to 
attempt to create a method of issuing certificate revocations. 

3.1.2 Group creation 

To start a secure multicast session, some initiator must re 
quest and receive a certificate with the appropriate permis- 
sions, then communicate the center point of the group to the 
location service. The initiator send its IP address, its pub- 
lic key and the multicast address and permissions desired, 
which in this case would include create, to the authenti- 
cation service. The transmission from the initiator to the 
authentication service appears as: 

l:I+AS: 

[IPI, K+r , MC, PermIx, 

Upon receipt of this message, the authentication ser- 
vice retrieves the initiator’s public key from the appropriate 
server and uses it to verify the IP address and public key 
contained in the message. It then checks the access list to 
see if the initiator is allowed to create the requested multi- 
cast groups. If these checks succeed, then the authorization 
service adds a time stamp and lifetime to the certificate, 
signs the certificate with the authentication service private 
key and returns it to the initiator. The reply is then: 

Now the initiator can send the group creation message 
to the location service so that the start of the group can be 
announced. This message includes the signed certificate, the 
center point for the group, the scope of the group (which 
specifies which domains the group should will cover) and a 
group lifetime, which should not exceed the lifetime of the 
certificate. Once the location service receives the creation 
request, it verifies the signature on the request and on the 
certificate it contains. Notice that the location service need 
not retrieve the initiator’s public key as it is contained in 
the signed certificate. If the request passes these checks, the 
group center point is distributed as appropriate given the 
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scope. The message sent from the initiator to the location 
service is: 

3:I+LS: 

[Create, CERTI, CP, scope, lifetime]K-, 

As the center point will serve as the root of the multicast 
tree, it needs to obtain a proper certificate as well. This is 
necessary as even though it need not join the tree, it will need 
authenticate with those joining the tree. This occurs in the 
same manner as the initiator’s certificate request, though 
the permissions are for Join rather than Create. Though 
the center point can be a distributed entity consisting of a 
number of border routers of a domain operating together, 
they do operate as subordinates to one master router, and 
only that router need retrieve a key as it will be processing 
and replying to all messages. This exchange appears as: 

4:CP-tAS: 

[I~cP, K+cr, MC, Perm]K-,, 

5:AS-tCP: 

CERTcp = 

[IPcp, K+cP, MC, Pem,TS,Life]K-,,, 

3.1.3 Host to router communication 

The protocol described above details only the process of 
routers constructing the multicast tree; it does not describe 
the communication between hosts and routers. Today, hosts 
communicate with their designated multicast router using 
IGMP. For secure multicast, a secure version of IGMP needs 
to be developed [3]. A host could then authenticate with its 
router using the same four way authentication mechanism 
described below, first with an exchange to find the desig- 
nated router and receive a nonce, then the message to the 
router with a host nonce and the rely bearing the key and se- 
quence information. With this mechanism in place, the host 
to router connection will appear simply as the connection to 
leaves of the secure multicast tree. 

3.1.4 Building the tree - securing OCBT 

Once the group has been created and the center point has 
received its certificate, the process of building the tree can 
start. HIP uses OCBT to build the multicast tree. OCBT 
uses only four types of control messages in normal opera- 
tion: a join request (JR), join acknowledgment (JA), quit 
notice (QN) and frvsh (FL). The join request travels from 
receiver to core and sets up temporary state so that the join 
acknowledgment can traverse the same path back from core 
to receiver and instantiate a branch of the multicast tree. 
The other two messages are used to tear down branches of a 
tree, either following after a link or router failure, or when 
it is necessary to break a lower-level tree branch to allow a 
higher-level branch to form. 

Since one design goal is to prevent branches from being 
built to unauthorized receivers, we add digital signatures to 

the join request and the join acknowledgment to ensure that 
the endpoints of a particular path along a branch are trusted 
receivers. Neither the flush message nor the quit notice need 
to be signed, as they do not result in construction of a branch 
and also may be generated by untrusted routers on the path 
between to trusted routers in response to link or router fail- 
ures. In order to prevent attackers from replaying join re- 
quests or acknowledgments, we add two more messages to 
the original protocol. Because a member of the group does 
not know the identity of the identity or the location of the 
trusted core that it will reach when sending a join request 
towards the center point, it instead finds and exchanges mes- 
sages with the trusted core higher on the tree. These two 
messages, called a core request (CR) and core acknowledg- 
ment (CA), are signed by each party and carry nonces that 
ensure that the messages are fresh. Using time stamps in- 
stead of nonces would lead to a simple replay attack in which 
an attacker could quickly replay the join request to a differ- 
ent core router, which would accept it as valid and send the 
join acknowledgment back, building a branch to the attacker. 

The exchange of messages that leads to the formation of 
a branch between some receiver and some core is then as fol- 
lows. First, the receiver router sends a core request message. 
This message travels hop-by-hop towards the center point. 
When it reaches some branch of the tree it is forwarded from 
child to parent until it reaches some trusted core. If it does 
not reach a branch of the tree it will eventually arrive at the 
center point. The message contains the receivers certificate, 
a random nonce and is signed by the receiver, and looks like: 

6:R+C: 

[CR,CERTR,NR]K-R 

One the trusted core or the center point receives the 
core request, the signature and certificate are checked and 
if passed, a core acknowledgment is sent directly to the ini- 
tiating receiver. This acknowledgment contains the core’s 
certificate, the nonce created by the receiver, a new nonce 
created by the core and is signed by the core. This trans- 
mission of the acknowledgment is: 

7:C+R: 

[CA,CERTC,NI~,J%]K-~ 

Once the receiver obtains the core acknowledgment, it forms 
and sends a join request. This join request carries the re- 
ceiver’s certificate and the nonce supplied by the core, and 
it is signed by the receiver. The join request is sent, hop-by- 
hop, towards the trusted core, and appears as: 

8:R+C: 

[JR,CERTB,NC]K-~ 

Unlike a normal OCHT join request, the join request is 
not acknowledged by the first on-tree router it reaches. In- 
stead, the join request is forwarded up the tree to the trusted 
core, which verifies the signature, nonce and certificate, then 
sends the join acknowledgment back down the tree, initiating 
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the branch back to the receiver. When the receiver gets the 
acknowledgment, it verifies the nonce, certificate and signa- 
ture to prevent replays of other join acknowledgments. The 
acknowledgment also contains some information encrypted 
in the receiver’s public key; the branch key, Kn, which is 
used to send data t,o the multicast group as described below, 
a branch identification number, ID, which is unique to each 
trusted receiver serviced by that particular core, and a start- 
ing sequence number for data, SEQ. The ID and sequence 
number together make up nonces for each data packet sent 
by any member. This final acknowledgment is: 

9:C+R: 

[JA, CERTC, NR, {KB,ID, SEQIK+&-C 

3.2 Operation and Maintenance of the Secure Mul- 
ticast Tree 

3.2.1 Data flow 

Each individual receiver that is part of the sub-branch un- 
der some trusted core is given a shared branch key, KS, a 
unique identifier on that sub-branch, ID, and a starting se- 
quence number. While it is possible to use other protocols 
for group key exchange [24, 26, 71, the unique nature of a 
KHIP tree provides an efficient method of doing so, which 
we consider here. Using KHIP’s key exchange protocol, when 
a receiver wants to send data, it creates a random encryp- 
tion key, KRa,,d and encrypts the data with that key. It 
then creates a packet that consists of the encrypted data 
and a package of information encrypted in the branch key. 
This information consists of the random key used to encrypt 
the data, the sender’s branch ID number, the next sequence 
number, and a checksum of the encrypted data. The packet 
is then sent on to the branch. When other members of the 
branch receive the data, they decrypt the random key, se- 
quence information and checksum. The ID and sequence in- 
formation are used as nonces; each receiver keeps track of the 
sequence number from each different ID. Sequence numbers 
are used rather than random nonces to facilitate storage. If 
packets arrive in sequence and none are lost, then only one 
nonce need be kept for each sender. In the worst case, how- 
ever, packet loss over the network or an attacker reordering 
packets can cause the required storage space to be increased. 
Each receiver need keep track only of sequence numbers in 
his sub-branch, limiting the number of receivers for which 
nonces need be kept. However, a router may have many 
individual hosts on a sub-net to service. In this case, one 
host on the sub-net can serve as a core for the other mem- 
bers on the same subnet. This will result in duplicate data 
packets being sent over the sub-net, once from the router to 
appointed host and once from the host to other hosts, but 
will maintain the scalability of the protocol. 

A branch member who is serving as a core and has par- 
ents or children on another sub-branch will re-process the 
packet before sending it on. It will decrypt the random 
key, verify the sequence number and checksum, then replace 
the sequence information with it’s own sequence informa 
tion for the new sub-branch, as if it were the originator. It 
will then re-encrypt the key, ID and sequence information 
and the checksum and send it out over the new sub-branch. 
This method consumes less processing time than would re- 
encrypting the entire packet, as the random key and sequence 

information can be much smaller than the data enclosed. A 
data transmission from a sender to its sub-branch would then 
be: 

10a : R + B : 

{Data)KRand I 
{&and, ID, SEQ, CS({DatalK,,,,))K, 

The checksum is intended to help prevent cut-and-paste 
attacks, in which the attacker replaces the encrypted data 
but leaves the other information intact. The attacker can 
not replace the data at will without it being detected, as- 
suming it can tell where the date ends and the key and se- 
quence number starts, though it can replace it with some- 
thing, including old meaningful data, that produces the same 
checksum. Though computationally expensive, the function 
chosen for the checksum should be a cryptographic hash, or 
else the attacker will be able to replace the encrypted data 
with possibly random data that has the same checksum. 

In some cases, it may be necessary for an end receiver 
to verify the identity of the original sender. In this case, 
the originator of the data can include his IP address with 
and digitally sign the data. Using the included IP address, 
a receiver can lookup the originator and retrieve his public 
key, then use that to verify the origin of the data. This looks 
like: 

lob : R + B : 

If lookups of public keys are expensive and a sender is not 
sending a large amount of data, it may be worthwhile to in- 
clude the certificate issued to access the multicast group with 
the data, By verifying the authentication server signature on 
the certificate, each receiver can then use the enclosed public 
key to verify the original sender’s identity. This method of 
verifying the sender’s identity appears as: 

1Oc : R + B : 

3.2.2 &-keying 

Though there is no single encryption key for the entire mul- 
tic& group, each sub-branch key will need to change branch 
keys KB as receivers leave, either following their legitimate 
departure or following a link or router failure that removes a 
receiver from the tree. It will also be necessary to occasion- 
ally to restart the sequence numbers used as nonces. In these 
ceses the core of the sub-branch creates a new branch key 
and starting sequence number, add those to the old branch 
key for use as a nonce, encrypts it with the public key of each 
authenticated member of the sub-branch, signs it and sends 
it multicast to all members. The structure of the rekeying 
message is: 
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Following a key change, the old encryption key and nonce 
sequence remains valid for a short period to allow messages 
in transit that rue encrypted in the old key to be accepted 
when they arrive. Note that the scalability of this method 
of rekeying is limited, and while it is expected to work on 
the number of routers found in a sub-branch, it likely would 
not scale well to a sub-net with hundreds of receivers. 

3.2.3 Tree Maintenance 

In OCBT, when a router determines that a link to a child 
on the tree or the child itself has failed, it only needs remove 
information about the child from its routing state. When a 
child detects that a parent router or the link to the parent 
has failed, it needs to take action to assure that its chil- 
dren and itself can rejoin the tree as needed. Therefore, a 
router detecting a failure will send a flush message to all its 
children and removes state concerning them. Each non-core 
child receiving a flush message forwards it to all its chil- 
dren. This process results in the tree being removed from 
the point of failure down to the individual receivers or cores, 
who then have the responsibility of rejoining the tree. Other 
tree maintenance occurs when a router receives a higher-level 
join request, at which point the router sends a quit notice to 
its parent and becomes part of the higher-level branch that 
is forming. In this case the router maintains its children. 

With KHIP, untrusted routers need to be able to respond 
properly to link and router failures but should not be able to 
cause branches of the tree to be formed to untrusted routers, 
including routers that were once part of the tree out of the 
necessity of being on the path to a trusted router, but no 
longer should be. This requires some small changes to the 
maintenance mechanism of OCBT. First, quit notices need to 
be forwarded up to the next trusted core in the tree, so that 
if a trusted receiver quits the tree, the core router can remove 
state about it and start the re-keying process. Second, an 
untrusted router that is forced to quit from its parent to 
join a higher-level branch that is forming must also send a 
flush message to destroy the tree below it. This is necessary 
because the trusted cores or receivers below that router have 
to authenticate themselves with the new trusted core and 
receive the branch key for their sub-branch. 

Finally, to limit the effects of attack based on forging, 
replaying or failing to deliver control messages and to detect 
expires certificates, we require that each sub-branch period- 
ically be destroyed and re-constructed by the trusted core 
sending a flush message to all its children. Each receiver 
will then re-authenticate with the higher core. Each receiver 
should also keep a timer to ensure that they receive these 
flush messages periodically; if they do not, then they should 
quit from the tree and attempt to rejoin to make sure the 
core’s certificate has not expired. 

4 Denial-of-service attacks and attacks by un- 
trusted routers 

There are a number of denial-of-service attacks that are pos- 
sible against members of a multicast group. The most po- 
tent type is a flooding attack, one that uses the natural ef- 
ficiency of multicast to attempt to drown all receivers in a 
barrage of worthless data that is spread to all members of 
the group. Less potent types that use forged or replayed 
control messages or that simply do not process or forward 
control messages are also effective at denying service to indi- 
vidual receivers or branches of the multicast tree. KHIP lim- 
its the effect of flooding attacks, first by limiting the spread 
of branches so that an attacker cannot easily access the tree 
to send to it, and second by verifying the encrypted sequence 
number and ID enclosed in each data packet. An attacker 
who happens to be on the path between a trusted core and 
receiver can attempt to flood the entire multicast tree, but 
since it is not in possession of the proper sequence infor- 
mation or branch key it cannot construct packets properly 
and the flooded data will be detected and dropped at each 
trusted receiver and at the root for that sub-branch. If an 
attacker were to try replaying old data, this too would be de- 
tected when the sequence number was seen as already having 
been received. Even if the attacker preserved old data from 
previous sessions it would be improbable that the root of the 
sub-branch would have chosen the same random branch key 
to make the packets decrypt properly, as the branch keys 
changes regularly. 

KHIP does not defend against other types of denial-of- 
service attacks, however. Untrusted routers that lie on the 
path between a trusted core and one or more trusted re- 
ceivers can deny service to the receivers, and hence to any 
sub-branch that they may be the root for. In addition, some 
of these attacks may cause branches to be formed between 
the attacker and either the trusted core or trusted receiver. 
We consider these branches malformed as they do not span 
a path from trusted core to trusted receiver. In all cases 
these branches are transient as they will be removed when 
the core periodically flushes the tree to force receivers to 
re-authenticate. If the trusted receivers do not receive this 
periodic flush, they will quit the tree themselves. It is impor- 
tant to note that the malformed branches would have been 
part of the tree branch crossing the corrupt router anyway, so 
the corrupt router does not gain any additional information 
than it otherwise would have, and that this type of denial 
of service is no stronger than simply not forwarding con- 
trol messages to build the tree in the first place. Malformed 
branches last only as long as the period allowed between core 
and receiver re-authentication, because the tree is destroyed 
and rebuilt at those times. The attacker also does not gain 
access the branch key with these attacks. Table 1 shows the 
effects of replaying, forging or dropping control messages. 

In most cases, forgery or replay of control messages or 
data are detectable, because these messages are signed or 
encrypted in the branch shared key, cryptographic opera- 
tions which the attacker cannot duplicate. These instances 
are marked “Detect” in the figure, as the receiver of a mes- 
sage can tell it has been altered when the signature does not 
match the message. There are also cases in which a router 
on the path can cause a denial-of-service attack by dropping 
control message or data packets. These cases are marked 
“DOS”. A solution to corrupt routers purposely dropping 
packets would be to use a multi-path unicast routing pro- 
tocol to determine alternate paths towards the center point, 
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A-R 

-- 

rranslerlt 
Malformed 
Branch 
A-R 

rranslent 
Malformed 
Branch 

C-A 

Table 1: Effects of on-tree untrusted router attacks. 

bypassing the misbehaving router. 
In some instances the attacker can maintain a branch of 

the tree to themselves from either the core or receiver while 
denying service to one of the trusted participants. In those 
cases in which transient malformed branches exist, the ta 
ble entry is labeled as such, with an arrow pointing from 
the child to the parent of the malformed branch. These 
cases occur because the untrusted routers on the path be 
tween trusted routers need to be able to issue flush and quit 
notices in response to link and router failures. Since these 
routers are not trusted, they cannot be issued certificates to 
use to sign the quit and flush control messages. A simple 
but costly solution to this is to require every router in the 
network to be trusted, which is nice for scalability of data 
transmission but not for certificate distribution. Instead, we 
tolerate the possibility of these attacks as they are, in ef- 
fect, just a combination of otherwise possible attacks. An 
untrusted router can listen to traffic that flows across it, and 
it can prevent formation of branches by not passing control 
messages. Attacks that allow the temporary formation of 
malformed branches are simply a combination of these two 
other attacks, though less potent as the attacker will only 
receive data from one direction. 

As KHIP supports heterogeneous multicast routing pro- 
tocols, those protocols are possible points of compromise, 
especially if they are not secure protocols. A possible solu- 
tion is to secure and trust the entire domain and have the 
KHIP-speaking border routers distribute the un-encrypted 
data to the trusted domain. This is clearly not always prac- 
tical, however, and domains should use some secure multicast 
routing, either KHIP or some future secure protocol. 

5 Related Work 

The first efforts on providing secure multicast service focused 
on establishing a method of distributing a common shared 
key to all members of a multicast group [19, 151. While these 
protocols were effective for that purpose, they were unscal- 
able, because either they required a single server compute 
the key for a group, or they required extensive knowledge 
about the group membership. More recently, distributed 
and scalable methods of keying a multicast group have been 
proposed [24, 26, 71. These protocols, while effective for dis- 

DOS 

tributing keys across a multicast group, do not solve the 
problem of authorization, which is needed to prevent unau- 
thorized receivers from listening to the group and unautho- 
rized senders from mounting a flooding attack. Gong and 
Shacham [12] were the first to point out the need for some 
type of authentication and authorization mechanism for mul- 
ticast. They also clearly stated the goals that a secure mul- 
tic& protocol design should meet: compatibility with exist- 
ing protocols, scalability to the scope of the global Internet, 
transparency to higher-level protocols, localizablity for grad- 
ual introduction of the technology and jiexibility to support 
a variety of policies. However, the authors did not create a 
protocol that met these criteria. 

The first attempt to provide for authentication and au- 
thorization in an existing multicast routing protocol came in 
some simple extensions to CBT [4] that attempted to regu- 
late access to the multicast tree at the first hop router [3]. 
Ballardie and Crowcroft pointed out the need for Secure 
IGMF, which could present cryptographic credentials from 
the host to the router. In other ways their protocols did not 
meet any reasonable design requirements, however. There 
was no mechanism for key distribution, and since all autho- 
rization wss done at the leaf router on the tree, a corrupt 
router compromised the entire scheme. Additionally, rather 
than preventing flooding attacks, the protocol attempted 
to detect and squelch such attacks by randomly sampling 
packets and, upon detection of unauthorized traffic, send- 
ing messages towards the putative source that prevented it 
from forwarding traffic onto the tree. The problem with this 
scheme is that it leads to a simple and effective denial-of- 
service attack. An attacker, in conjunction with one corrupt 
router, could send unauthorized traffic that was forged with 
the source address of the target of the attack. When these 
packets were detected, the innocent target would be removed 
from the tree, victim of the forgers. 

Gong and Shacham examined the problems inherent in 
maintaining the efficiency of multicast routing while pro- 
viding a secure service in [13]. This work introduced four 
methods of reducing the size and number of control messages 
needed to authenticate group members and to distribute en- 

31nternet Group Management Protocol (IGMP) [lo] is the protocol 
that a hosts uses to communicate with an attached router to initiate 
their connection with the multicast group. 
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cryptions keys to the group. First, they pointed out that 
a multicast tree consisted of branches, each of which could 
utilize different control information than other branches. A 
node on the tree could then tailor messages for each branch 
separately, rather than send information needed by only one 
branch to all branches. Second, they showed that an inter- 
mediate node could do some message reprocessing, includ- 
ing rearranging or re-encrypting the message so long as the 
message’s integrity and origin are maintained. This is sig- 
nificant, because it means that a sender does not need to 
know the topography or group membership to trim control 
information from a message. Instead, simply knowing a few 
nodes down different branches, a node can combine this with 
the first point to tailor messages for several small branches, 
at the bottom of which the messages are reprocessed for sub- 
branches. The authors also point out that shared tree proto 
cols are ideal for this type of re-processing, because protocols 
that have distributed cores can use them as natural spots for 
message re-processing, in effect breaking one flat tree down 
into a hierarchy of smaller trees, each of which has its own 
control trafllc. Third, they point out that group rekeying 
need not take place only at the time a member joins or leaves 
the group, but can be pre-computed; they call this hot start 
authentication. Finally, they extend the idea of hot start au- 
thentication to continuous authentication, under which each 
member needs to periodically re-authenticate to receive the 
current key. These four ideas reoccur in later works in the 
area [17, 241. 

Some of the above ideas appeared in a RFC that again 
attempted to produce a secure version of CBT [l]. Under 
this scheme, called the Scalable Multicast Key Distribution 
(SMKD), the central CBT core is given an authorization 
list that it uses to verify signed join requests from receivers, 
each of whom has some public/private key pair. As the tree 
grows, the access list and a shared group key are distributed 
along each branch of the tree. The major problems with this 
scheme are that no provision is made for re-keying the group 
should some member leave, and no mechanism is supplied 
for updating the access list should it change while the group 
is in existence. The CBT protocol has changed since the 
time this RFC was released [2]; CBT is no longer a hard- 
state protocol nor does it support multiple cores. Both the 
use of multiple cores and the hard state were needed for the 
scalability of the original key distribution mechanism. 

Recently, an application-level implementation of multi- 
cast security called 101~s [17] has been proposed. 101~s uses 
multiple multicast groups, each group with a different mul- 
ticast key, connected by “group security controllers (GSC)” 
that rekey and forward traffic between groups. The use of 
different multicast groups reduces the problem of changing 
the key, as when some member leaves the group only that 
group needs to receive new keys, instead of all the groups 
in the session. 101~s clearly follows the first two ideas pre- 
sented by Gong and Shacham [13], with control messages 
being destined for a specific multicast group instead of a 
particular branch of the multicast tree and with the GSC 
doing reprocessing of the messages that need to travel be- 
tween groups. While 101~s provides for secure key distri- 
bution and re-keying when necessary, it is still necessary to 
implement multicast security at the routers. Implementing 
network security at the application level does provide for 
authentication, in that it gives the appropriate encryption 
keys to qualified receivers. However, it does not provide for 
authorization at the network level; therefore it does not pro- 
tect the routing in&structure against unauthorized senders 

mounting flooding attacks and it does not prevent unautho- 
rized receivers from joining the tree and receiving encrypted 
data. 

101~s is also inefficient in utilizing network resources. An 
101~s session uses multiple multicast addresses, where as sin- 
gle multicast group, by definition, uses only one. The mecha- 
nisms that claim multiple multicast addresses and make sure 
that the correct ones are distributed to their local area are 
certain to be more costly than those to distribute a single ad- 
dress globally. 101~s can also lead to multicast packets being 
duplicated repeatedly over the same link. This is antitheti- 
cal to multicast routing protocol design, and can occur when 
the GSC is placed improperly. As the GSC communicates 
with different multicast groups, traffic from one multicast 
group may arrive and be destined to go out to one or more 
other multicast groups. If the path to any receiver in an- 
other group lies along the same path as an incoming packet, 
that packet will cross the link again on its way out i?om the 
GSC. This duplication can occur a number of times equal to 
the one less than the number of multicast groups the par- 
ticular GSC is servicing for the session. The problem arises 
as the placement of the GSC is not necessarily related to 
the network topography. Even if care is taken to place the 
GSC, any receiver obtaining the incorrect address for the lo 
cal multicast group for the session creates a situation where 
packet duplication can occur. 

6 Conclusions 

We have described Keyed HIP (KHIP), a new protocol for 
secure, hierarchical multicast routing. KHIP maintains the 
efficiency of multicast routing of HIP [21] while providing au- 
thentication services and secure routing so that only autho- 
rized receivers may use the multicast tree and obtain keys for 
sending or receiving data. KHIP adds an authentication ser- 
vice that issues certificates to entities who are allowed access 
and who authenticate themselves with a known public key. 
These certificates are included in signed control messages to 
prove that the sender has the authority to alter the tree. 
The tree itself is divided into sub-branches, and messages 
within each sub-branch also carry nonces to prevent forgery 
or replay attacks that could build a branch of the tree to an 
unauthorized router. Each sub-branch can also use a shared 
key for data transmission, thus obviating the need for a single 
key shared across the entire tree. The headers of data pack- 
ets are reprocessed for transmission between sub-branches. 
The amount of work needed for re-processing is minimized 
by encrypting the data in a random key and encrypting that 
random key with the shared sub-branch key. F&processing 
is thus limited to re-encrypting the random key in the new 
branch key and adding new nonces for transmission in the 
new sub-branch. This increases only the size of the headers 
that need to be processed, and does not increase the num- 
ber of encryptions or decryptions. Untrusted routers can 
only eavesdrop on the encrypted data flow if they happen 
to lie on the path between two authorized entities. While 
some denial-of-service attacks by these untrusted routers are 
possible using unsigned control messages, they are no more 
effective than if the untrusted router was simply dropping 
control packets. Keyed HIP is the first secure, hierarchical 
multicast routing protocol. It meets the needs of security 
while providing delivery of data across many receivers. 
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