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Abstract. The question of whether more accurate requested runtimes
can significantly improve production parallel system performance has
previously been studied for the FCFS-backfill scheduler, using a limited
set of system performance measures. This paper examines the question
for higher performance backfill policies, heavier system loads as are ob-
served in current leading edge production systems such as the large Ori-
gin 2000 system at NCSA, and a broader range of system performance
measures. The new results show that more accurate requested runtimes
can improve system performance much more significantly than suggested
in previous results. For example, average slowdown decreases by a factor
of two to six, depending on system load and the fraction of jobs that have
the more accurate requests. The new results also show that (a) nearly
all of the performance improvement is realized even if the more accurate
runtime requests are a factor of two higher than the actual runtimes,
(b) most of the performance improvement is achieved when test runs are
used to obtain more accurate runtime requests, and (c) in systems where
only a fraction (e.g., 60%) of the jobs provide approximately accurate
runtime requests, the users that provide the approximately accurate re-
quests achieve even greater improvements in performance, such as an
order of magnitude improvement in average slowdown for jobs that have
runtime up to fifty hours.

1 Introduction

Many state-of-the-art production parallel job schedulers are non-preemptive and
use a requested runtime for each job to make scheduling decisions. For example,
the EASY Scheduler for the SP2 [3, 4] implements the First-Come First-Served
(FCFS)-backfill policy, in which the requested runtime is used to determine
whether a job is short enough to be backfilled on a subset of the nodes dur-
ing a period when those nodes would otherwise be idle. The more recent Maui
Scheduler ported to the NCSA Origin 2000 (O2K) [1] and the large NCSA Linux
Cluster [2] implements a parameterized priority-backfill policy that uses the re-
quested runtime to determine job priority as well as whether it can be backfilled.



Recent work [5] has shown that the priority-backfill policy on the O2K has sim-
ilar performance to FCFS-backfill, but that modifying the priority function to
favor jobs with short requested runtimes provides superior average wait, 95th-
percentile wait, and average slowdown, as well as similar maximum wait time
as for FCFS-backfill, for the large production workloads that run on the NCSA
O2K. Thus, requested runtimes are needed not only for backfill decisions but
also to enable favoring short jobs in a way that improves service for nearly all
jobs. For example, in the LXF&W-backfill priority function derived from high-
performance uniprocessor scheduling policies, a job’s priority increases linearly
with its expansion factor, where the expansion factor is the ratio of the job’s
wait time plus requested runtime to requested runtime.

The key advantage of nonpreemptive scheduling policies is that they are
significantly easier to implement than preemptive policies, particularly for sys-
tems with many processors. Furthermore, simulation results for the O2K job
traces and system show that the non-preemptive LXF&W-backfill policy has
performance that is reasonably competitive with high performance (but more
difficult to implement) preemptive policies such as gang scheduling or spatial
equi-partitioning [5]. This relatively high performance is achieved in spite of the
fact that user requested runtimes are often highly inaccurate [6–9]. For example,
analysis of the NCSA O2K logs shows that 30% of the jobs that request 200 or
more hours of runtime terminate in under ten hours [9].

The key open question addressed in this paper is whether the high perfor-
mance backfill policies can be further improved with more accurate requested
runtimes. Several previous simulation studies of FCFS-backfill show that more
accurate requested runtimes have only minimal impact on the average wait
time or average slowdown [6, 10–12,7]. We briefly revisit the question for FCFS-
backfill, using workloads from recent months on the O2K that have significantly
heavier system load (e.g., up to 100% cpu demand), and using a more complete
set of performance measures. More importantly, we investigate the question of
whether more accurate requested runtimes can significantly improve the high
performance backfill policies such as LXF&W-backfill that use requested run-
times to favor short jobs. We evaluate this question using complete workload
traces from the NCSA O2K and consider not only average wait time and aver-
age slowdown as in previous studies, but also the maximum and 95th-percentile
wait time. Each of these measures is obtained as a function of actual job run-
time and as a function of the number of requested processors, to determine how
performance varies with these job parameters.

To study the above key question, two design issues that relate to preventing
starvation in backfill policies that favor short jobs require further investigation.
As discussed further in Sections 2.3 and 3.1, preventing starvation was not fully
addressed in previous policy evaluations. In particular, the problem is more sig-
nificant for the heavier system load in recent months on the O2K. The first policy
design issues relate to reservations; that is, how many jobs are given reservations
and, in the case of dynamic priority functions, whether the reservations are fixed

or dynamic. The second design issue is the relative weight in the priority function



for requested job runtime and current job wait time. A more complete analysis
of these issues is needed in order to set these policy parameters properly for
studying the potential improvement of more accurate requested runtimes.

The key results in the paper are as follows:
– For a set of high performance backfill policies that favor short jobs (i.e.,

LXF&W-, SJF&W-, L
√

XF&W-, and S
√

TF&W-backfill), accurate requested
runtimes dramatically improve the average slowdown, greatly improve the
average and maximum wait for short jobs without increasing the average
wait for long jobs, and greatly improve the 95th-percentile wait for all jobs.
More precisely, the 95th-percentile wait for all jobs is reduced by up to a
factor of two, while the average slowdown is reduced by up to a factor of
six, depending on the system load. Policy performance with more accurate
requested runtimes is thus even more similar to the high performance pre-
emptive policies such as gang scheduling or spatial equipartitioning.

– Nearly all of the improvement is realized even if requested runtimes are only
approximately accurate; that is, if all requested runtimes are up to a factor of
two times the actual runtime. Furthermore, most of the improvement can be
achieved (a) even if only 60% - 80% of the jobs provide the approximately
accurate runtime requests, and (b) test runs are used to more accurately
estimate requested runtime.

– In systems where only a fraction (e.g., 60%) of the jobs provide approx-
imately accurate requested runtimes, the jobs with improved runtime re-
quests have even greater improvements in performance, such as more than
an order of magnitude improvement in average slowdown of the jobs that
have actual runtime up to fifty hours. Thus, there is a significant incentive
for individual users to improve the accuracy of their runtime requests.

Additional contributions of the paper include:
– A summary of the very recent workloads (October 2000 - July 2001) on

the O2K, including several months with heavier processor and memory de-
mand than workloads used previously to design scheduling policies. Note
that heavier system load can have a significant impact on the magnitude of
the performance differences among alternative scheduling policies. For ex-
ample, more accurate requested runtimes improves the average slowdown of
FCFS-backfill more significantly for the recent heavy loads on the O2K.

– For the NCSA O2K architecture and workload, using a small number of
reservations (2 to 4) outperforms a single reservation, but a larger number
of reservations results in poor performance during months with exceptionally
heavy load.

– Compared to the highest performance previous backfill policy, namely LXF&W-
backfill with single reservation, LXF&W-backfill with two to four reserva-
tions, as well as two proposed new priority backfill policies (L

√
XF&W and

S
√

TF&W-backfill) with two reservations, significantly improve the maxi-
mum wait time.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the system and workloads used in this study, and on related previous



work. Section 3 evaluates the impact of reservation policies and the relative
priority weight between job requested runtime and current job wait time for
backfill policies. Section 4 evaluates the potential benefit of using more accu-
rate requested runtimes in priority backfill policies. Section 5 shows whether
the performance benefit of more accurate requested runtimes can be achieved if
test runs are used to estimate the more accurate requested runtimes. Section 6
provides the conclusions of this work.

2 Background

2.1 The NCSA Origin 2000 System

The NCSA O2K is a large production parallel system that provides 960 pro-
cessors and 336 GB of memory for processing batch jobs that do not request a
dedicated host. The processors are partitioned into eight hosts, each of which
has 64 or 128 processors and 32 or 64 GB of memory. The jobs are scheduled
using a ported version of the Maui Scheduler that implements a backfill policy
with a parameterized priority function, and evicts a job if it has run one hour
longer than its requested runtime. More detail about the system and scheduler
configuration can be found in [1, 5].

2.2 Workloads

In this study, we have evaluated scheduling policy performance using simulations
with ten different one-month job traces obtained during October 2000 - July 2001
from the O2K. Three of these months (October - December 2000) were fully
characterized in [9]. The load during each month is summarized in Table 1. The
overall processing demand (”proc demand”) per month is the actual runtime of
a job times the requested processors for the job, summed over all jobs submitted
that month, expressed as a percentage of the total available processor-minutes
for the month. The memory demand (”mem demand”) is the equivalent measure
for the job memory requests. Processor and memory demand are also given for
each job class, where job class is defined by the requested runtime and requested
processor and memory resources, as defined below the table.

There are two key differences in the traces summarized in the table compared
to those considered previously [5, 9]. First, the actual job runtime in these traces
includes the initial data setup time, during which the job occupies its requested
resources (i.e., processors and memory) but it has not yet started its computa-
tion. The data setup time adds negligible (≤ 1%) total cpu and memory load
each month, but it is significant (e.g., 10 hours) for some jobs. Second, the traces
include four months (January - March and May 2001) that have exceptionally
high demand for processor resources (i.e., very close to 100%), and three of those
months (February, March, and May 2001) also have exceptionally high memory
demand (> 90%). The other three months in 2001 (April, June, and July) have
cpu demand (80 - 90%) and memory demand (70 - 80%) that is typical in earlier
O2K workloads [5]. Results will be shown in the paper for three of the heavy
load months (January - March 2001), one of the months that follows a heavy
load month (June 2001) and one typical month (July 2001).



Table 1. Summary of Monthly NCSA O2K Workloads

Month
Total

Job Class

sj mj lj
vst st mt lt vst st mt lt vst st mt lt

Oct00
#jobs 6552 1342 2491 576 276 248 624 240 50 57 362 208 78
proc demand 82% 1% 11% 9% 7% 0% 10% 11% 2% 0% 14% 13% 4%
mem demand 81% 0% 6% 7% 9% 0% 6% 6% 2% 0% 6% 18% 20%

Nov00
#jobs 6257 1719 2279 417 60 287 499 186 16 146 513 110 25
proc demand 85% 1% 10% 8% 3% 1% 9% 12% 3% 1% 21% 13% 3%
mem demand 61% 1% 5% 5% 2% 0% 5% 6% 1% 0% 11% 11% 14%

Dec00
#jobs 4782 1114 2056 563 164 100 203 215 59 45 135 113 15
proc demand 89% 0% 10% 10% 9% 0% 4% 18% 4% 0% 8% 13% 12%
mem demand 63% 0% 6% 8% 5% 0% 2% 10% 6% 0% 3% 13% 9%

Jan01
#jobs 4837 945 2000 649 164 185 267 158 151 37 170 97 14
proc demand *102% 1% 9% 13% 7% 0% 4% 18% 10% 0% 9% 15% 14%
mem demand 76% 0% 6% 8% 5% 0% 3% 10% 14% 0% 6% 9% 14%

Feb01
#jobs 6784 2328 2264 479 180 357 333 119 63 281 219 91 70
proc demand *97% 1% 9% 9% 8% 0% 6% 13% 7% 0% 11% 12% 22%
mem demand *87% 1% 6% 5% 5% 0% 4% 8% 8% 0% 8% 14% 28%

Mar01
#jobs 5929 1915 1869 644 221 372 290 140 50 78 224 87 39
proc demand *100% 1% 12% 11% 10% 1% 4% 10% 5% 0% 11% 18% 17%
mem demand *92% 1% 7% 8% 9% 0% 3% 6% 8% 0% 9% 11% 30%

Apr01
#jobs 6206 2106 2304 643 202 235 238 70 78 47 159 90 34
proc demand 78% 1% 13% 12% 9% 0% 5% 8% 5% 0% 8% 8% 8%
mem demand 77% 1% 6% 7% 7% 0% 3% 3% 9% 0% 9% 8% 25%

May01
#jobs 6573 2220 2012 611 191 364 355 115 96 214 246 104 45
proc demand *99% 2% 12% 10% 10% 1% 6% 10% 12% 1% 8% 19% 9%
mem demand *92% 1% 5% 9% 6% 0% 3% 4% 14% 1% 10% 18% 20%

Jun01
#jobs 6364 2076 2317 690 82 271 346 113 86 91 189 84 19
proc demand 86% 2% 12% 15% 6% 1% 8% 10% 9% 1% 9% 10% 4%
mem demand 75% 1% 7% 11% 4% 0% 4% 4% 12% 0% 9% 17% 6%

Jul01
#jobs 5705 1363 2070 664 136 243 415 177 111 102 263 131 30
proc demand 89% 1% 12% 15% 5% 1% 7% 14% 6% 1% 12% 10% 5%
mem demand 81% 1% 8% 9% 5% 0% 4% 7% 13% 0% 9% 18% 8%

’*’ indicates exceptionally high load.

Job Class Definition
Requested Run Time Class Space Class

vst st mt lt sj mj lj
≤5hrs [5, 50) [50, 200) [200, 400) P ≤ 8 P ≤ 16 P ≤ 64

hrs hrs hrs M ≤ 2GB M ≤ 4GB M ≤ 25GB
P = requested processors; M = requested memory

Other characteristics of the workloads during 2001 are similar to the previous
months in 2000. In particular, there is an approximately similar mix of job
classes (i.e., sizes) from month to month (as shown in Table 1), and there is
a large discrepancy between requested runtime (R) and actual runtime (T), as
illustrated in Figure 1. Figure 1(a) plots the distribution of actual runtime for
the jobs submitted during January - July 2001 that requested 50 hours (R =
50h) or 400 hours (R = 400h). These results show that almost 30% of the jobs
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Table 2. Priority Functions of Previous Backfill Policies

Priority Weight
Job Measure

FCFS SJF LXF LXF&W(w)

1 0 0 w = 0.02 current wait time, Jw, in hours
0 1 0 0 inverse of requested runtime ( 1

R
)

0 0 1 1 current job expansion factor ( Jw + R in hours

R in hours
)

with R = 400 hours terminate in under 10 hours, another 10% have actual
runtime between 10 and 50 hours, and approximately 10% of the jobs with R
= 50 hours or R = 400 hours terminate in under one minute. Figure 1(b) plots
points in the distribution (i.e., the 20th-, 35th-, and 50th-percentile) of T/R
as a function of the requested runtime of the job. This figure shows that for
any requested runtime greater than one minute, 35% of the jobs use less than
10% of their requested runtime (i.e., R >= 10 T), and another 15% of the jobs
have actual runtime between 10% and 30% of the requested runtime. Similarly
large discrepancies between requested and actual runtimes have also recently
been reported for many SP2 traces [7, 8]. In particular, the results by Cirne and
Berman [8] show that for four SP2 traces, 50-60% of the jobs use under 20% of
the requested runtime, which is very similar to the results for the NCSA O2K
workloads examined here.

2.3 Previous Work

In this section, we review previous work on three topics: alternative priority
functions for backfill policies, the impact of reservation policies, and the impact
of using more accurate requested runtimes on backfill policies.

The most comprehensive previous comparison of alternative priority backfill
policies [5] shows that, among the priority functions defined in Table 2, the
LXF&W-backfill policy that gives priority to short jobs while taking current
job waiting time into account outperforms FCFS-backfill, whereas SJF-backfill
has the problem of starvation (i.e., large maximum wait) under high load. This



previous paper also provides a review of earlier papers [13, 11, 14] that compare
the SJF-backfill and FCFS-backfill policies.

Reservation policies concern (a) the number of jobs waiting in the queue that
are given (earliest possible) reservations for processor and memory resources, and
(b) whether the reservations are dynamic or fixed. Previous results by Feitelson
and Weil [6] show that, for FCFS-backfill and a set of SP workloads, average
slowdown is similar when only one (i.e., the oldest) waiting job has a reservation
or when all jobs have a reservation. In more recent work [7] they find similar re-
sults for further SP2 workloads, for workloads from other systems, and for many
synthetic workloads, but they find that for many other SP2 monthly workloads,
a single reservation significantly improves the average slowdown (by > 40%) and
average response time (by > 30%). Several papers evaluate backfill policies that
have reservations for all waiting jobs [10, 14, 11], while still other papers evaluate
backfill policies that give reservations to only one waiting job [3, 4, 15, 13, 5].

With dynamic reservations, job reservations and the ordering of job reser-
vations can change when a new job arrives, or if the relative priorities of the
waiting jobs change with time. For example, in SJF-backfill with a single dy-
namic reservation, an arriving job will preempt the reservation held by a longer
job. With fixed reservations, in contrast, once a job is given a reservation, it
may be given an earlier reservation when another job terminates earlier than
its requested runtime, but recomputed job reservations will have the same or-
der as the existing reservations, even if a job that has no reservation or a later
reservation attains a higher priority. A single fixed reservation is used to reduce
starvation in SJF-backfill in [5]. In [14], each job is given a reservation when
it arrives. They compare a form of dynamic (”no guarantee”) reservations, in
which reservations are only recomputed if and when a job finishes early but the
recomputed reservations are done in priority (i.e., FCFS or SJF) order, against
”guaranteed reservations”, in which job reservations are recomputed only in the
same order as the existing reservations. They find that the dynamic reservations
have lower average slowdown and average wait than guaranteed reservations for
the priority backfill policies studied, including SJF-backfill. This paper includes
the maximum wait measure and concludes that fixed reservations significantly
improve the performance of SJF-backfill; otherwise the results in this paper are
consistent with their results.

Two previous papers show that perfectly accurate requested runtimes for
FCFS-backfill improve the average slowdown by no more than 30% [7] and the
average wait time by only 10 - 20% [10], compared to using the highly inaccurate
requested runtimes given in SP traces. Several papers [6, 13, 11, 12, 7] compare
the performance of various models of requested runtimes against perfectly ac-
curate runtime requests. For a given actual runtime, they model the requested
runtime overestimation (i.e., requested runtime - actual runtime) as a factor
times the actual runtime, where the factor is drawn from a uniform distribution
between 0 and a fixed parameter C. The paper [13] also includes a model where
the factor is deterministic. The results in those papers show that even for C as
large as 300 [6, 7] (or 50 [13] or 10 [11, 12]), the average slowdown or average wait



is similar to, or even slightly better than that of C = 0. Additional results in [7]
show that multiplying the user requested runtimes by two slightly improves on
average slowdown and response time for SP workloads and FCFS-backfill. These
papers conclude that there is no benefit of using accurate requested runtimes for
FCFS-backfill and SJF-backfill. We note that for large C (or when multiplying
requested runtime by two), jobs with long runtimes can have very large runtime
overestimation, which leaves larger holes for backfilling shorter jobs. As a result,
average slowdown and average wait may be lower, as reported in these previ-
ous papers. On the other hand, these systems may have poorer maximum wait,
which was not studied in any of these previous papers.

3 Reducing Starvation in Systems that Favor Short Jobs

Backfill policies that favor short jobs have the potential problem of poor max-
imum wait for long jobs. Mechanisms for reducing the maximum wait include
using a larger number of reservations, and increasing the priority weight on the
current job wait time. On the other hand, either of these mechanisms may in-
crease the average and 95th-percentile wait for all jobs. The goal of this section
is to provide a more comprehensive evaluation of the trade-offs in the wait time
measures for different reservation policies and for alternative priority functions
that give different relative weight to the current job waiting time. In evaluating
the tradeoffs for each policy, we seek to achieve a maximum wait that is no
greater than the maximum wait in FCFS-backfill, while reducing the average
and 95th-percentile wait time as much as possible.

In this section, and in the remainder of the paper, policy comparisons will be
shown for five representative workloads. These workloads include (a) three of the
four new exceptionally heavy load months (i.e., January - March 2001), which are
the most important months for policy optimization, (b) June 2001, which has
similar policy performance as in April 2001 since both of these months follow an
exceptionally heavy load month, and (c) July 2001 which has a typical load and
policy performance similar to October - December 2000 and other previously
studied workloads. The other new exceptionally heavy load month (May 2001)
has somewhat lower wait time statistics for each policy than the other three
exceptionally heavy months, due to a larger number of short jobs submitted
that month.

Section 3.1 re-evaluates previous backfill policies, showing that starvation is a
more significant issue for the new exceptionally heavy load months on the NCSA
O2K. Section 3.2 evaluates several alternative reservation policies. Section 3.3
evaluates several new priority functions with different relative weights on the
current job waiting time and compares the best new priority backfill policies
against FCFS-backfill.

3.1 Re-evaluation of Previous Policies

In this section, we use the recent O2K workloads to re-evaluate the FCFS-
backfill, SJF-backfill, and LXF&W-backfill policies that are defined in Table 2.
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Fig. 2. Performance of Previous Backfill Policies

Note that both SJF-backfill and LXF&W-backfill favor short jobs, but LXF&W-
backfill also has a priority weight for current job wait time. The reservation
policies in these previously defined schedulers are: FCFS-backfill uses one reser-
vation, LXF&W-backfill uses one dynamic reservation, and SJF-backfill uses one
fixed reservation (to reduce the maximum wait).

Figure 2 compares the three policies, showing (a) overall average wait, (b)
95th-percentile wait, (c) maximum wait, and (d)-(e) average and 95th-percentile
wait, respectively, as a function of actual runtime, during a representative heavy
load month. Results in previous work [5] are similar to the results for the July
2001 workload in figures (a) - (c). Conclusions for the new heavy load months
that are similar to previous work are that (1) SJF-backfill and LXF&W-backfill
have significantly lower 95th-percentile wait (for all ranges of actual runtime)
than that of FCFS-backfill, and (2) SJF-backfill has the problem of poor maxi-
mum wait for many of the workloads, as shown in figure (c). Conclusions for the
new heavy load months that differ from the results in previous work (and also dif-
fer from the results for July 2001), are that (1) LXF&W-backfill and SJF-backfill
have even greater improvement in average wait compared with FCFS-backfill (for
most ranges of actual runtimes), and (2) LXF&W-backfill has higher maximum

wait than FCFS-backfill.
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Fig. 3. Impact of Number of Reservations on LXF-backfill

(Dynamic Reservations)

The starvation problems that lead to high maximum wait in LXF&W-backfill
and SJF-backfill systems are addressed in the next two sections. The questions
are (1) whether multiple reservations can improve the performance, particularly
the maximum wait, of SJF-backfill and LXF&W-backfill, (2) whether fixed reser-
vations can improve the maximum wait for LXF&W-backfill, and (3) whether
new priority functions, such as adding a priority weight for current waiting time
to the SJF-backfill priority function, or more generally whether new relative
priority weights between requested job runtime and current job wait time, can
improve on the previous policy priority functions. Section 3.2 addresses the first
two questions. Section 3.3 studies the third question.

3.2 New Reservation Policy Comparisons

This section studies the impact of reservation policies, i.e., the number of reser-
vations and dynamic versus fixed reservations, on backfill policies. We use three
simple priority backfill policies to evaluate the reservation policies, namely:
FCFS-backfill, SJF-backfill, and LXF-backfill (all with weight on current waiting
time equal to zero). Adding weights for current waiting time will be studied in
the next section.

For each of the three policies, we evaluated the performance for the follow-
ing numbers of reservations: 1, 2, 4, 6, 8, 12, and 16. For the LXF-backfill and
SJF-backfill policies that have dynamic priority functions, we evaluate the per-
formance of both dynamic and fixed reservations, each over the entire range of
number of reservations.

Figure 3 shows the performance of LXF-backfill with up to eight dynamic
reservations. Twelve and sixteen reservations have similar or worse performance



Table 3. Weights for New Priority Backfill Policies

Priority Weight
Job Measure

SJF&W(w) S
√

TF&W(w) L
√

XF&W(w)

w = 0.05-0.2 w = 0.01-0.05 w = 0.01-0.02 current wait time, Jw, in hours

1 0 0 Jr = 400
∗

R in hours

0 1 0
√

Jr

0 0 1
√

Jx, where Jx = Jw + R in hours

R in hours

(* R = requested runtime. The maximum value of R is 400 hours.)

as that of eight reservations. The impact of the number of reservations is similar
for FCFS-backfill and SJF-backfill (not shown to conserve space), except that
four reservations performs slightly better for SJF-backfill. For months with a
typical O2K load (e.g., July 2001), the impact of reservation policies on backfill
policies is minimal, which agrees with previous results for the average slowdown
of FCFS-backfill in [6]. However, for most of the new heavy load months, as
shown in Figure 3(c), the key new result is that using a small number of reser-
vations (i.e., 2-4) reduces the maximum wait time (by about 30%) compared to
using a single reservation. Furthermore, as shown in Figure 3(a) - (c), using more
than four reservations usually makes minimal further improvement for the max-
imum wait, yet significantly increases the average and 95th-percentile wait, for
the new heavy load workloads or immediately following the heavy load months.

Other results omitted to conserve space show that fixed and dynamic reserva-
tions (with 2-4 reservations) have similar performance for LXF-backfill and the
policies developed in the next section. However, for SJF-backfill, dynamic reser-
vations has higher maximum wait than fixed reservations because (particularly
under heavy load) dynamic reservations for jobs with long requested runtimes
are often usurped by newly arriving jobs that have short requested runtimes.

3.3 New Priority Functions

In this section, we propose three alternative new priority functions, evaluate the
impact of the alternative priority weights for current job wait time together with
the impact of reservation policies, and compare the best new priority functions
against the previous backfill policies.

The new (dynamic) priority functions are defined in Table 3. Note that in
the Jr metric for the SJF&W and S

√
TF&W priority functions, the inverse

of requested runtime (1/R) is normalized to the maximum allowed requested
runtime (i.e., 400 hours). The SJF&W priority function extends the previous
SJF function with a weight for the current job wait time. The S

√
TF&W and

the L
√

XF&W priority functions are designed to increase the relative weight on
the current job waiting time (Jw), by applying a square root to the job metric
that includes requested runtime. Results below show that S

√
TF&W-backfill and

L
√

XF&W-backfill only very slightly outperform SJF&W-backfill and LXF&W-
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Fig. 4. Alternative Job Wait Priority Values (w) for L
√

XF&W-backfill

(One Dynamic Reservation)

backfill. Thus, further alternative relative weights for these job measures are not
likely to lead to any significant improvement.

Let w denote the priority weight on current job wait time in the new priority
functions. Figure 4 shows the performance of alternative values of w in the
L
√

XF&W-backfill scheduler with one dynamic reservation. Results are similar
for 2-4 reservations, and for each of the other two new priority functions, as
well as for LXF&W (not shown). The Figure shows that average and 95th-
percentile wait are not highly sensitive to w in the range of 0.005 - 0.05, and
that during heavy load months, this range of w values significantly reduces the
maximum wait (by 30-50%) compared to w = 0. Larger values of w, such as w
= 1, significantly increase the average and 95th-percentile wait time, with only
small improvements in the maximum wait (not shown).

Similar to the previous section, we find that using a small number of reser-
vations (i.e., two or three) outperforms a single reservation for each of the alter-
native new priority functions.

Figure 5 compares the performance of FCFS-backfill, LXF&W(0.02)-backfill,
and the two best alternative new priority backfill policies (i.e., L

√
XF&W(0.01)

and S
√

TF&W(0.05)-backfill, which slightly outperform SJF&W-backfill), each
with 2 - 3 reservations. One key result is that using 2-4 reservations instead
of one reservation has improved the overall performance of all four policies.
For example, compared to Figure 2, the maximum wait for FCFS-backfill and
LXF&W(0.02)-backfill is reduced by up to 30% while the average or 95th-
percentile wait is increased by on the order of 10% or less. Another key result is
that L

√
XF&W(0.01)-backfill with 2-4 reservations has maximum wait that is

reasonably competitive with FCFS-backfill, yet significantly outperforms FCFS-
backfill with respect to the other wait time statistics, particularly average slow-
down. L

√
XF&W-backfill has slightly better overall performance than LXF&W-

backfill. Finally, S
√

TF&W-backfill has better average and 95th-percentile wait
than L

√
XF&W-backfill, but more often has significantly poorer maximum wait

than FCFS-backfill (e.g., in February and June 2001).

The overall conclusion is that, similar to results in [5], giving priority to short
jobs but also using an appropriate weight for current job wait can significantly
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Fig. 5. Performance of New Priority Backfill Policies that Favor Short Jobs

outperform FCFS-backfill, particularly with respect to the 95th percentile wait
time and the average slowdown measures. In the remainder of this paper, we
study the impact of more accurate requested runtimes on such high performance
backfill policies.

4 More Accurate Requested Runtimes

There is reason to believe that runtimes can be more accurately estimated for
the jobs that run on the O2K. In particular, a majority of the jobs use one of the
default requested runtimes, which are 5, 50, 200, or 400 hours. This indicates
that users specify highly approximate requested runtimes due to the course-grain
defaults that are available. Furthermore, since the current priority-backfill policy
provides similar 95th-percentile waiting time for the entire range of job runtimes
(see Figure 2(e) and results in [5]), there isn’t currently any incentive for an
individual user to provide a more accurate requested runtime. These factors
explain why, for example, many of the jobs that have actual runtime of 10 hours
have requested runtime of 50, 200, or 400 hours.

Previous results suggest that using more accurate requested runtimes has
only minimal impact on the average slowdown and average wait time for FCFS-
backfill [6, 10, 13, 11, 12]. This section investigates whether the benefit of more
accurate requested runtimes is more significant for the high performance priority
backfill policies that use requested runtimes to favor short jobs. We consider var-
ious scenarios more accurate runtime requests, the O2K workloads that include
exceptionally heavy load in recent months, and more extensive performance mea-
sures than in the previous evaluations of FCFS-backfill. Section 4.1 describes the



Table 4. Notation

Symbol Definition

T Actual job runtime
R User requested runtime from the O2K logs
R* Simulated requested runtime
P Number of requested processors

scenarios of more accurate requested runtime that will be evaluated. Section 4.2
reassesses the impact of more accurate requested runtimes on FCFS-backfill,
whereas Section 4.3 evaluates the impact of more accurate requested runtimes
on the policies that favor short jobs.

4.1 More Accurate Requested Runtime Scenarios

Using the notation defined in Table 4, we consider three different scenarios of
more accurate runtime requests for the O2K workloads. In the first (implausible)
case, each requested runtime is perfect (i.e., the simulated requested runtime,
R∗ = T ). In the second case, all requested runtimes are imperfect but are ap-

proximately accurate (i.e., R∗ = min{R, kT}, 1 < k ≤ 2). In the third case,
only a fraction (e.g., 80% or 60%) of the jobs have the approximately accurate
requested runtimes, while the rest of the jobs, selected randomly, have requested
runtimes as given in the job log, which are generally highly inaccurate. In the
third case, the fraction of jobs that have the inaccurate requested runtimes from
the trace represent carelessly specified runtime requests or runtimes that can’t
(easily) be accurately estimated. This fraction is varied in the experiments. The
first case is used to provide a bound on the maximum benefit of more accu-
rate requested runtimes, while the second and third cases are used to assess
performance gains that are more likely to be achievable. Section 5 will explore
the performance impact of using short test runs to achieve the more accurate
runtime requests.

We present results for k = 2. We also considered smaller values of k, in
particular k = 1.2, which results in slightly better performance, but we omit
those results below to conserve space. As noted in Section 2.3, several previ-
ous papers [6, 13, 11, 12] have used a uniform distribution of requested runtime
overestimations, with a large upper bound factor (e.g., 10, 50, or 300). In con-
trast, our scenarios assume that requested runtime is not larger than the actual
requested runtime in the workload trace.

4.2 FCFS-backfill Results

Figure 6 compares the performance of perfectly accurate requested runtimes
(i.e., R* = T) against user requested runtimes from the trace (i.e., R* = R)
for FCFS-backfill with two reservations. The results for previous typical O2K
workloads (e.g., July 2001) agree with previous results in [6]; that is, using more
accurate runtimes has only very slight impact on system performance. Moreover,
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Fig. 6. Impact of Perfect Requested Runtimes for FCFS-backfill

perfect requested runtimes have minimal impact on the overall average waiting
time for each month (not shown), and on the 95th-percentile wait each month,
shown in Figure 6(b). On the other hand, as shown in Figure 6(a) for June 2001,
accurate runtime requests improve the average wait of very short jobs (T < 30
minutes) during and immediately following the new exceptionally heavy load
months. More significantly, Figure 6(c) shows that accurate requested runtimes
significantly improve maximum wait time for most actual job runtimes, for many
of the exceptionally heavy load months and immediately following new heavy
load months. Figure 6(d) shows that actual runtimes significantly reduce average
slowdown under and immediately following new heavy load months (by up to
60% in Feb. 2001).

We note that perfect requested runtimes generally improves the wait time for
short jobs because these jobs can be backfilled more easily. Accurate requested
runtimes also improve the maximum wait for long jobs due to shorter backfill
windows. Using approximately accurate requested runtimes (i.e., R∗ = kT ) has
a somewhat lower impact on system performance than using perfect runtime
requests (not shown to conserve space).

4.3 Results for High Performance Backfill Policies

This section evaluates the impact of more accurate requested runtimes on the
performance of high performance backfill policies that favor short jobs. We
present the results for L

√
XF&W-backfill. Results are similar for the other high

performance backfill policies such as S
√

TF&W-backfilland LXF&W-backfill.
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Fig. 7. Impact of Accurate Runtime Requests for L
√

XF&W-backfill

Initially, we consider the case where all jobs have requested runtimes within
a small factor of their actual runtimes. Then, we consider the case where only
80% or 60% of the jobs have approximately accurate requested runtimes.

Figure 7 compares the performance of perfectly accurate runtime requests
(i.e., R* = T) and approximately accurate runtime requests (i.e., R* = Min{R,
2T}) against requested runtimes from the trace (i.e., R* = R). Graphs (a)-(d)
contain the overall performance measures each month, whereas graphs (e)-(h)
show performance versus requested number of processors or actual runtime for
a given representative monthly workload. Results for other months (not shown)
are similar.

In contrast to the FCFS-backfill results shown in Figure 6, there is an even
larger benefit of using more accurate requested runtimes for L

√
XF&W-backfill,

because accurate runtime requests enable the scheduler to give priority to jobs



that are actually shorter. In particular, Figures 7(a) - (d) show that perfectly
accurate runtime requests improve not only the maximum wait and average slow-
down, but also the average and 95th-percentile wait time over all jobs. Further-
more, the average slowdown is dramatically improved in every month, including
the months with typical O2K load (e.g., July 2001). These four graphs also show
that even if the the requested runtimes are only approximately accurate (i.e.,
R* = Min{R, 2T}), similar improvements are achieved.

Figure 7(e) shows that accurate or approximately accurate requested run-
times improve the average wait time for jobs that require a large number of
processors (i.e., greater than 16 processors).

Figures 7(f)-(h) show that more accurate requested runtimes improve the
average wait for short jobs (up to 10 hours), 95th-percentile wait for all jobs, and
the maximum wait for all but the very largest jobs. Note that these improvements
occur for typical system loads as well as exceptionally heavy loads that during
months following the exceptionally heavy load. Note also that the improvement
in the average wait for short jobs is significantly larger than the improvement
for FCFS-backfill systems, and the improvement is achieved without increasing
the average wait time for longer jobs. Furthermore, when requested runtimes
are accurate or approximately accurate, the average wait under L

√
XF&W-

backfill decreases (monotonically) as the actual runtime decreases; this is a
desirable property that, to our knowledge, has not been demonstrated for any
previous backfill scheduler.

Next, we consider scenarios in which not all jobs have approximately accurate
requested runtimes. Two systems are evaluated: hybrid(4:1) and hybrid(3:2). In
the hybrid(4:1) system, 4 out of 5 jobs (i.e., 80% of jobs), selected randomly,
have approximately accurate requested runtime (i.e., R* = minR, 2T). The
hybrid(3:2) system is similar to the hybrid(4:1) system, except that only three
out of five (or 60%) of the jobs have the approximately accurate runtime requests.
Results will be shown for L

√
XF&W-backfill; the results are similar for the other

priority backfill policies that favor short jobs.

Figure 8 compares hybrid(4:1) and hybrid(3:2) against the case where all
jobs have perfectly accurate runtime requests (i.e, R* = T), and the case where
all jobs use requested runtimes from the trace (i.e, R* = R). The key conclu-
sion is that much of the benefit of accurate requested runtimes can be achieved
even if only 60% or 80% of the jobs have approximately accurate requested
runtimes. Specifically, Figures 8(a) and (b) show that hybrid(4:1) has similar
average and 95th-percentile wait time as the system where all jobs have R* =
T. Figure 8(c) shows that hybrid(4:1) has somewhat higher maximum wait than
when requested runtimes are perfectly accurate, but has lower maximum wait
than for user requested runtimes in the trace. Figure 8(d) shows that hybrid(4:1)
has much lower average slowdown than the system with user requested runtimes
from the trace. If only 60% of the jobs have improved requested runtimes, i.e.,
hybrid(3:2), the performance improvement is smaller than that in hybrid(4:1),
but hybrid(3:2) still has lower average and 95th-percentile wait time and sig-
nificantly lower average slowdown than that of using very inaccurate requested
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Fig. 8. Hybrid(x:y) Approximately Accurate:Inaccurate Requested Runtimes

(L
√

XF&W-backfill; Approximately Accurate R* = Min{R, 2T})

runtimes from the trace. Further reducing the fraction of the jobs to have im-
proved requested runtimes results in a system increasingly more similar to the
system where all jobs have requested runtimes from the trace.

The next results show that the jobs in the hybrid systems that have more
accurate requested runtimes experience substantial performance benefit. In par-
ticular, Figure 9 compares the wait time statistics for ’approx. accurate jobs’

(i.e., R* ≤ 2T) in the hybrid system against the wait time statistics for ’inac-

curate jobs’ (i.e., R* = R > 2T) in the hybrid system. The figure also includes
the performance when all jobs have requested runtimes as in the workload trace
(i.e., all jobs have R* = R). The results are shown for hybrid(3:2), in which
only 60% of the jobs have approximately accurate requested runtimes. As noted
in the figure captions, only the jobs with under 50 hours of actual runtime are
considered in the first four graphs because requested runtime accuracy has little
impact on jobs with larger actual runtime (as can be seen in Figure 9(e)). The
key results are:

– Figures 9(a) - (c) show that during and immediately following the extremely
heavy load months, for actual runtime up to 50 hours, jobs with approxi-
mately accurate runtime requests have 20% lower average and 95th-percentile
wait time and up to 50% lower maximum wait time than the jobs with in-
accurate runtime requests.

– Furthermore, the jobs with approximately accurate runtime requests improve
the average and 95th-percentile wait time of inaccurate jobs, compared to
when all jobs have the requested runtimes from the trace.

– Figure 9(d) shows that for any month, the average slowdown of jobs with
approximately accurate runtime requests is dramatically (i.e., more than an
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Fig. 9. Performance for Jobs with More Accurate Requested Runtimes

(L
√

XF&W-backfill; Approximately Accurate R* = Min{R, 2T})

order of magnitude) lower than either the average slowdown of jobs with
inaccurate requests, or the overall average slowdown when all jobs use the
requested runtime from the trace (i.e., R* = R).

– Figure 9(e) further shows that for actual runtime of up to 10 hours, jobs with
approximately accurate requests achieve significantly lower average wait time
than that of inaccurate jobs, and average wait decreases monotonically as
actual runtime decreases for the jobs with approximately accurate requests.

5 Test Runs for Improving Requested Runtimes

Results in Section 4 show that if a majority of the jobs (e.g., 60% or more)
have estimated runtimes within a factor of two of their actual runtime, system
performance improves greatly, particularly for the jobs that have such approxi-
mately accurate runtime requests. Thus, if users are provided with incentives and
tools to provide more accurate requested runtimes, the users will reap significant
performance benefit.

We hypothesize that approximately accurate requested runtimes are feasible
in at least three cases. First, many large scale simulations are run with similar
input parameters to previous runs, or with changes in the input parameters
that will affect run time in an approximately predictable way (e.g., runtime
can be estimated within a factor of two). Second, for other applications, the
runtime request can be more accurate if a short test run is made before the
full run. Example applications that can estimate requested runtime after a test



run include those that involve iterative computation in which the number of
iterations and/or the time per iteration are dependent on the input data, but
can be estimated reasonably well after having run the first few iterations. In
the third case, many applications such as stochastic optimization have a number
of iterations that is dependent on how quickly the solution converges, which
generally can’t be predicted ahead of time. In this case approximately accurate
requested runtimes could be provided if the computation is performed in several
runs, each except the last run having requested runtime that is shorter than
needed to reach final convergence, and with the solution from one run being
input to the next run.

The remainder of this section investigates whether most of the benefit of more
accurate requested runtimes shown in the previous section can still be realized if
some jobs perform a short test run before providing an approximately accurate
requested runtime.

To address this question, the following assumptions are made regarding the
test runs. If the user requested runtime is already within a factor of two of the
actual runtime (i.e., R ≤ 2T ), we assume that the user is aware that a test run is
not needed, and the job is simply submitted with the requested runtime supplied
by the user. For the remaining jobs, a specified fraction (i.e., 100% in section
5.1 or 50% - 80% in section 5.2) are assigned more accurate requested runtimes
than specified by the user. The jobs that do not have more accurate requested
runtimes represent jobs for which the user is either not able or not interested in
estimating runtime more accurately. Of the jobs that are given more accurate
requested runtimes, some fraction (e.g., 25%) require a test run before the more
accurate request is given. If the test run is not used, the more accurate runtime
request is assumed to be estimated from previous runs of the application. The
requested runtime for a test run is equal to: (a) 10% of the user requested
runtime if the user requested runtime is under 10 hours, or (b) one hour if the
user requested runtime is greater than 10 hours. That is, the requested runtime
for the test run is equal to the minimum of 1 hour and 10% of the user requested
runtime (R). The requested runtime for the test run represents the runtime the
user believes is needed to estimate the full job runtime within a small factor.
Note that because the user requested runtimes can be highly inaccurate, the
actual job runtime may be shorter than the requested runtime for the testrun.
In such cases only the test run is needed. This represents the case in the actual
system, in which jobs complete during the test run either due to the user’s lack of
experience in how long the test run should be, or due to an unexpected error in
the execution. If the actual job runtime is longer than the test run or a test run
is not needed, the job is submitted with an approximately accurate requested
runtime (i.e., a requested runtime equal to twice the actual runtime, 2T ).

Section 5.1 considers the scenario in which all full runs have requested run-
time within a factor of two of the actual runtime, but two different fractions of
jobs (i.e., 100% or 25%) (randomly selected) make test runs before submitting
with the approximately accurate requested runtime. Section 5.2 considers the
scenario in which only 50% or 80% of the jobs provide approximately accurate



requested runtimes, whereas the other 50% or 20% of the jobs provide the same
requested runtimes as in the job trace. Of the jobs that provide approximately
accurate runtime requests, 25% make the test run before submitting with the
approximately accurate request.

5.1 Improved Requested Runtimes for All Jobs

This section studies the impact of test runs for the optimistic (”best case per-
formance”) scenario in which all jobs provide approximately accurate requested
runtimes. In one case (”25% testrun”), 25% of jobs that do not have approxi-
mately accurate user requested runtime from the trace are randomly selected to
have a test run. In the other case (”100% testrun”), every job with improved
runtime request requires a test run. Note that ”100% testrun” is a pessimistic
assumption that is not likely to occur in practice, since many applications are
run a large number of times, and in many cases previous executions can be used
to provide approximately accurate runtime requests. Thus, we consider the ”25%
testrun” experiments to be more representative of the practical impact of using
test runs to improve runtime estimate accuracy.

During each month, 35-45% of the jobs have inaccurate requested runtimes
(i.e., R > 2T ) and actual runtime T greater than the minimum of one hour and
10% of the user runtime request. For such jobs, if a test run is used to improve
requested runtime, the job is resubmitted after the test run. The total extra load
due to the test runs is very small (only 1-3% increase in processor and memory
demand each month), even for 100% testrun. However, the additional waiting
time for the test run, and the test run, must be included in the measures of total
job waiting time. The results below address the impact of this extra waiting time
on the overall system performance.

Figure 10 compares 100% testrun and 25% testrun against the optimal case
where all jobs use actual runtimes (i.e., R∗ = T ) without test runs and the case
where all jobs use the requested runtimes from the trace (i.e., R∗ = R). The
average total wait, 95th-percentile total wait, maximum total wait, and average
slowdown, are shown for representative recent O2K workloads. For each of these
measures except average slowdown during February 2001, the performance of the
25% testrun case is very similar to the case where R∗ = T . Overall the results
show that a significant fraction of test runs can be made to improve requested
runtimes, and if the improved requested runtimes are within a factor of two
of the actual runtime, then nearly the maximum possible benefit of accurate
requested runtimes can be achieved.

The test run overhead becomes prominent if all jobs with R > 2T require
a test run (i.e., 100% testrun). Even so, Figure 10(a) shows that during and
immediately following the heavy load months, ”100% testrun” has lower average
and 95th-percentile wait, and especially lower average slowdown, than using
requested runtimes from the trace.
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Fig. 10. Impact of Test-Runs to Determine Requested Runtimes
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XF&W-backfill; Wait includes testrun wait and overhead; R* = Min{R, 2T})

5.2 Improved Requested Runtimes for a Majority of the Jobs

This section evaluates scenarios where only 50% or 80% of the jobs have im-
proved requested runtime accuracy, and test runs are needed for 25% of the
jobs that have improved requested runtimes. The two scenarios are named hy-
brid(1:1) - 25% testrun and hybrid(4:1) - 25% testrun, respectively. Note that
hybrid(1:1) with 25% testrun represents a reasonably pessimistic, but possibly
realistic scenario, in which only 50% of the jobs have approximately accurate
requested runtimes and one out of four jobs requires a test run to improve re-
quested runtime accuracy. Again, we use R∗ = 2T for approximately accurate
runtime requests.

Figure 11 compares the above two scenarios with 25% test run against that
of using requested runtimes from the trace (i.e., ”R* = R”). The performance for
hybrid(4:1) without test run is also included in Figure 11(b) - (d) for comparison
with hybrid(4:1) with 25% testrun. The results show that for both hybrid systems
with testruns, the average wait for short jobs, the 95th-percentile wait, and the
average slowdown is significantly better than for the requested runtimes in the
O2K traces. The results also show that test runs do not introduce significant
overhead in the hybrid (4:1) system.

6 Conclusions

In this paper, we used ten one-month recent traces from the NCSA O2K to
evaluate whether high-performance backfill policies can be significantly improved
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if the requested runtimes can be more accurate. Several of these months have
exceptionally heavy load, which tends to result in larger policy performance
differentials than for the lower loads used in previous work.

To select the best backfill policies for studying this key question, we more
fully evaluated the issues related to starvation in backfill policies that favor short
jobs. The results show (1) that a few reservations (2 - 4) can significantly re-
duce the maximum wait time but a larger number of reservations result in poor
performance, and (2) fixed reservations have similar performance to dynamic
reservations in most cases, except for SJF-backfill which requires fixed reserva-
tion to reduce starvation. The results also show that two new priority backfill
policies, namely L

√
XF&W-backfill and S

√
TF&W-backfill, achieve a high per-

formance trade-off between favoring short jobs and preventing starvation.

The results for the high-performance backfill policies, heavier system load,
and a more complete set of performance measures show that the potential benefit
of more accurate requested runtimes is significantly larger than suggested in
previous results for FCFS-backfill. Furthermore, the results show that most of
the benefit of more accurate requested runtimes can be achieved by using test
runs to improve requested runtime accuracy, in spite of the time needed to
perform the test run. Another key result is that users who provide more accurate
requested runtimes can expect improved performance, even if other jobs do not
provide more accurate requested runtimes.

Topics for future work include developing approaches for achieving more ac-
curate requested runtimes in actual systems, improving job placement during
backfill to reduce system fragmentation, and extending the high performance



policies for use in more complex distributed Grid architectures such as the Ter-
aGrid.
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