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Abstract

This paper addresses open job scheduling questions
for the challenge workloads that run on the large scale
parallel systems at supercomputer centers. Simulation
results for six recent one-month job traces from the
NCSA Origin 2000 (O2K) system are used to evalu-
ate (1) the experimentally tuned NCSA LSF* policy, (2)
the FCFS-backfill policy, (3) the Priority-backfill policy
with alternative priority functions and with limited pre-
emption to provide immediate service to each arriving
job, and (4) the spatial equipartitioning (EQspatial) pol-
icy with an optional modification to reduce the maximum
waiting time for the largest jobs in the challenge work-
loads. Measurements on the O2K validate the simula-
tion results for two of the policies. The priority-backfill
policy with immediate service and a starvation-free pri-
ority measure that favors short jobs is shown to be the
most promising if jobs cannot adapt to changing proces-
sor allocations at runtime, but EQspatial provides sig-
nificantly better 95th percentile waiting time.

1. Introduction

The workloads that run on the large-scale parallel
systems at supercomputer centers are challenging from a
scheduling perspective due to high job arrival rate (sev-
eral hundred submissions per day), high utilization of
system processors and memory (e.g., 80-90%), and the
unpredictable arrival of jobs that run for hundreds of
hours while occupying a significant fraction of system
resources.

Production job schedulers employed at supercomput-
ing centers use a variety of nonpreemptive scheduling
policies. These policies include the LSF* scheduler
employed until recently on the NCSA SGI 02K, the
Priority-backfill scheduler on the IBM SP at the Maui
High Performance Computing Center (MHPCC), and
the FCFS-backfill scheduler on the IBM SP at Argonne
National Laboratory.

Previous research has shown that preemptive

scheduling policies, particularly those that provide all
jobs in the system with (close to) an equal fraction
of the total system processing cycles, have the poten-
tial to provide much better job turnaround times than
non-preemptive policies [13, 26, 3, 19]. However, to
our knowledge, these preemptive policies have not been
compared against the production scheduling policies
identified above, in the context of the memory and pro-
cessing requirements of the challenge workloads. This
paper thus investigates the following open questions:

1. What is the relative performance of the above three
non-preemptive scheduling policies for the work-
load that runs on the NCSA O2K?

2. Are there particular priority measures that signif-
icantly improve the performance of the Priority-
backfill scheduler for the NCSA workload?

3. To what extent is performance improved or de-
graded in the shared memory system by adding a
limited form of preemption to the nonpreemptive
scheduling policies, so that each job that arrives is
immediately allocated a small amount of memory
and a short quantum of running time on the num-
ber of processors it requests?

4. Assuming a programming and runtime environ-
ment that enables each job to dynamically adjust
to the number of processors allocated to it, such as
Cilk [8], or the adaptive system in [21], to what ex-
tent are job turnaround times improved by a spatial
processor equipartitioning policy (EQspatial) with
low scheduling overhead?

The alternative scheduling policies are evaluated us-
ing simulation with six one-month job traces that were
logged on the O2K during October 1999 through March
2000. The job logs include the processors, memory, and
runtime requested and used by each job. Section 3 pro-
vides a characterization of the processing and memory
requirements of the jobs in each of the six workloads.
This data shows that the job mix submitted to the O2K
system is very similar from month to month.



Table 1. NCSA O2K LSF Job Class Definitions

Class Name Resource Request Limits | Reserve
Time CPU Time Run Time Wait
Per Processor Per Job Time
vst (very short) <5hrs <55hrs > 12 hrs
st (short) <50 hrs - > 45 hrs
mt (medium) < 200 hrs - > 180 hrs
It (long) < 400 hrs - > 360 hrs
Size # Processors Memory
sj  (small) <8 <2GB
mj  (medium) <16 <4GB
lj (large) <64 <16 GB

Results in Section 4 predict significant improve-
ment in job turnaround time for the FCFS-backfill and
Priority-backfill policies, as compared with the experi-
mentally tuned NCSA LSF* policy. Based on projected
performance improvements, NCSA recently changed
the scheduler on the O2K to a priority-backfill scheduler
with similar parameter settings. The measured improve-
ment in system performance agrees with the improve-
ment predicted by the simulations. Further simulation
results for the NCSA workloads predict that (1) using a
job priority measure that favors short jobs significantly
improves the performance of the Priority-backfill pol-
icy, (2) adding limited preemption to the Priority-backfill
policy to provide immediate service for each arriving
job greatly improves turnaround time for very short jobs
without significantly impacting jobs with longer execu-
tion time, (3) the EQspatial policy has the potential for
further substantial improvement in system turnaround
time, but perhaps not as substantial as previous research
results would suggest, and (4) it may be important to
modify the EQspatial policy to reduce the maximum
waiting time of the longest running jobs.

2. Background

This section defines the scheduling policies evaluated
in this paper and provides a review of the relevant previ-
ous work. The scheduling policies are described as they
apply to the non-industrial batch jobs that run in a space-
sharing fashion on the NCSA O2K. Extensions to serve
special job classes and requests (e.g., industrial jobs, re-
quests for dedicated time, advance reservations [24]) are
beyond the scope of this paper.

2.1. The NCSA-LSF* Scheduler Policy

The NCSA-LSF* scheduler [18] on the O2K is con-
figured with the twelve experimentally tuned static job
classes defined in Table 1. A job belongs to one of
the classes based on its requested number of proces-

sors, memory, cpu time, and running time, which are
specified when the job is submitted. For example, a job
that requests 16 processors, 4 gigabytes of memory, and
300x 16 = 4800 hours of cpu time, is in the It-mj class.

The O2K has eight “hosts”, each configured, as
shown in Table 2, with a set of experimentally tuned
job class priorities and constraints that provide particular
relative levels of service to the twelve job classes. For
example, host "eir” will run up to three lj jobs and four
mj jobs simultaneously. Within these constraints, vst-lj
jobs have highest priority for scheduling on eir, followed
by other Ij jobs. If three Ij jobs are currently running on
eir, then vst-mj jobs have highest priority for schedul-
ing, followed by other mj jobs, and so forth. Within each
priority class, jobs are considered for scheduling in first
come first serve (FCFS) order. Note that one host runs
only sj jobs, one host runs only mj jobs, and the other
six hosts give priority to lj jobs.

When a job is scheduled on a host, it is assumed to
occupy the number of processors and amount of memory
it requested until it terminates.

When a job terminates on a host A, if there is any job
that (a) has been in the wait queue longer than the Re-
serve Wait Time for its job class, and (b) does not yet
have a special reservation on any other host, whichever
such waiting job has highest priority for running on host
A is either scheduled on host A (if there are enough
processors and memory available) or is given a special
reservation on host A.

If no special reservations are pending for a host, the
host’s free processor and memory resources are assigned
to waiting jobs. To assign the free resources, the sched-
uler can skip over jobs that are too big in the time class
priority ordering. The scheduler cannot skip to a lower
priority job size class unless the upper bound on the
number of executing higher priority size jobs is reached.

Note that if a special reservation is pending, the free
processors and memory are kept idle until the job with
the reservation can be scheduled. Special reservations
are made infrequently on the O2K due to the high wait-
ing time thresholds. The idle time due to holding host
resources for special reservations is measured to be un-
der 4% for the workloads studied in this paper.

2.2. The Priority-backfill Policy

The Priority-backfill scheduling policy evaluated in
this paper is derived from the Maui Scheduler (MS) on
the IBM SP at MHPCC. The MS policy is augmented
to accommaodate the host boundaries and job memory
requirements on the NCSA O2K.

A submitted job specifies a requested number of pro-
cessors, amount of memory, and running time. Each job
has an individual priority that is dynamically computed



Table 2. Host Resources and Scheduling Priority on NCSA Origin2000

Memory Scheduler Configuration
Host Number Total | Per Processor o L
Name Processors (GB) (MB) Job limits Job priority
eir 128 64 512 1j<3; mj<4 | lj > mj > sj; vst > st,mt,It
nerthus 128 64 512 1j<3; mj<4 | lj > mj > sj; vst > st,mt,It
jordl 128 32 256 1j<3; mj<4 | lj > mj > sj; vst > st,mt,It
sagal 128 32 256 1j<3; mj<4 | lj > mj > sj; vst > st,mt,It
huldra 128 32 256 1j<3; mj<4 | lj > mj > sj; vst > st,mt,It
hodl 128 64 512 1j<6; mj<2 | lj > mj > sj; vst > st,mt,It
mimir 128 32 256 - sj only; vst > st,mt,It
modi2 64 16 256 - mj only; vst > st,mt,It
System-wide job limits: mt < 48; It < 20
Per-user job limit = 3 (the job limit is infinity in our simulations)

Table 3. Job Metrics and Policy Weights

Weight Weight Value Job Measure
Symbol | Priority-bf | LXF&W-bf
W 1 0.0167 job wait time, J,,, in hours
W, 5 1 estimated expansion factor, J,, = Z thzeeijzztfiggggj rhours
Wp 0.2 0 requested number of processors, J,
W 0 0 requested memory in MB/358.4*, J,,
Wpe 0 0 max{Jp, Jm }
Whypass 0 0 the number of lower priority jobs scheduled ahead of the job

* The average memory per processor on the eight hosts is 358.4 MB.

as the weighted sum of several job metrics defined in Ta-
ble 31. Jobs are scheduled in priority order, using back-
fill to schedule lower priority jobs on processors and
memory that would otherwise be idle in the strict pri-
ority schedule. At each point in time, a specified num-
ber of the highest priority jobs that are waiting in the
queue are each given a scheduled start time on the hosts
that have the earliest guaranteed start times. The policy
comparisons in this paper assume this number is one.
(Simulations with larger numbers did not improve pol-
icy performance.) If an arriving job can be scheduled on
more than one host that has enough unallocated proces-
sors and memory, the job is placed on the host that has
the fewest unallocated processors.

The dynamic priority calculation enables a job’s pri-
ority to increase as the job waits to be scheduled. Note
that if W, > 0, the priority of shorter jobs increases
faster than that of longer jobs as a function of the job
waiting time. Except as otherwise noted, the waiting job
that has the scheduled start time is dynamically the high-
est priority waiting job.

1we’ve found through simulation that the weights in the table give
better performance for the NCSA O2K than the weights used on the
SP at MHPCC.

2.3. The FCSF-, SJF-, and LXF-backfill Policies

The following four policies that are similar to
Priority-backfill but use different definitions of job pri-
ority are also evaluated in this paper:

In the FCFS-backfill policy each job’s priority is stat-
ically defined by its arrival time.

LXF&W-backfill uses the weights defined in Table 3
to compute the dynamic job priorities.

In the SJF-backfill policy, each job’s priority is stat-
ically equal to the inverse of its requested runtime. To
reduce starvation, once a job has a scheduled start time,
it does not release its start time to a shorter job that ar-
rives before it runs.

2.4. Backfill Policies with Immediate Service

To provide fast turnaround for short jobs, the back-
fill policies can be extended to preemptively give each
arriving job an immediate small memory allocation and
small quantum of running time on the number of proces-
sors it has requested. Note that a job requesting a long
running time might terminate prematurely due to execu-
tion behavior that can’t be anticipated ahead of time. For
example, in the six one-month workloads on the NCSA



O2K studied in this paper, 12-33% of the jobs that re-
quest over an hour of running time terminate in under
one minute. For jobs that request over ten hours of run-
ning time, 11-42% terminate in under one minute.

The initial memory allocation and quantum of run
time should be selected so as to improve turnaround time
for a significant fraction of small jobs without negatively
impacting the other jobs in the system. For the eval-
uations in this paper, the size of the quantum and the
amount of memory allocated during the quantum are de-
rived in section 3.

When choosing the job(s) to be preempted, only the
hosts that have enough unallocated memory and the
jobs that have been executing without interruption long
enough (i.e., 10 minutes) are considered. On each such
host, the eligible job(s) with the smallest value of cur-
rent slowdown (i.e., total time in system so far divided
by total runtime so far) are selected to be preempted, un-
til enough host processors are available to start the new
job. A preempted job vacates its processors but occupies
its memory during the quantum. The host that will have
the smallest number of idle processors after preempting
the selected jobs and starting the new job, is selected to
run the new job for its quantum.

The backfill policies with and without immediate ser-
vice as described above are compared to see what im-
pact the immediate service has on the waiting time of
the other jobs in the system.

2.5. The Spatial Equipartitioning Policy

The spatial equipartitioning policy (EQspatial) dy-
namically adjusts the number of processors assigned to
each job, attempting to give each executing job an equal
number of the system processors [26, 15]. We evaluate
this policy, modified for the partitioned-host O2K and to
reduce scheduling overhead, as described below.

Each submitted job specifies a requested amount of
memory and (maximum) number of processors. To
avoid memory overcommitment, each executing job is
allocated its requested memory, and an arriving job is
only scheduled on a host that has enough unallocated
memory to satisfy its memory request. When a job ar-
rives, if more than one host has the requested amount of
unallocated memory and the requested number of unal-
located processors, the job is placed on the one of those
hosts with the fewest unallocated processors. If no hosts
have the requested number of unallocated processors,
the job is placed on the host with enough unallocated
memory that has the maximum ratio of number of pro-
cessors on the host to the total number of processors re-
quested by the jobs currently running on the host (in-
cluding the new job that might be placed there). The
host processors are then partitioned among the jobs exe-

cuting on the host as equally as allowed by the jobs’ pro-
cessor requests. (Several other host placement heuristics
were evaluated, and the heuristic defined here provides
the least deviation from EQspatial applied to an unparti-
tioned 960-processor O2K system.)

If no host has enough unallocated memory to satisfy
a new job’s memory request, the job is given a small
quantum and small initial memory allocation (as in the
backfill policies with immediate service). If the job ex-
ceeds the memory allocation or doesn’t finish within the
quantum, it waits until a host has enough free memory
to satisfy its memory request.

While a job waits for memory, the amount of pro-
cessing time it would receive if memory were available
is computed. When the job is scheduled, it is given its
requested processors until its processing time is approxi-
mately the same as it would have been had it been sched-
uled when it arrived. During the time that the job is given
extra processors, the extra processors are deducted from
the number of processors on the host when determining
which further jobs to place on the host.

A Mininterval parameter defines the minimum
amount of time that must elapse between processor
repartitionings. When a job terminates or a job is sched-
uled on a host according to the above rules, if the time
since the last repartitioning of the host is shorter than
Mininterval, a newly scheduled job can execute on un-
allocated processors (which may have been vacated by
a job that terminated since the last repartitioning), but
the system waits until the MinInterval is satisfied before
repartitioning the processors.

To use the EQspatial policy, considerable effort
would be required to modify a significant fraction of the
applications to use a a runtime system (e.g., Cilk [2, 8])
that supports adaptive job parallelism. This paper pro-
vides quantitative data to evaluate whether the effort to
retarget the applications would be justified.

2.6. Related Work

Backfill has been implemented in several system
schedulers [10, 14, 23] and has been shown to be ef-
fective in increasing the system utilization [11].

Feitelson and Weil [7] show that the performance of
FCFS-backfill is relatively insensitive to the number of
jobs that are given scheduled start times. Talby and Fei-
telson [25] propose a FCFS-backfill policy with a more
flexible backfill deadline, and show that this flexible
backfill deadline improves average wait by 10-20% for
twelve monthly IBM SP/2 workloads. (Flexible back-
fill deadlines are not evaluated in this paper.) Leinberger
et al. [12] propose a modified FCFS-backfill that bal-
ances the utilization of different resources (i.e., proces-
sors and memory), which yields 10-20% lower average



Table 4. Total Monthly Processor and Memory Demand By LSF Job Class

LSF Job Class

proc demand 75% 1% | 9% | 13% | 3%
mem demand 55% 1% | 4% | 8% | 2%

Month Overall vst_sj | st.sj | mt_sj | It_sj || vst-mj | st-mj | mt_mj [ It_mj || vst_Ij | st_Ij | mt_lj | It_lj
Oct. 1999
#jobs 9974 || 3234 | 2188 | 2224 | 116 707 | 748 | 145| 27| 218 243| 73| 51

1% | 8% 8% | 1% | 1% |13% | 11% | 4%
1% | 4% 7% | 5% | 0%| 4% | 11% | 8%

Nov. 1999
#jobs 7348 || 2155|2216 | 502 | 139
proc demand 80% 1%| 9% | 7% | 2%
mem demand 53% 1%| 6% | 6% | 2%

629 | 711| 208| 40| 304|333| 90| 21
1% | 14% | 10% | 3% | 2% |14% | 14% | 3%
1%| 5% | 10%| 5% | 0% | 7%| 7% | 5%

Dec. 1999*
#jobs 5863 | 1605 |2075| 552|114
proc demand 89% 1%| 8% | 9% | 4%
mem demand 2% 0% | 5% | 7% | 3%

190| 571| 189| 28| 101| 275| 134| 29
0% | 12% | 17% | 4% | 0% |10% | 15% | 9%
0% | 5% | 11%| 4% | 0% |10% | 14% | 11%

Jan. 2000
#jobs 7046 || 2033 (2601 | 550| 71
proc demand 83% 1%| 9% | 11% | 3%
mem demand 74% 0% | 6% | 7%| 3%

493 | 585| 161| 61| 130| 250| 89| 22
1%| 9% | 13%| 6% | 1% | 8% | 11% | 10%
1%| 5% | 10% | 6% | 0% |11% | 10% | 16%

Feb. 2000*
#jobs 8122 || 3252|2252 | 465| 70
proc demand 88% 1% | 9% | 11% | 3%
mem demand 74% 1%| 7% | 7%| 3%

549 697| 212| 32| 173| 312| 88| 20
1% | 10% | 13%| 3% | 1% |18% | 12% | 5%
1%| 5% | 10% | 5% | 0% |10% | 12% | 15%

March 2000
#jobs 7034 || 1668 | 2666 | 469 | 57
proc demand 85% 1% | 11% | 9% | 3%
mem demand 78% 0% | 7% | 6%| 3%

450 | 624 | 213| 70| 173 | 497 122| 25
1% | 11% | 15% | 4% | 1% |14% | 13% | 3%
1% | 6% 9% | 8% | 0% |15% | 19% | 4%

* High-load months: Dec 1999 and Feb 2000.

turnaround time for two NAS SGI O2K job traces.

Zotkin and Keleher [29] evaluate a priority-backfill
with highest priority for the shortest requested runtime,
and show that it improves mean slowdown for two job
traces by over 50% compared to FCFS-backfill. How-
ever, Zhang et al. [28] did not find such improvement.
Aida [1] showed that FCFS-firstfit has better mean re-
sponse time than FCFS-backfill.

Chiang et al. [3] evaluate a non-preemptive policy
(ASP) with a preemptive small initial quantum, and
show that immediate service improves the performance
of ASP. Perkovic and Keleher [20] propose augmenting
a variety of backfill policies with a short "test run’ that
doesn’t preempt executing jobs. The ’test run’ along
with assuming actual runtime is 10% of the requested
run time during backfill, improves average slowdown by
50% for a job trace from a 430-node cluster.

Previous papers that compare spatial equipartitioning
to nonpreemptive policies either do not consider mem-
ory requirements [15, 17], or assume that each job has
a uniform distribution for the minimum number of pro-
cessors it can execute on to represent the job’s memory
requirement ([16, 19]).

3. NCSA Workload Char acterization

This section provides an overview of the O2K batch
workloads used to evaluate the scheduling policies in
Section 4, with particular attention to the job character-
istics that differ from system workloads reported previ-
ously in [6, 9, 4, 5, 22].

Table 4 summarizes the one-month NCSA 02K
workloads obtained from system logs during October
1999 through March 2000. The “processor demand” is
the product of a job’s requested number of processors
and actual runtime, summed over all jobs (in a given
class) and expressed as a fraction of the total processing
time the eight hosts can provide during the month. The
memory demand is the equivalent measure for the job
memory requests.

Note that the aggregate execution time of the submit-
ted jobs is typically 80-90% of the total available time
on the O2K hosts. Furthermore, the large jobs (1j) have
high demand (i.e., over 30% of the total available pro-
cessing time during four of the months). This makes
job scheduling challenging, as it is difficult to find free
resources for the large jobs on such a highly-loaded sys-
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Figure 1. Job Arrivals
Each Hour (Mondays-
Fridays, Mar 2000)

Figure 2. Distribution
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tem, and scheduling several large jobs simultaneously
can make it difficult to schedule future arrivals.

There are greater similarities than differences in the
02K workload from month to month. For example, the
mt-lj jobs demand 10-15% of the processing time avail-
able on the hosts each month, while the It-mj jobs de-
mand only 1-5% of the available processing cycles.

The number of jobs arriving per hour for each day
of the week, illustrated for the weekdays in Figure 1,
reveals three periods (peak, intermediate, and low) of
relatively stable job arrival rate. (Similar periods are ob-
served for weekend days). These periods are not sharply
defined but are fairly similar in each of the six work-
loads, and are more appropriate delineations of arrival
rate homogeneity for the NCSA O2K than the ”daytime”
and "nighttime” delineations in previous work (e.g., [6]).
The scheduling policy evaluations in this paper are per-
formed for all jobs that arrive during the month; thus,
the arrival rate behavior is provided simply to character-
ize the workload that is used to evaluate the policies.

Similar to the workloads previously reported in [6, 9,
4, 5, 22], a large fraction of the jobs are serial and many
jobs request power-of-2 processors. In some cases, a
higher fraction of the jobs submitted during weekday-
low periods, or on weekends, request the maximum pos-
sible (i.e., 64) processors, as in [6].

During a typical weekday peak period, a significant
fraction of the jobs in each class have short execution
time, as shown in Figure 2. For example, 15-20% of
the jobs in each class have actual execution time less
than one minute. Over 50% of the It jobs could have
requested an st runtime if runtime could be estimated
accurately ahead of time. (Similarly, 25-35% of the jobs
in each class have actual (maximum) memory usage that
is less than 10% of the memory requested.) Note that for
each order of magnitude on the x-axis in the figure, a sig-
nificant fraction of jobs have actual job executiontime in
that range. Hence, we will use the log scale for showing
mean wait vs actual job execution time in Section 4.

Nearly all jobs that complete in under one minute use
less than one gigabyte of memory. These (conservative)

values will be used for the initial quantum and memory
allocation, respectively, for the backfill policies that pro-
vide immediate service to arriving jobs. Fine tuning the
initial allocations is left for future work.

For most periods, there is a positive correlation be-
tween the actual job runtime and the number of proces-
sors requested, as in [6, 27]. Jobs that have shorter ac-
tual runtime also tend to have lower ratio of memory
used to processors requested, as was found in previous
workloads [5, 22]. However, during the weekday peak
periods (as well as many other periods), serial jobs tend
to have higher ratio of peak memory usage divided by
requested number of processors than parallel jobs. This
differs from previous workloads [5].

During weekday-peak periods there is a negative cor-
relation between requested memory per-processor and
job parallelism. Furthermore, 50% of the serial jobs re-
quest more than 512 MB, which is more than the mem-
ory per processor on any of the eight O2K batch hosts.

4. Policy Performance Comparisons

This section provides policy comparisons for the
batch workloads that run on the eight O2K hosts. For
a given month, the policy is simulated on a trace of the
jobs, starting with job arrivals seven days prior to the
month of interest, and ending when every job submit-
ted during the month has completed execution. Average,
maximum, and 95 percentile waiting times, are reported
for all jobs that arrive during the indicated month.

4.1. Experimentally-Tuned NCSA LSF*

Figure 3 shows the average wait for each job class in
four workloads studied. Average wait for most classes
is measured in hours or tens of hours, while maximum
wait (not shown) is measured in hundreds of hours.

The average and maximum wait measures apply to
the jobs that have short actual runtime, which occur in
every queue. To illustrate this point, Figure 4 plots the
job wait time versus the actual job runtime, for the 5%
of the jobs with the largest waiting times during January
2000. Note that the largest waits are scattered over the
range of runtime; for example, two jobs with actual run-
time less than 1 minute have waiting time over 50 hours.

Another key point is that there are differences in
NCSA-LSF* performance from month to month even
though the overall workload characteristics are similar
for each month, as was shown in Table 4. This makes
tuning the NCSA-LSF* policy difficult. For example,
increasing the resources available to It jobs might be
appropriate for March 2000, but would be inappropri-
ate for November 1999. There isn’t an obvious charac-
teristic difference in the two workloads that could have
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been used to dynamically tune the policy. Extensive ex-
perimental tuning on the O2K system, aided by simula-
tions under changes in the host priorities and constraints,
has not identified any significant improvements over the
NCSA-LSF* configuration evaluated here.

Other policies that are evaluated below have more
similar performance from month to month. Since only
4% of the total processing cycles are idle while a special
reservation is pending under NCSA-LSF*, the perfor-
mance sensitivity of NCSA-LSF* appears to be due to
(1) having static job priority classes and (2) the com-
plex interactions among the set of host priorities and
constraints that define the policy.

4.2. Backfill Policies

Figure 5 shows the performance of Priority-backfill
(as configured in Table 3), FCFS-backfill, and NCSA-
LSF*, as a function of actual job execution time.

Figure 5(a) shows the measured (i.e., observed) aver-
age wait versus actual job runtime for the NCSA-LSF*
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Figure 5. Performance of Priority-backfill,
FCFS-backfill and NCSA-LSF*
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Figure 6. Measured Improvement

policy, which shows that the simulation estimates are
slightly conservative and qualitatively correct for this
policy.? Figure 5(b) plots the 95 percentile waiting time
for each equal-sized logarithmic range of the execution
time. Figures 5(c) through (f) show the variation in

2For unknown reasons, the NCSA-LSF* implementation some-
times violates the specified host constraints and scheduling priorities,
which causes discrepancies between the simulated and observed wait-
ing times. However, this discrepancy is small when compared with the
quantitative differences in performance between NCSA-LSF* and the
other scheduling policies evaluated in this paper.



[ Priority—bf
[ SJF-bf
=1 5/ I LXF&W-bf

©

hrs)

)]

@,
=5
e
[} =
£, =4
ol el
j=2d [}
Z o Wl 8 L
o O O O O O [Te} D O O O O O
o O o O O ©o [S2) o O O O O O
§2858¢8 §2858 %
(a) Avg Wait (b) 95-Percentile Wait
5150 50
= 40
2100 S
£ 1gs’o
il N Hl‘
x =1 HH
EGHWHHIHHHHH o_gn 141 11§ I
& 3 & 8 3 38 58 & 8 o 3
b > (] c QO = o > Q c QO =
c28s5¢s cs28s¢gs
(c) Max Wait (d) Avg Slowdown
im 10m 1h 10h 50h 1im 10m 1h 10h 50h

(hrs)

* - Priority—bf

w
(=]

£ —o— LXF&W-bf =

° «- SJIF-bf % g

.gZ 24

= « % 77777 B T et x
B * T gz *  Priority—bf

2 BN = —o— LXF&W-bf

> N =%

@ . 49\9\3/3? T e SIE-bf

o
95
o

(¢] 2 4 0 2 4

1 10 10 10 0
actual job runtime (minutes) actual job runtime (minutes)
(e) Avg Wait (F) 95-percentile Wait
(Feb 2000) (Feb 2000)

Figure 7. Alternative Priority Measures

scheduling policy performance from month to month.

A key conclusion is that FCFS-backfill and Priority-
backfill have similar performance, with each having sig-
nificantly lower average, maximum (see Figure 7(c)),
and 95 percentile waiting time than NCSA-LSF*.

Based on projected performance improvements, the
priority-backfill Maui Scheduler has been ported to the
NCSA 02K, configured with parameters similar to the
parameters used in this study (NCSA-MS*), and put into
operation in July 2000. Figure 6 shows that the mea-
sured improvement in average wait time (e.g., for Au-
gust as compared with April and June 2000) is qualita-
tively similar to the performance improvement estimated
by the simulations, which were performed prior to the
change in the system scheduler.

We next consider policies that provide higher relative
priority to shorter jobs. Figure 7 shows that LXF&W-
backfill and SJF-backfill (as defined in Section 2.3) out-
perform Priority-backfill on every measure provided ex-
cept maximum wait. The improvement in average slow-
down for SJF-backfill compared with FCFS-backfill is
only as substantial as in [29] for the February 2000
workload. SJF-backfill outperforms LXF&W-backfill in
most cases; however, starvation is potentially a problem
in SJF-backfill (as reflected in the maximum wait for the
Feb. 2000 workload). Thus LXF&W-backfill, which has
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Figure 8. Performance of LXF&W-backfill
with 1 Minute of Immediate Service

significantly better average and 95 percentile wait than
Priority-backfill, may be the preferred policy.

4.3. LXF&W-backfill with Immediate Service

As the maximum wait for the backfill policies is mea-
sured in tens of hours even for short jobs, we next con-
sider the LXF&W-backfill policy with limited preemp-
tion for immediate service, defined in section 2.4. Fig-
ure 8 shows that this policy greatly improves the overall
average slowdown, while not adversely affecting the 95
percentile wait time (or the average or maximum wait
time, not shown). In fact, immediate service slightly
reduces the 95 percentile wait in two workloads, since
jobs that terminate prematurely can have among the top
5% of the waiting times when immediate service is not
provided. Also included in Figure 8(b) is an LXF&W-
backfill/soon policy that gives an arriving job a short
quantum as soon as possible without preempting other
jobs, as proposed in [20]. The results show that the im-
mediate quantum is significantly more effective.

For each month (not shown) LXF&W-backfill with
preemptive immediate service has similar slowdown and
wait time as a function of actual job runtime greater than
one minute, as LXF&W-backfill without immediate ser-
vice. The key conclusion is that the immediate service
policy considerably improves the turnaround time for
the jobs that complete within the quantum without sig-
nificantly impacting the longer jobs.

4.4. Performance of EQspatial

Figures 9 and 10 compare the performance of EQs-
patial with Mininterval equal to 5 minutes (EQspatial-
5m) against the LXF&W-backfill with immediate ser-
vice policy. Also included is EQspatial-5m/>50hr, in
which the jobs that have been running for longer than
50 hours are allocated the number of processors they re-
quested for the remainder of their execution time, even if
this is larger than the equipartition value, as long as each
other job assigned to the host has at least one processor
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Figure 10. Summary Performance of
EQspatial vs. LXF&W-backfill

to run on. The EQspatial-5m policy has nearly the same
performance as EQspatial-Om (not shown).

The policy performance vs job runtime results are
similar for the other five O2K workloads (not shown),
with slightly larger performance differences between
policies during the high-load months (12/99 and 2/00).
More than 99% of the arriving jobs in each workload
are placed on a host for full execution immediately upon
arrival, which indicates that the processor and memory
usage on each host is reasonably well-balanced by the
heuristic host placement policy defined in Section 2.5.

A job’s waiting time under EQspatial is defined as
its total time in the system minus its execution time on
the number of processors it requested. Linear slowdown
is assumed whenever the job executes on fewer proces-
sors under EQspatial, although in an adaptive system the
job might execute more efficiently on fewer processors;
thus, the predicted performance improvement for EQs-
patial is conservative. The maximum wait time under
EQspatial-5m is extremely high for the largest jobs in
February and March. Thus, EQspatial-5m/>50hr may
be preferred, depending on the desired trade-off between
maximum and 95 percentile waiting times.

The immediate service quantum might be tuned to
improve the slowdown of LXF&W-backfill for jobs
with execution times of one to ten minutes. Thus,
the key conclusions are that (1) EQspatial significantly
improves the 95 percentile wait, and (2) LXF&W-
backfill/immediate is perhaps surprisingly competitive
with EQspatial with respect to the other performance
measures.

5. Conclusions

This paper has used trace-driven simulation to com-
pare alternative scheduling policies for the challenge
workloads that run on the NCSA Origin 2000. The main
results are that (1) the current estimated job expansion
factor provides a good starvation-free measure for the
priority-backfill policies, (2) with an appropriate choice
of quantum size and preemption victim, adding imme-
diate service to backfill policies improves performance
for very short jobs without significantly degrading per-
formance for other jobs, (3) the EQspatial policy con-
siderably improves the 95 percentile waiting time for
jobs that don’t complete in the short initial quantum of
LXF&W-backfill with immediate service; however, the
latter policy is quite competitive with EQspatial with re-
spect to average wait, overall maximum wait, and aver-
age slowdown, and (4) it may be important to modify the
EQspatial policy to reduce the maximum waiting time of
the longest running jobs in the challenge workloads.

Possible directions for future work include a more
complete characterization of the NCSA 02K workloads,
experimentation with more flexible backfill deadlines,
further tuning of the priority measure and host place-
ment policy for the LXF&W-backfill policy, and eval-
uation of two-level foreground-background scheduling
policies for challenge workloads.
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