
Core-St at eless Fair Queueing: Achieving Approximately Fair
Bandwidth Allocations in High Speed Networks*

Ion Stoica Scott Shenker
CMlJ Xerox PARC

istoicaQcs.cmu.edu shenker@parc.xerox.com

Hui Zhang
CMlJ

hzhang@cs.cmu.edu

Abstract

Router mechanisms designed to achieve fair bandwidth al-
locations, like Fair Queueing, have many desirable proper-
ties for congestion control in the Internet. However, such
mechanisms usually need to maintain state, manage buffers,
and/or perform packet scheduling on a per flow basis, and
this complexity may prevent them from being cost-effectively
implemented and widely deployed. In this paper, we pro-
pose an architecture that significantly reduces this imple-
mentation complexity yet st,ill achieves approximately fair
bandwidth allocations. We apply this approach to an is-
land of routers - that is, a contiguous region of the net-
work and we distinguish between edge routers and core
routers. Edge routers maintain per flow state; they estimate
the incoming rate of each flow and insert a label into each
packet header based on this estimate. Core routers main-
tain no per flow state; they use FIFO packet scheduling aug-
mented by a probabilistic dropping algorithm that uses the
packet labels and an estimate of the aggregate traffic at the
router. We call the scheme Core-Stateless Fair Queueing.
We present simulations and analysis on the performance of
this approach, and discuss an alternate approach.

1 Introduction

A central tenet of the Internet architecture is that conges-
tion control is achieved mainly through end-host algorithms.
However, starting with Nagle [16], many researchers ob-
served that such end-to-end congestion control solutions are
greatly improved when routers have mechanisms that allo-
cate bandwidth in a fair manner, Fair bandwidth allocation
protects well-behaved flows from ill-behaved ones, and al-
lows a diverse set of end-to-end congestion control policies
Lo co-exist in the network [7]. As we discuss in Section 4,

* I’hls research was sponsored by DARPA under contract numbers
N66001-96-C-8528, E30602-97-Z-0287, and DABT63-94-C-0073, and
by a NSF Carerr Award under grant number NCR-9624979. Addi-
tlonal support was provided by Intel Corp., MCI, and Sun Microsys-
terns. Views and conclusions contained in this document are those of
the authors and should no be interpreted as representing the official
poliries, either expressed or implied, of DARPA, NSF, Intel, MCI,
Sun, or the U.S. government

Q ,998 ACM l-58113~003.l/98/0008.. $5.00

sorne maintain that fair bandwidth allocation’ plays a uer-
essary, not just beneficial, role in congestion control [7, 191.

Until now, fair allocations were typically achieved by us-
ing per-flow queueing mechanisms - such as Fair Queueing
[7, 181 and its many variants [2, 10, 20]- or per-flow dropping
mechanisms such as Flow Random Early Drop (FRED) [14].
These mechanisms are more complex to implement than t,ra-
ditional FIFO queueing with drop-tail, which is the most
widely implemented and deployed mechanism in routers to-
day. In particular, fair allocation mechanisms inherently
require the routers to maintain state and perform opera-
tions on a per flow basis. For each packet that arrives at the
router, the routers needs t,o clnssi~$ the packet into a flow,
update per flow state variables, and perform certain opera-
tions based on the per flow state. The operations can be as
simple as deciding whether to drop or queue the packet (e.g.,
FRED), or as complex as manipulation of priority queues
(e.g., Fair Queueing). While a number of techniques have
been proposed to reduce the complexity of the per packet>
operations [I, 20, 211, and commercial implementations are
available in some intermediate class routers, it is still MI-
clear whether these algorithms can be cost-effectively implr-
mented in high-speed backbone routers because all these al-
gorithms still require packet classification and per flow state
management.

In this paper we start with the assumption that (1) fair
allocation mechanisms play an important, perhaps even nec-
essary, role in congestion control, and (2) the complexity
of existing fair allocation mechanisms is a substantial hin-
drance to their adoption. Both of these points are debat-
able; developments in router technology may make such al-
gorithms rather inexpensive to implement, and there may
be solutions to congestion control that do not require fair
allocation (we discuss this point more fully in Sectiou 4).
By using these two assumptions as our starting points we
are not claiming that they are true, but rather are only
looking at the implications if indeed they 2uere true. If one
starts with these assumptions then overcoming the complex-
ity problem in achieving fair allocation becomes a vitally
important problem.

To this end, we propose and examine an architecture and
a set of algorithms that allocate bandwidth in an approxi-
mately fair manner while allowing the routers on high-speed
links to use FIFO queueing and maintain no per-flow state.

‘We use the max.mm defimtmn of fairness [la] which, whole not
the only possible candidate for fairness, LS certamly a reasonable one
and, moreover, can be implemented with only local mformatlon

118

In this approach, we identify an island of routers’ and dis-
tinguish between the edge and the core of the island. Edge
routers compute per-flow rate estimates and label the pack-
ets passing through them by inserting these estimates into
each packet header. Core routers use FIFO queueing and
keep no per-flow state. They employ a probabilistic drop-
ping algorithm that uses the information in the packet la-
bels along with the router’s own measurement of the aggre-
gate traffic. The bandwidth allocations within this island of
routers are approximately fair. Thus, if this approach were
adopted within the high speed interiors of ISP’s, and fair al-
location mechanisms were adopted for the slower links out-
side of these high-speed interiors, t,hen approximately fair
allocations could be achieved everywhere. However, this
approach, like, Fair Queueing [7] or RED [9], still provides
benefit if adopted in an incremental fashion, although the
incremental adoption must be done on an island-by-island
basis, not on a router-by-router basis.

We call this approach Core-Stateless Fair Queueing (CSFQ)
since the core routers keep no per-flow state but instead use
the state that is carried in the packet labels.3 We describe
the details of this approach - such as the Rate estimation
algorithm and the packet dropping algorithm - in Section 2.

Such a scheme cannot hope t,o achieve the nearly-perfect
levels of fairness obtained by Fair Queueing and other so-
phisticated and stateful queueing algorithms. However, our
interest is not in perfect,ion, but only in obtaining reason-
able approximations to the fair bandwidth allocations. We
derivt, a worst-case bound for the performance of this algo-
rithm in an idealized setting. This bound is presented in
Section 2.

This worst-case analysis does not give an adequate guide
to the typical functioning of CSFQ. In Section 3 we present
results from simulation experiments to illustrate the perfor-
mance of our approach and to compare it to several other
schemes: DR.R (a variant of Fair Queueing), FRED, RED,
and FIFO. We also discuss, therein, the relative mechanistic
complexities of these approaches.

The first 3 sections of the paper are narrowly focussed
on the details of the mechanism and its performance (both
absolute and relative), with the need for such a mechanism
taken for granted. In Section 4 we return to the basic ques-
tion of why fair allocations are relevant to congestion con-
trol. Allocating bandwidth fairly is one way to address what
we call the unfriendly flow problem; we also discuss an alter-
nate approach to addressing this problem, the identification
approach as described in [8]. We conclude with a summary
in Section 5. A longer version of this paper, containing
proofs of the theoretical results as well as more complete
pseudocode, can be found at http: //www .cs .cmu. edu/-isto
ica/csfq.

2 Core-Stateless Fair Queueing (CSFQ)

In this section, we propose an architecture that approxi-
mates the service provided by an island of Fair Queueing
routers, but has a much lower complexity in the core routers.
The architecture has two key aspects. First, to avoid main-
taining per flow state at each router, we use a distributed

‘By mland we meal, a contiguous portion of the network, with
well-defined intenor and edges.

30bviously these core routers keep some state, but none of it is
per-flow state, so when we say “stateless” we are referring to the
absence of per-flow state.

algorithm in which only edge routers maintain per flow state,
while core (non-edge) routers do not maintain per flow state
but instead utilize the per-flow information carried via a la-
bel in each packet’s header. This label contains an estimate
of the flow’s rate; it is initialized by the edge router based
on per-flow information, and then updated at each router
along the path based only on aggregate information at t,hat,
router.

Second, to avoid per flow buffering and scheduling, as re-
quired by Fair Queueing, we use FIFO queueing with prob-
abilistic dropping on input. The probability of dropping a
packet as it arrives to the queue is a function of the rate
estimate carried in the label and of the fair share rate at
that router, which is estimated based on measurements of
the aggregate traffic.

Thus, our approach avoids both the need to maintain
per-flow state and the need to use complicated packet schedul-
ing and buffering algorithms at core routers. To give a better
intuition about how this works, we first present the idealized
bit-by-bit or fluid version of the probabilistic dropping algo-
rithm, and then extend the algorithm to a practical packet-
by-packet version.

2.1 Fluid Model Algorithm

We first consider a bufferless fluid model of a router with
output link speed C, where the flows are modelled as a con-
tinuous stream of bits. We assume each flow’s arrival rate
r,(t) is known precisely. Max-min fair bandwidth alloca-
tions are characterized by the fact that all flows that are
bottlenecked (i.e., have bits dropped) by this router have
the same output rate. We call this rate the fair share rate of
the server; let a(t) be the fair share rate at time t. In gen-
eral, if max-min bandwidth allocations are achieved, each
flow i receives service at a rate given by min(r,(t),cw(t)).
Let A(t) denote the total arrival rate: A(t) = ~~=, rl(t). If

A(t) > C then the fair share a(t) is the unique solution to

C=k min(r,(t), 4t)), (1)
*cl

If A(t) 5 C then no bits are dropped and we will, by con-
vention, set cr(t) = max, r,(t).

If rl(t) < a(t), i.e., flow i sends no more than the server’s
fair share rate, all of its traffic will be forwarded. If r,(t) >

a(t), then a fraction r’cz;ty(t) of its bits will be dropped, so

it will have an output rate of exactly a(t). This suggests a
very simple probabilistic forwarding algorithm that, achieves
fair allocation of bandwidth: each incoming bit of flow i is
dropped with the probability

max(a,l- -$J)

When these dropping probabilities are used, the arrival
rate of flow i at the next hop is given by min[r,(t), cult)].

2.2 Packet Algorithm

The above algorithm is defined for a bufferless fluid system
in which the arrival rates are known exactly. Our task now
is to extend this approach to the situat,ion in real routers
where transmission is packetized, there is substantial buffer-
ing, and the arrival rates are not known.

119

E:dge Router I

Estimator

Figure 1: The architecture of the output port of an edge
rout,er, and a core router, respectively.

We still employ a drop-on-input scheme, except that now
we drop packets rather than bits. Because the rate esti-
mation (described below) incorporates the packet size, the
dropping probability is independent of the packet size and
depends only, as above, on the rate r;(t) and fair share rate

u(t).
We are left with two remaining challenges: estimating

the rates r,(t) and t,he fair share o(t). We address these two
issues in turn in the next two subsections, and then discuss
the rewriting of the labels. Pseudocode reflecting this algo-
rithm is described in Figure 2. We should note, however,
that, the main point, of our paper is the overall architecture
and that the detailed algorithm presented below represents
only an init,ial prototype. While it serves adequately as a
proof-of-concept of our architecture, we fully expect that the
details of this design will continue to evolve.

2.2.1 Computation of Flow Arrival Rate

Recall that in our architecture, the rates rt(t) are estimated
at t,he edge routers and then these rates are inserted into
the packet labels. At each edge router, we use exponential
averaging to estimate the rate of a flow. Let tf and 1: be
the arrival time and length of the lath packet of flow i. The
estimated rate of flow i, T,, is updated every time a new
packet is received:

where T,k = tt - tr-’ and K is a constant. We discuss

the rationale for using the form e-Tak/Ji for the exponential
weight in Section 2.7. In the longer version of this paper
[22] we show that, under a wide range of conditions, this
estimation algorithm converges.

2.2.2 Link Fair Rate Estimation

In this section, we present an estimation algorithm for o(t).
To give intuition, consider again the fluid model in Sec-
tion 2. t where the arrival rates are known exactly, and as-
sumr the system performs the probabilistic dropping algo-
rithm according to Eq. (2). Then, the rate with which the
algorithm accepts packets is a function of the current esti-
mate of the fair share rate, which we denote by 6(t). Letting
.“‘(&(t)) denote this acceptance rate, we have

F(qt)) = 2 min (rl(t), G(t))
r=,

Note that F(.) is a continuous, nondecreasing, concave, and
piecewise-linear function of cr. If the link is congested (A(t) >
C) we choose G(t) to be the unique solution to F(s) = C.
If the link is not congested (A(t) < C) we take G(t) to be
the largest rate among the flows that traverse the link, i.e.,
G(t) = maxi<,<,(r,(t)). From Eq (4) note that if we knew --
the arrival rates rl(t) we could then compute o(t) directly.
To avoid having to keep such per-flow state, we seek instead
to implicitly compute G(t) by using only aggregate measure-
ments of F and A.

We use the following heuristic algorithm with three ag-
gregate state variables: G, the estimate for the fair share

rate; A, the estimated aggregate arrival rate; F, the esti-
mated rate of the accepted traffic. The last two variables

are updated upon the arrival of each packet. For A we use
exponential averaging with a parameter e -T/Xi, where T is
the inter-arrival time between the current and the previous
packet :

where Aold is the value of A before the updating. We use

an analogous formula to update F.
The updating rule for ;i depends on whether the link is

congested or not. To filter out the estimation inaccuracies
due to exponential smoothing we use a window of size K,.

A link is assumed to be congested, if A^ 2 C at all times dur-
ing an interval of length EC,. Conversely, a link is assumed

to be uncongested, if A^ < C at all times during an interval
of length I(,. The value% is updated only at the end of an
interval in which the link is either congested or uncongested
according to these definitions. If the link is congested then
G is updated based on the equation F(G) = C. We approxi-
mate F(‘) by a linear function that intersects the origin and

has slope p/Gold. This yields

h c
CYnezLi = QoldT

F
(6)

If the link is not congested, (r,,, is set to the largest rate
of any active flow (i.e., the largest label seen) during the
last Ii’, time units. The value of ;u^,,,,, is then used to com-
pute dropping probabilities, according to Eq. (2). For com-
pleteness, we give the pseudocode of the CSFQ algorithm in
Figure 2.

We now describe two minor amendments to this algo-
rithm related to how the buffers are managed. The goal of
estimating the fair share G is to match the accepted rate to
the link bandwidth. Due to estimation inaccuracies, load
fluctuations between G’s updates, and the probabilistic na-
ture of our algorithm, the accepted rate may occasionally
exceed the link capacity. While ideally the router’s buffers
can accommodate the extra packets, occasionally the router
may be forced to drop the incoming packet, due to lack of
buffer space. Since drop-tail behavior will defeat the purpose
of our algorithm, and may exhibit undesirable properties in
the case of adaptive flows such as TCP [9], it, is important
to limit, its effect. To do so, we use a simple heuristic: every

120

on receiving packet, p
if (edge router)

2 =classify(p);
p,label = estimate-rate(r,,p); /* ~dse Ep. (3) */

prob =max(O, 1 - a/p.label);
if @rob >unifrand(O, 1))

0 =estimate-cY (p, 1);

drop(p);
else

0 =estimate-rw (p, 0);
tmqueue(p);

if (prob > 0)
p.label = cy; /+ relabel p */

estimate-u (p, dropped)

estimate-rate(X,p); /* est. arrival rate (use Eq. (5)) */

if (dropped == Fz4-LSE)
estimate-rate(F,p); /* est. accepted trafic rate */

if(A^>C)
if (congested == FALSE)

congested = TRUE;
start-time = crt-time;

else
if (crt-time > start-time + Ii,)

6 = 2 x c/F;
start-ti’me = crt-time;

else /* 2 < C */
if (congested == TRUE)

congested = FALSE;
start-time = crt-time;
tmp-cy = 0; /* use to compute new cy */

else
if (crt-time < start-time + KC)

tmp-cu =max(tmp-cu,l,.label);
else

Cu = tmp-ff ;
start-time = crt-time;
tmp-rw = 0;

return G;;

Figure 2: The pseudocode of CSFQ.

time the bufl’er overflows, ;u^ is decreased by a small fixed per-
centage (taken to be 1% in our simulations). Moreover, to
avoid overcorrection, we make sure that during consecutive
updates su^ does not decrease by more than 25%.

In addition, since there is little reason to consider a link
congested if the buffer is almost empty, we apply the fol-
lowing rule. If the link becomes uncongested by the test in
Figure 2, then we assume that it remains uncongested as
long as the buffer occupancy is less than some predefined
threshold. In this paper we use a threshold t,hat is half of
the I,otal bufl’er capacity.

2.2.3 Label Rewriting

Our rate estimation algorithm in Section 2.2.1 allows us to
label packets with their flow’s rate as they enter the island.
Our packet dropping algorithm described in Section 2.2.2
allows us to limit flows to their fair share of the bandwidth.
After a flow experiences significant losses at a congested link

inside the island, however, the packet labels are no 1o11gr1
an accurate estimate of its rate. We cannot rcr,m our es-
timation algorithm, because it involves per-flow state. IJor.-
tunately, as note in Section 2.1 the outgoing rat,<! is merely
the minimum between the incoming rate and the fair ra(,e
N. Therefore, we rewrite the the packet, label I, as

L - min(Ldd, a), new - (7)

By doing so, the outgoing flow rates will be properly reprc-
sented by the packet labels.

2.3 Weighted CSFQ

7’1~ CSFQ algorithm can be ext,ended to support, Hews with
diH’erent weights. Let w, denote the weight of flow I. Re-
turning to our Huitl model, the meaning of t,hese weights
is that we say a fair allocat,ion is one in which all bottle-
necked Hows have the same value for 2. l’hen, if A(t) > C,
the normalized fair rate a(t) is the unique value such that

CL w, min (0, 2) = C. The expression for the drop-

ping probabilities in the weighted case is max (0, I - (Y?).

The only other major change is that the label is now rlj$L,
instead simply rz. Finally, without going into details we
note that the weighted packet-by-packet version is virtually
identical to the corresponding version of the plain CSFQ
algorithm.

It is import,ant to note that with weighted CSFQ we can
only approximate islands in which each How has t,he same
weight at all routers in an island. That is, our algorithm
cannot accommodate situations where the relative weights
of Hows differ from router to router within an island. How-
ever, even with this limitation, weighted CSFQ may prove
a valuable mechanism in implementing differential services,
such as the one proposed in [24]

2.4 Performance Bounds

We now present the main theoretical result of the paper.
For generality, this result is given for weighted CSFQ. The
proof is given in [22].

Our algorithm is built around several estimat,ion proce-
dures, and thus is inherently inexact. One natural concern
is whether a flow can purposely “exploit” these inaccuracies
to get more than its fair share of bandwidth. We cannot
answer this question in full generality, but we can analyze a
simplified situation where the normalized fair share rate N
is held fixed and there is no buffering, so the drop probabil-
ities are precisely given by Eq. (2). In addition, we assume
that when a packet arrives a fraction of that, packet equal to
the flow’s forwarding probability is transmitted. Note that
during any time interval [tl, t2) a flow with weight w is enti-
tled to receive at most, zua(tz - tl) service time; we call any
amount above this the excess service. We can bound this
excess service, and the bounds are independent of both the
arrival process and the length of the time interval during
which the How is active. The bound does depend crucially
on the maximal rat,e R at which a Hows packets can arrive
at, a router (limited, for example, by the speed of the flow’s
access link); the smaller this rate R the tighter the bound.

Theorem 1 Consider a link with a constant normalizedfair
rute CY, and a flow with weight u). Then, the e.rcess seruzce

received by a flow ,witla weight w, that sends at a ratr, no
lurger than R is bounded above by

121

2.7 Miscellaneous Details

Having presented the basic CSFQ algorithm, we now return
to discuss a few aspects in more detail.

We have used exponential averaging to estimate the ar-
rival rate in Eq. (3). However, instead of using a constant

exponential weight we used e-‘/Ii where T is the inter-
packet arrival time and li is a constant. Our motivation
was that e-Tt1’ more closely reflects a fluid averaging pro-
cess which is independent of the packetizing structure. More
specifically, it can be shown that if a constant weight is used,
the estimated rate will be sensitive to the packet length dis-
tribution and there are pathological cases where the esti-
mated rate differs from the real arrival rate by a factor;
this would allow flows to exploit the estimation process and
obtain more than their fair share. In contrast, by using a
parameter of e-‘/Ii, the estimated rate will asymptotically
converge to the real rate, and this allows us to bound the
excess service that can be achieved (as in Theorem 1). We
used a similar averaging process in Eq. (5) to estimate the
total arrival rate A.

The choice of li in the above expression e-‘r”i presents
us with several tradeoffs. First, while a smaller Ei increases
the system responsiveness to rapid rate fluctuations, a larger
I(better filters the noise and avoids potential system insta-
bility. Second, I< should be large enough such that the esti-
mated rate, calculated at the edge of the network, remains
reasonably accurate after a packet traverses multiple links.
This is because the delay-jitter changes the packets’ inter-
arrival pattern, which may result in an increased discrep-
ancy between the estimated rate (received in the packets’
labels) and the real rate. To counteract this effect, as a rule
of thumb, I< should be one order of magnitude larger that
the delay-jitter experienced by a flow over a time interval of
the same size, K. Third, I(should be no larger than the
average duration of a flow. Based on this constraints, an
appropriate value for li would be between 100 and 500 ms.

A second issue relates to the requirement of CSFQ for a
label to be carried in each packet. One possibility is to use
the Type Of Service byte in the IP header. For example, by
using a floating point representation with four bits for man-
tissa and four bits for exponent we can represents any rate
between 1 Kbps and 65 Mbps with an accuracy of 6.25%.
Another possibility is to define an IP option in the case of
lPv4, or a hop-by-hop extension header in the case of IPv6.

whew r a = ,IUJ, and l,,, represents the maximum length of
a packet.

By bounding the excess service, we have shown that. in
this idealized setting the asymptotic throughput cannot ex-
ceed the fair share rate. Thus, flows can only exploit the
system over short time scales; they are limited to their fair
share over long time scales

2.5 Implementation Complexity

At core routers, both the time and space complexity of our
algorithm are constant with respect to the number of com-
pet,iiig flows. and thus we think CSFQ could be implemented
in very high speed core rout,ers. At each edge router CSFQ
needs to maintain per flow state. Upon each arrival of each
packet, the edge router needs to (1) classify the packet to a
flow, (2) update the fair share rate estimation for the cor-
responding outgoing link, (3) update the flow rate estima-
t,ion, and (4) label the packet. All these operations with
the exception of packet classification can be efficiently im-
plemented today.

E:fficient and general-purpose packet, classification algo-
rithins are still under act,ive research. We expect to lever-
age lhese results. W e a so note that packet classification 1
at irigress nodes is needed for a number of other purposes,
such as in the context of Multiprotocol Label Switching
(MPLS) [4] or for accounting purposes; therefore, the classi-
fication required for CSFQ may not be an extra cost. In ad-
dition, if the edge routers are typically not on the high-speed
backbone links then there is no problem as classification at
rnoderate speeds is quite practical.

2.6 Architectural Considerations

We have used the term flow wit,hout defining what we mean.
This was int,entional, as the CSFQ approach can be applied
to varying degrees of flow granularity; that is, what consti-
tutes a flow is arbitrary as long as all packets in the flow
follow the same path within the core. In this paper, for con-
venience, a flow is implicitly defined as a source-destination
pair, but one could easily assign fair rates to many other
granularities such as source-destination-ports. Moreover,
the unit of Vlow” can vary from island to island as long
as the rates are re-estimated when entering a new island.

Similarly, we have not been precise about the size of these
CSF’Q islands. In one extreme, we could take each router
as an island and estimate rates at every router; this would
allow us to avoid the use of complicated per-flow scheduling
and dropping algorithms, but would require per-flow classi-
fication. Another possibility is that ISP’s could extend their
island of CSFQ routers to the very edge of their network,
having their edge routers at the points where customer’s
packets enter the ISP’s network. Building on the previous
scenario, multiple ISP’s could combine their islands so that
classification and estimation did not have to be performed
at ISP-ISI’ boundaries. The key obstacle here is one of trust
between ISl’s.

3 Simulations

In this section we evaluate our algorithm by simulation. To
provide some context, we compare CSFQ’s performance to
four additional algorithms. Two of these, FIFO and RED.
represent baseline cases where routers do not attempt to
achieve fair bandwidth allocations. The other two algo-
rithms, FRED and DRR, represent different approaches to
achieving fairness.

l FIFO (First In First Out) - Packets are served in a
first-in first-out order, and the buffers are managed
using a simple drop-tail strategy; i.e., incoming pack-
ets are dropped when the buffer is full.

l RED (Random Early Detection) - Packets are served
in a first-in first-out order, but the buffer manage-
ment is significantly more sophisticated than drop-tail.
RED [9] starts to probabilistically drop packets long

122

(a) VJ)
Figure 3: Simulat,ion results for a IO Mbps link shared by N flows. (a) The average throughput over 10 set when N = 32,
and all flows arr IrDPs. The: arrival rate for flow i is (i + 1) times larger than its fair share. The flows are indexed from 0.
(b) The throughputs of ant: UDP flow (indexed 0) sending at 10 Mbps, and of 31 TCP fiows sharing a 10 Mbps link.

before the buff’er is full, providing early congestion
indication to flows which can then gracefully back-
off before the buffer overflows. RED maintains two
buffer thresholds. When the exponentially averaged
buffer occupancy is smaller than the first threshold, no
packet is dropped, and when the exponentially aver-
aged buffer occupancy is larger than the second thresh-
old all packets are dropped. When the exponentially
averaged buffer occupancy is between the two thresh-
olds, the packet dropping probability increases linearly
with buffer occupancy.

l FRED (Flow Random Early Drop) - This algorithm
extends RED to provide some degree of fair band-
width allocation [14]. To achieve fairness, FRED main-
tains state for all flows that have at least one packet
in the buffer. Unlike RED where the dropping deci-
sion is based only on the buffer state, in FRED drop-
ping decisions are based on this flow stat,e. Specif-
ically, FRED preferentially drops a packet of a flow
that has either (1) had many packets dropped in the
past, or (2) a queue larger than the average queue size.
FRED has two variants, which we will call FRED-l
and FRED-2. The main difference between the two
is that FRED-2 guarantees to each flow a minimum
number of buffers. As a general rule, FRED-2 per-
forms better than FRED-1 only when the number of
flows is large. In the following data, when we do not
distinguish between the two, we are quoting the results
from the version of FRED which performed better.

. DRR (Deficit Round Robin) - This algorithm [20] rep-
resents an efficient implementation of the well-known
weighted fair queueing (WFQ) discipline. The buffer
management scheme assumes that when the buffer is
full the packet from the longest queue is dropped. DRR
is the only one of the four to use a sophisticated per-
flow queueing algorithm, and thus achieves the highest
degree of fairness.

These for~r algorit,hms represent, four different levels of
c.omplexity. DRR and FRED h ave to classify incoming flows,
whertlas FIFO and RED do not,. DRR in addition has to
implement its packet scheduling algorithm, whereas the rest

all use first-in-first-out scheduling. CSFQ edge routers have
complexity comparable to FRED, and CSFQ core routers
have complexity comparable to RED.

We have examined the behavior of CSFQ under a vari-
ety of conditions. We use an assortment of traffic sources
(mainly TCP sources and constant bit rate UDP sources,4
but also some on-off sources) and topologies. Due to space
limitations, we only report on a small sampling of the sim-
ulations we have rum5 All simulations were performed in
ns-2 [17], which provide accurate packet-level implementa-
tion for various network protocols, such as TCP and RLM
[15] (Receiver-driven Layered Multicast), and various buffer
management and scheduling algorithms, such as RED and
DRR. All algorithms used in the simulation, except CSFQ
and FRED, were part of the standard ns-2 distribution.

Unless otherwise specified, we use the following parame-
ters for the simulations in this section. Each output link has
a capacity of 10 Mbps, a latency of 1 ms, and a buffer of 64
KB. In the RED and FRED cases the first threshold is set to
16 KB, while the second one is set to 32 KB. The averaging
constants I((used in estimating the flow rate), It’, (used in
estimating the fair rate), and Ii’, (used in making the deci-
sion of whether a link is congested or not) are all set to 100
ms unless specified otherwise. The general rule of thumb
we follow in this paper is to choose these constants to be
roughly two times larger than the maximum queueing delay
(i.e., 64KB/lOMbps = 51.2 ms).6 Finally, in all topologies
the first router on the path of each flow is always assumed
to be an edge router; all other routers are assumed without
exception to be core routers.

We simulated the other four algorithms to give us bench-
marks against which to assess these results. We use DRR as
our model of fairness and use the baseline cases, FIFO and

‘This source, referred to as UDP in the remainder of the paper,
has fixed size packets and the packet interarrival times are umformly
distributed between [0.5 x avg, 1.5 x avg), where aug is the average
mterarrival time.

5A fuller set of tests, and the scripts used to run them, IS avaIlable
at http:lluuu.cs.cmu.edu/-i=t~lca/csfq

61t can be shown that by using this rule an Idle lmk that becomes
suddenly congested by a set of Identical UDP sources ~111 not ex-
perxnce buffer overflow before the algorithm detects the congestlon,
as long as the aggregate arrival rate IS less than 10 times the link
capacity (see [22])

123

Figure 4: The normalized bandwidth of a TCP flow that
competes with N - 1 UDP flows sending at t,wice their al-
located rates, as a function of N.

RED, as representing the (unfair) status quo. The goal of
these experiments is to determine where CSFQ sits between
these two ext,remes. FRED is a more ambiguous bench-
mark, being somewhat more complex than CSFQ but not
as complex as DRR.

In general, we find that CSFQ achieves a reasonable de-
gree of fairness, significantly closer to DRR t,han to FIFO
or RED. CSFQ’s performance is typically comparable to
FRED’s, although there are several situations where CSFQ
significantly outperforms FRED. There are a large number
of experiments and each experiment involves rather complex
dynamics. Due to space limitations, in the sections that fol-
low we will merely highlight a few important points and omit
detailed explanations of the dynamics.

3.1 A Single Congested Link

We first consider a single 10 Mbps congested link shared by
N flows. The propagation delay along the link is 1 ms. We
performed three related experiments.

In the first, experiment, we have 32 UDP flows, indexed
from 0, where flow i sends i + 1 times more than its fair
share of 0.31.25 Mbps. Thus flow 0 sends 0.3125 Mbps, flow
1 sends 0.625 Mbps, and so on. Figure 3(a) shows the av-
erage throughput of each flow over a 10 set interval; FIFO,
RED, and FRED-1 fail to ensure fairness, with each flow get-
t,ing a share proportional to its incoming rate, while DRR
is extremely effective in achieving a fair bandwidth distri-
bution. CSFQ and FRED-2 achieve a less precise degree of
fairness; for CSFQ the throughputs of all flows are between
-11% and +5% of the ideal value.

In the second experiment we consider the impact of an
ill-behaved IJDP flow on a set of TCP flows. More precisely,
the traffic of flow 0 comes from a UDP source that sends at
10 Mbps, while all the other flows (from 1 to 31) are TCPs.
Figure 3(b) shows the throughput of each flow averaged over
a 10 set interval. The only two algorithms that can most
effectively contain the UDP flow are DRR and CSFQ. Un-
der FRED the UDP flow gets almost 1.8 Mbps - close to
six times more than its fair share - while the LJDP only gets
0.396 Mbps and 0.361 Mbps under DRR and CSFQ, respec-
tively. As expected FIFO and RED perform poorly, with
the UDP flow getting over 8 Mbps in both cases.

In the final experiment, we measure how well the al-
gorit hms can protect a single TCP flow against multiple

Figure 5: Topology for analyzing the effects of multiple con-
gested links on the throughput of a flow. Each link has
ten cross flows (all UDPs). All links have 10 Mbps capaci-
ties. The sending rates of all UDPs, excepting UDP-0, are
2 Mbps, which leads to all links between routers being con-
gested.

ill-behaved flows. We perform 31 simulations, each for a
different value of N, N = 2.. .32. In each simulation we
take one TCP flow and N - 1 UDP flows; each UDP sends
at twice its fair share rate of $-bps. Figure 4 plots the
ratio between the average throughput of the TCP flow over
10 seconds and the fair share bandwidth it should receive
as a function of the total number of flows in the system N.
There are three points of interest. First, DRR performs very
well when there are less than 22 flows, but its performances
decreases afterwards. This is because the TCP flow’s buffer
share is less than three buffers, which significantly affects
its throughput. Second, CSFQ performs better than DRR
when the number of flows is large. This is because CSFQ is
able to cope better with the TCP burstiness by allowing the
TCP flow to have several packets buffered for short time
intervals. Finally, across the entire range, CSFQ provides
similar or better performance as compared to FRED.

3.2 Multiple Congested Links

We now analyze how the throughput of a well-behaved flow
is affected when the flow traverses more than one congested
link. We performed two experiments based on the topology
shown in Figure 5. All UDPs, except UDP-0, send at 2
Mbps. Since each link in the system has 10 Mbps capacity,
this will result in all links between routers being congested.

In the first experiment, we have a UDP flow (denoted
UDP-0) sending at its fair share rate of 0.909 Mbps. Fig-
ure 6(a) shows the fraction of UDP-O’s traffic that is for-
warded versus the number of congested links. CSFQ and
FRED perform reasonably well, although not quite as well
as DRR.

In the second experiment we replace UDP-0 with a TCP
flow. Similarly, Figure 6(b) plots the normalized TCP through-
put against the number of congested links. Again, DRR and
CSFQ prove to be effective. In comparison, FRED performs
significantly worse though still much better than RED and
FIFO. The reason is that while DRR and CSFQ try to allo-
cate bandwidth fairly among competing flows during conges-
tion, FRED tries to allocate buffers fairly. Flows with dif-
ferent end-to-end congestion control algorithms will achieve
different throughputs even if routers try to fairly allocate
buffer.

124

Figure 6: (a) The normalized throughput of TJDP-0 as a function of the number of congested links. (b) The same plot when
UDP-0 is replaced by a TCP flow.

Algorithm delivered dropped
DRR I 601 1 6157

t CSFQ: I 1680 I 5078 1

Table 1: Statistics for an ON-OFF flow with 19 competing
TCPs flows (all numbers are in packets).

FIFO 840 1 1695

Table 2: The mean transfer times (in ms) and the corre-
sponding standard deviations for 60 short TCPs in the pres-
ence of a UDP flow that sends at the link capacity, i.e., 10
Mbps.

3.3 Coexistence of Different Adaptation Schemes

In this experiment we investigate the extent to which CSFQ
can deal with flows that employ different adaptation schemes.
Receiver-driven Layered Multicast (RLM) [15] is an adaptive
scheme in which the source sends the information encoded
into a number of layers (each to its own multicast group) and
the receiver joins or leaves the groups associated with the
layers based on how many packet drops it is experiencing
We consider a 4 Mbps link traversed by one TCP and three
RLM flows. Each source uses a seven layer encoding, where
layer i sends 21t4 Kbps; each layer is modeled by a UDP
traffic source. The fair share of each flow is 1Mbps. In the
RLM case this will correspond to each receiver subscribing
to the first five layers’.

The receiving rates averaged over 1 second interval for
each algorithm are plotted in Figure 7. Since in this experi-
ment the link bandwidth is 4 Mbps and the router buffer size

‘More precisely, we have c:=, 2’t4 Kbps = 0.992 Mbps.

Algorithm 1 mean std. dev
DRR I 6080 I 64
CSFQ 5761 220
FRED 4974 190
RED 628 80
FIFO 378 69

Table 3: The mean throughputs (in packets) and standard
deviations for 19 TCPs in the presence of a UDP flow along
a link with propagation delay of 100 ms. The UDP sends at
the link capacity of 10 Mbps.

is 64 KB, we set constants I(, li,, and h’, to be 250 ms,
i.e., about two times larger than the maximum queue de-
lay. An interesting point to notice is that, unlike DRR and
CSFQ, FRED does not provide fair bandwidth allocation
in this scenario. Again, as discussed in Section 3.2, this is
due to the fact that RLM and TCP use different end-to-end
congestion control algorithms.

3.4 Different Traffic Models

So far we have only considered UDP, TCP and layered mul-
ticast traffic sources. We now look at two additional source
models with greater degrees of burstiness. We again con-

sider a single 10 Mbps congested link. In the first exper-
iment, this link is shared by one ON-OFF source and 19
TCPs. The ON and OFF periods of the ON-OFF source
are both drawn from exponential distributions with means
of 100 ms and 1900 ms respectively. During the ON period
the ON-OFF source sends at 10 Mbps. Note that the ON-
time is on the same order as the averaging intervals K, K,,
and I(, which are all 100 ms, so this experiment is designed
to test to what extent CSFQ can react over short timescales.

The ON-OFF source sent 6758 packets over the course of
the experiment. Table 1 shows the number of packets from
the ON-OFF source dropped at the congested link. The
DRR results show what happens when the ON-OFF source
is restricted to its fair share at all times. FRED and CSFQ
also are able to achieve a high degree of fairness.

Our next experiment simulates Web traffic. There are
60 TCP transfers whose inter-arrival times are exponentially
distributed with the mean of 0.05 ms, and the length of each

125

(a) DRR

transfer is drawn from a Pareto distribution with a mean of
20 packets (1 packet = 1 KB) and a shaping parameter of
1.06. These values are consistent with those presented in
t,he [5]. In addition, there is a single 10 Mbps UDP flow.

‘Table 2 presents the mean transfer time and the corre-
sponding standard deviations. Here, CSFQ performs worse
than FRED, mainly because it has a larger average queue
size, but still almost one order of magnitude better than
FIFO and RED.

3.5 Large Latency

All of our experiments so far have had small link delays (1
ms). In this experiment we again consider a single 10 Mbps
congested link, but now with a propagation delay of 100 ms.
‘lhc, load is comprised of one UDP flow that sends at the
link speed and 19 TCP fiows. Due to the large propagation
delay, in this experiment we set the buffer size Lo be 256 KB,

Figure 7: The throughput of three RLM flows and one TCP flow along a 4 Mbps link .

and Ii’, K,, and I(, to be 400 ms. Table 3 shows the aver-
age number of packets of a TCP flow during a 100 seconds
interval. Both CSFQ and FRED perform reasonably well.

3.6 Packet Relabeling

Recall that when the dropping probability of a packet is
non-zero we relabel it with the fair rate cy so that the label
of the packet will reflect the new rate of the flow. To test
how well this works in practice, we consider the topology in
Figure 8, where each link is 10 Mbps. Note that as long as
all three flows attempt to use their full fair share, the fair
shares of flows 1 and 2 are less on link 2 (3.33 Mbps) than
on link 1 (5 Mbps), so there will be dropping on both links.
This will test the relabelling function to make sure that the
incoming rates are accurately reflected on the second link.
We perform two experiments (only looking at CSFQ’s per-
formance). In the first, there are three UDPs sending data

126

Sources
Flow 2 I
(IO Mbps)

Flow I2
(IO Mbps)

(Lmk 2)

Gateway
IO Mbps

k-0 Sink

Flow 3
(10 Mbps) 0’

Figure 8: Simulation scenario for the packet relabeling ex-
periment. Each link has 10 Mbps capacity, and a propaga-
tion delay of 1 ms.

Td?iC Flow 1 Flow 2 Flow 3
UDP 3.36 3.32 3.28
TCP 3.43 3.13 3.43

Table 4: The throughputs resulting from CSFQ averaged
over 10 seconds for the three flows in Figure 8 along link 2.

at 10 Mbps each. Table 4 shows the average throughputs
over 10 set of the three UDP flows. As expected these rates
are closed to 3.33 Mbps. In the second experiment, we re-
place the three UDPs by three TCPs. Again, despite the
TCP burstiness which may negatively affect the rate esti-
mation and relabeling accuracy, each TCP gets close to its
fair share.

3.7 Discussion of Simulation Results

We have tested CSFQ under a wide range of conditions,
conditions purposely designed to stress its ability to achieve
fair allocations. These tests, and the others we have run
but cannot show here because of space limitrations, sug-
gest that CSFQ achieves a reasonable approximation of fair
bandwidth allocations in most conditions. Certainly CSFQ
is far superior in this regard to the status quo (FIFO or
RED). Moreover, in all situations CSFQ is roughly compa-
rable with FRED, and in some cases it achieves significantly
fairer allocations. Recall that FRED requires per-packet
flow classification while CSFQ does not, so we are achieving
these levels of fairness in a more scalable manner. However,
there is clearly room for improvement in CSFQ, as there are
cases where its performance is significantly below that of its
benchmark, DRR. We do not yet know if these are due to
our particular choices for the estimation algorithms, or are
inherent properties of the CSFQ architecture.

4 Why Are Fair Allocations Important?

In the Introduction we stated that one of the underlying as-
sumptions of this work is that fairly allocating bandwidth
was beneficial, and perhaps even crucial, for congestion con-
trol. In this section we motivate the role of fair allocations in
congestion control by discussing the problem of unfriendly
flows, and then presenting two approaches to this problem;
we end this section with a discussion of the role of punish-
ment. In what follows we borrow heavily from [7], [3], and

[8], and have benefited greatly from conversations with Steve
Deering and Sally Floyd. We should note that, the matters
addressed in this section are rather controversial and this
overview unavoidably reflects our prejudices. This section.
however, is merely intended to provide some perspective on
our motivation for this work, and any biases in this overview
should not undercut the technical aspects of the CSFQ pro-
posal that are the main focus of the previous sections.

4.1 The Unfriendly Flow Problem

Data networks such as the Internet, because of their reliance
on statistical multiplexing, must provide some mechanism to
control congestion. The current, Internet, which has mostly
FIFO queueing and drop-tail mechanisms in its routers, I‘(-‘-
lies on end-to-end congestion control in which hosts curt,ail
their transmission rates when they detect that. the network
is congested. The most widely utilized form of end-to-end
congestion control is that embodied in TCP [ll], which has
been tremendously successful in preventing congestion col-
lapse.

The efficacy of this approach depends on two fundamen-
tal assumptions: (1) all (or almost all) flows are cooperative
in that they implement congestion control algorithms, and
(2) these algorithms are homogeneous -~ or roughly equiv-
alent - in that they produce similar bandwidth allocations
if used in similar circumstances. In particular, assumption
(2) requires, in the language of [8], that all flows arc TCf’-
friendly.8

The assumption of universal cooperation can be violated
in three general ways. First, some applications are urhre-
sponsa’ve in that they don’t implement any congestion con-
trol algorithms at all. Most of the early multimedia and
multicast applications, like vat, nv, vie, wb and RealAudio
fall into this category. Second, some applications use con-
gestion control algorithms that, while responsive, are not
TCP-friendly. RLM is such an algorithm.g Third, some
users will cheat and use a non-TCP congestion control al-
gorithm to get more bandwidth. An example of this would
be using a modified form of TCP with, for instance, a larger
initial window and window opening constants.

Each of these forms of noncooperation can have a sig-
nificant negative impact on the performance obtained by
cooperating flows. At present, we do not, yet know how
widespread noncooperation will be, and thus cannot assess
the level of harm it will cause. However, in lieu of more
solid evidence that noncooperation will not be a problem,
it seems unsound to base the Internet’s congestion control
paradigm on the assumption of universal cooperation. We
therefore started this paper with the fundament,al assump-
tion that one needs to deal with the problem of unfriendly
flows.

‘Actually, the term TCP-friendly in [8] means that “thew arrival
rate does not exceed that of any TCP connection in the same cu-
cumsta”ces.” Here we use it to mean that the arrival rates are
roughly comparable, a property that should be more precisely called
TCP-eqozdent. We blur the dlstmctlon betweeu ‘I’CP-friendly and
TCP-equivalent to avoid an overly unwieldy set of terms III this short
overview. However, we think the distinction may be rendered moot
since it is unlikely that congestion control algorithms that arc not
TCP-equivalent but are TCP-friendly - z.e., they get much less than

their fare share - will be widely deployed.
‘Although our data in Sectmn 3.3 showed RLM recavlng less than

its fair share, when we change the simulation scenario so that the TCP
flow starts after all the RLM flows then It receives less than half of
its fair share This hysteresis in the RLM versus TCP behavior was
first pointed out to us by Steve McCanne [15].

127

4.2 Two Approaches

There are, in the literature, two general approaches to ad-
dressing the problem of unfriendly flows. The first is the
allocation approach. Here, the router itself ensures that
bandwidth is allocated fairly, isolating flows from each other
so (#hat unfriendly flows can only have a very limited impact
on other flows. Thus, the allocation approach need not de-
mand that all flows adopt some universally standard end-
to-end congestion control algorithm; flows can choose to re-
spond to the congestion in whatever manner best suits them
without unduly harming other flows. Assuming that flows
prefer to not have significant levels of packet drops, these
allocation approaches give an incentive for flows to use end-
to-cmd congestion control, because being unresponsive hurts
Oheir own performance. Note that the allocation approach
does not provide an incentive for flows to be TCP-friendly
(an example of an alternative end-to-end congestion control
algorithm is described in [13]), but does provide strong in-
centives for drop-intolerant applications to use some form
of cand-to-end congestion control.” Of course, the canoni-
cal implementations of the allocation approach, such as Fair
Queueing, all require significant complexity in routers. Our
goal in this paper was to present a more scalable realization
of the allocation approach.

The problem of unfriendly flows can be addressed in an-
other manner. In the identification approach, as best exem-
plified by [8], routers use a lightweight detection algorithm
to identify unfriendly flows, and then explicitly manage the
bandwidth of these unfriendly flows. This bandwidth man-
agement can range from merely restricting unfriendly flows
to no more than the currently highest friendly flow’s share”
to the extreme of severely punishing unfriendly flows by
dropping all of their packets.

This approach relies on the ability to accurately identify
unfriendly flows with relatively lightweight router mecha-
nisms. This is a daunting task. Below we discuss the process
of identifying unfriendly flows, and then present simulation
results of the identification algorithm in [8]; we are not aware
of other realizations of the identification approach.

One can think of the process of identifying unfriendly
flows as occurring in two logically distinct stages. The first,
and relatively easy, step is to estimate the arrival rate of
a flow. The second, and harder, step is to use this arrival
rate information (along with the dropping rate and other
aggregate measurements) to decide if the flow is unfriendly.
Assuming that friendly flows use a TCP-like adjustment
method of increase-by-one and decrease-by-half, one can de-
rive an expression (see [8] for details) for the bandwidth
share S as a function of the drop

!z
ing rate p, round-trip

time R, and packet size B: S z efi for some constant y.

Routers do not know the round trip time R of flows, so must
use the lower bound of double the propagation delay of the
attached link; this allows flows further away from the link to
behave more aggressively without being identified as being
unfriendly. l2

‘“As we discuss later, of flows can tolerate significant levels of loss,
the sltuatlon changes somewhat.

“If ldentlticatmn were perfect, and this management goal achieved,
all flows would get their max-min fair allocations. However, we are
not aware of any algorithm that can achieve this management goal.

“We are not, delving into some of the details of the approach layed
out in [8] where flows can also be classified as very-high-bandwidth
but not necessarily unfriendly, and as unresponsive (and therefore
unfriendly).

Algorithm Simulation 1 Simulation 2
UDP TCP-1 TCP-2 TCP-I TCP-2

RED1 0.906 0.280 0.278 0.565 0.891

CSFQ 0.554 0.468 0.478 0.729 0.747

Table 5: (Simulation 1) The throughputs in Mbps of one
UDP and two TCP flows along a 1.5 Mbps link under
REDI [8], and CSFQ, respectively. (Simulation 2) The
throughputs of two TCPs (where TCP-2 opens its conges-
tion window three times faster than TCP-l), under REDI,
and CSFQ, respectively.

To see how this occurs in practice, consider the following
two experiments using the identification algorithm described
in [8], which we call RED with Identification (REDI).‘” In
each case there are multiple flows traversing a 1.5 Mbps link
with a latency of 3 ms; the output buffer size is 32 KB and
all constants K, K,, and li,, respectively, are set to 400
ms. Table 5 shows the bandwidth allocations under RED1
and CSFQ averaged over 100 sec. In the first experiment
(Simulation I), we consider a 1 Mbps UDP flow and two
TCP flows; in the second experiment (Simulation 2) we have
a standard TCP (TO-l) and a modified TCP (TCP-2) that
opens the congestion window three times faster. In both
cases RED1 fails to identify the unfriendly flow, allowing it to
obtain almost two-thirds of the bandwidth. As we increase
the latency of the congested link, RED1 starts to identify
unfriendly flows. However, for some values as high as 18 ms,
it still fails to identify such flows. Thus, the identification
approach still awaits a viable realization and, as of now,
t,he allocation approach is the only demonstrated method to
deal with the problem of unfriendly flows.

4.3 Punishment

Earlier in this section we argued that the allocation ap-
proach gave drop-int,olerant flows an incentive to adopt end-
to-end congestion control. What about drop-tolerant flows?

We consider, for illustration, fire-hose applications that
have complete drop-tolerance: they send at some high rate
p and get as much value out of the fraction of arriving pack-
ets, call it x, as if they originally just sent a stream of rate
xp. That is, these fire-hose applications care only about the
ultimate throughput rate, not the dropping rate.14 In a com-
pletely static world where bandwidth shares were constant
such “fire-hose” protocols would not provide any advantage
over just sending at the fair share rate. However, if the fair
shares along the path were fluctuating significantly, then
fire-hose protocols might better utilize instantaneous fluctu-
ations in the available bandwidth. Moreover, fire-hose pro-
tocols relieve applications of the burden of trying to adapt
to their fair share. Thus, even when restrained to their fair
share there is some incentive for flows to send at signifi-
cantly more than the current fair share.15 In addition, such

13We are grateful to Sally Floyd who provided us her script em-
plementing the RED1 algorithm. We used a similar script m our
simulatmn, wth the understanding that this 1s a prehmmary design
of the identification algorithm. Our contention is that the design of
such an ldentlfication algorithm is fundamentally difficult due to the
uncertamty of RTT.

“Approximations to complete drop-tolerance can be reached in
wdeo transport using certain codmg schemes or file transport usmg
selective acknowledgements

“These fire-hose coding and file transfer methods also have some

128

fire-hoses decrease the bandwidth available to other flows
because packets destined to be dropped at a congested link
represent an unnecessary load on upstream links. With uni-
versal deployment of the allocation approach, every other
flow would still obtain their fair share at each link, but that
share may be smaller than it would have been if the fire-hose
had been using responsive end-to-end congestion control. It
is impossible to know now whether this will become a seri-
ous problem. Certainly, though, the problem of fire-hoses
in a world with fair bandwidth allocation is far less dire
than the problem of unfriendly flows in our current FIFO
Internet, since the incentive to be unfriendly and the harm-
ful impact on others are considerably greater in the latter
case. As a consequence, our paper emphasizes the prob-
lem of unfriendly flows in our current FIFO Internet, and is
less concerned with me-hose fiows in an Internet with fair
bandwidth allocation.

Nonetheless, the fire-hose problem should not be ignored;
flows should be given an incentive to adopt responsive end-
to-end congestion. One possible method is to explicitly pun-
ish unresponsive flows by denying them their fair share.16
Punishment is discussed as one possible bandwidth man-
agement approach in [8] (the approach described there is
informally referred to as RED-with-a-penalty-box). Accu-
rately identifying flows as unresponsive may be far easier
than identifying them as unfriendly. However. as we saw
in our simulations, doing so in the context of the identifi-
cation approach is far from a solved problem; the challenge
is to determine if a flow has decreased usage in response to
increases in overall packet drop rates [8].

Identifying unresponsive flows is more straightforward
in the allocation approach, since here one need only deter-
mine if a flow has had significantly high drop rates over a
long period of time. As a proof of concept we have imple-
ment,ed a simple identification and punishment mechanism.
l:irst, we examine off-line the last n dropped packets and
t.hen monitor the flows with the most dropped packets. Sec-
ond, we estimate the rate of each of these monitored flows;
when a flow’s rate is larger than a x cy (n > l), we start
droppmg all of its packets. Third, we continue to monitor
penalized flows, continuing punishment until their arrival
rate decreases below b x cy (b < 1). Using the parameters
a = 1.2, b = 0.6, and n = 100, we applied this algorithm to
Simulation 1 in Table 5; the UDP flow was identified and
penalized in less than 3 seconds. Our task was easy because
the identification of unresponsive flows can be based on the
result (packet, drops over long periods of time) rather than
on trying to examine the algorithm (detecting whether it
actually decreased its rate in response to an increase in the
drop rate). Note also that the allocation approach need only
distinguish between responsive and unresponsive in the pun-
ishment phase, an inherently easier task than distinguishing
friendly from unfriendly.

In summary, to provide incentives for drop-tolerant flows
to use responsive end-to-end congestion control, it may be
necessary to identify, and then punish, unresponsive flows.

overhead assoaated with them, and it isn’t clear whether, m practice,
the owrheads are greater or less than the advantages gained How-
tvt’r, one can certamly not clam, as we did above for drop-Intolerant

nppl~cat~ons, that the allocation approach gives drop-tolerant appli-
cations a strong Incentive to use responsive end-to-end congestlon
cont.rol algorlthrns

‘“Anothrr possible method, used in ATM ABR, is to have network
providt, exphcit per flow feedback to ingress nodes and have edge
nodes police thp traffic on a per flow basis. We assume this IS a too
heavyweight a mechanism for the Internet.

CSFQ with this punishment extension may be seen as a
marriage of the allocation and identification approaches; the
difference between [8] and our approach is largely one of
the relative importance of identification and allocation. We
start with allocation as fundamental, and then do identifica-
tion only when necessary; [8] starts with identification, and
then considers allocation only in the context of managing
the bandwidth of identified flows.

5 Summary

This paper presents an architecture for achieving reasonably
fair bandwidth allocations while not requiring per-flow stat,c
in core routers. Edge routers estimate flow rates and insert
them into the packet labels. Core routers merely perform
probabilistic dropping on input based on these labels and
an estimate of the fair share rate, the computation of which
requires only aggregate measurements. Packet labels are
rewritten by the core routers to reflect output rates, so this
approach can handle multihop situations.

We tested CSFQ, and several other algorithms, on a wide
variety of conditions. We find that CSFQ achieve a signih-
cant degree of fairness in all of these circumstances. While
not matching the fairness benchmark of DRR, it is compara-
ble or superior to FRED, and vastly better than the baseline
cases of RED and FIFO. We know of no other approach that
can achieve comparable levels of fairness without any per-
flow operations in the core routers.

The main thrust of CSFQ is to use rate estimation at the
edge routers and packet labels to carry rate estimates to core
routers. The details of our proposal, such as the estimation
algorithms, are still very much the subject of active research.
However, the results of our initial experiments with a rather
untuned algorithm are quite encouraging.

One open question is the effect of large latencies. ‘I’he
logical extreme of the CSFQ approach would be to do rate
estimation at the entrance to the network (at the customer/ISP
boundary), and then consider everything else the core. This
introduces significant latencies between the point of esti-
mation and the points of congestion; while our initial sim
ulations with large latencies did not reveal any significant
problems, we do not yet understand CSFQ well enough to
be confident in the viability of this “all-core” design. How-
ever, if viable, this “all-core” design would allow all int.erior
routers to have only very simple forwarding and dropping
mechanisms, without any need to classify packets into flows.

In addition, we should note that it is possible to USC
a CSFQ-like architecture to provide service guarantees. A
possible approach would be to use the route pinning mech-
anisms described in [23], and to shape the aggregate guar-
anteed traffic at each output link of core routers [6].

One of the initial assumptions of this paper was that
the more traditional mechanisms used to achieve fair allo-
cations, such as Fair Queueing or FRED, were too complex
to implement cost-effectively at sufficiently high speeds. If
this is the case, then a more scalable approach like CSFQ
is necessary to achieve fair allocations. The CSFQ islands
would be comprised of high-speed backbones, and the edge
routers would be at lower speeds where classification and
other per-flow operations were not a problem. However,
CSFQ may still play a role even if router technology ad-
vances to the stage where the more traditional mechanisms
can reach sufficiently high speeds. Because the core-version
of CSFQ could presumably be retrofit on a sizable fraction

129

of the installed router base (since its complexity is roughly
comparable to RED and can be implemented in software),
it may be that CSFQ islands are not high-speed backbones
but rather are comprised of legacy routers.

Lastly, we should note that the CSFQ approach requires
some configuration, with edge routers distinguished from
core routers. Moreover, CSFQ must be adopted an island
at a time rat,her than router-by-router. We do not know if
this presents a serious impediment to CSFQ’s adoption.

References

[II

PI

PI

[41

[51

[61

[71

[81

P

[‘Ol

[Ill

1121

[ISI

[I41

.J.C.R. Bennett, D.C. Stephens, and H. Zhang. High speed,
scalable, and accurate implementation of packet fair queue-
ing algorithms in ATM networks. In Proceedings of IEEE
ICNP ‘97, pages 7-14, Atlanta, GA, October 1997.

J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In Proceedings of IEEE INFO-
COM’YG, pages 120-128, San Francisco, CA, March 1996.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
1). Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge,
I,. Peterson, K. K. Ramakrishnan, S. Shenker, and J. Wro-
clawski. Recommendations on queue management and con-
gestion avoidance in the internet, January 1998. Internet
Draft.

R. Gallon, P. Doolan, N. Feldman, A. Fredette, G. Swallow,
and A. Viswanathan. A Framework for Multiprotocol Label
Switching, November 1997. Internet Draft.

M. E. Crovella and A. Bestavros. Self-similarity in world
wide web traffic evidence and possible causes. In Proceedings
of the RCiM SIGMETRICS 96, pages 160.--169, Philadelphia,
PA, May 1996.

R. L. Cruz. SCED+: Efficient Management of Quality of
Service Guarantees. In Proceedings of INFOCOM’98, pages
625 642, San Francisco, CA, 1998.

A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In Journal of Inter-
networking Research and Experience, pages 3-26, October
1990. Also in Proceedings of ACM SIGCOMM’89, pp 3-12.

S. Floyd and K. Fall. Router mechanisms to support end-
to-end congestion control, February 1997. LBL Technical
Report.

S. Floyd and V. Jacobson. Random early detection for con-
gestion avoidance. IEEE/ACM Transactions on Networking,
1(4):397-413, July 1993.

S. Golestani. A self-clocked fair queueing scheme for broad-
band applications. In Proceedings of IEEE INFOCOM’94,
pages 636-646, Toronto, CA, June 1994.

V. Jacobson. Congestion avoidance and control. In Proceed-
ings of A CM SIGCOMM’88, pages 314-329, August 1988.

J. J&e. Bottleneck flow control. IEEE Transactions on
Communications, 7(29):954-962, July 1980.

S. Keshnv. A control-theoretic approach to flow control.
111 Proceedings of ACM SIGCOMM’SI, pages 3-15, Zurich,
Switzerland, September 1991.

D. Lin and R. Morris. Dynamics of random early detec-
tion. In Proceedzngs of ACM SIGCOMM ‘97, pages 127-137,
Cannes, France, October 1997.

[I81

[191

PO1

WI

PI

[231

[241

A. Parekh and R. Gallager. A generalized processor sharing
approach to flow control - the single node case. In Proceed-
ings of the INFOCOM’92, 1992.

S. Shenker. Making greed work in networks: A game theo-
retical analysis of switch service disciplines. In Proceedings
of ACM SIGCOMM’94, pages 47-57, London, UK, August
1994.

M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In Proceedings of SIGCOMM’95, pages
231-243, Boston, MA, September 1995.

D. Stilliadisand A. Varma. Efficient fair queueingalgorithms
for packet-switched networks. IEEE/ACM Transactions on
Networking, 6(2):175-185, April 1998.

I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair banwidth alloca-
tions in high speed nteworks, June 1998. Technical Report
CMU-CS-98-136, Carnegie Mellon University.

I. Stoica and H. Zhang. LIRA: A model for service differ-
entiation in the internet. In Proceedings of NOSSDAV’98.
London, UK, July 1998.

Z. Wang. User-share differentiation (USD) scalable band-
width allocation for differentiated services, May 1998. Inter-
net Draft.

[15] S. McCanne. Scalable Compression and Transmission of
Internet Multicast Video. PhD dissertation, University of
California Berkeley, December 1996.

[16] J Nagle. On packet switches with infinite storage. IEEE
Trans. On Communications. 35(4):435-438, April 1987.

[17] Ucb/lbnl/vint network simulator - ns (version 2).

130

