
Class-Partitioning Job Scheduling for Large-Scale Parallel Systems

Su-Hui Chiang Mary K. Vernon
Computer Science Department Computer Science Department

Portland State University University of Wisconsin-Madison
P.O. Box 751-CMPS 1210 W. Dayton Street
Portland, OR. 97207 Madison, WI. 53706

Abstract

This paper addresses the problem of poor response
time for large parallel jobs under nonpreemptive back-
fill scheduling policies. Four monthly workloads from
the large-scale NCSA O2K system are used to evaluate
new scheduling policies. Our key result is that parti-
tioning the system based on job class, where class is
defined by the number of requested processors, signif-
icantly improves overall performance and the perfor-
mance of large jobs, while still providing similar per-
formance for smaller jobs, compared to the best pre-
vious priority backfill policies. Another key advantage
of the class-partitioning policies is that selecting high-
performance policy parameters is simpler and more in-
tuitive than determining the number of reservations and
other parameters of the priority backfill policies.

1 Introduction
Job scheduling for high-performance parallel sys-

tems is a great challenge in the presence of large-
resource jobs, each of which requires a large fraction of
the processors and/or memory available in a given sys-
tem, and may run for a very long time. Particularly in
heavily utilized systems with non-preemptive schedul-
ing, it is difficult to find enough resources for such jobs,
and to balance the scheduling of such large jobs against
responsive scheduling of a very large number of smaller
jobs with highly variable runtimes.

In this paper, we consider job scheduling for the Ori-
gin 2000 (O2K) system at the National Center for Su-
percomputing Applications (NCSA). The NCSA O2K
system is a large-scale system with 600 gigabytes of
memory and over 1,400 processors. The processors and
memory are partitioned into twelve hosts, and each job
is constrained to run within the boundary of a single
host, due to a high overhead of processor communica-
tion across host boundary. The largest O2K job requires
the maximum resources available on any host, and runs
for up to 400 hours. In order to provide a good per-

formance for the jobs that utilize an entire host, as well
as for jobs that require smaller numbers of processors,
the scheduling policy adopted on the O2K system desig-
nated three hosts to run mainly the largest jobs, leaving
the remaining hosts entirely for all other jobs. To take
advantage of the processing time not used by the largest
jobs, smaller jobs that are under five hours can also run
on the partition used by the largest jobs.

One question that has not, to our knowledge, been
studied is whether or not non-preemptive scheduling
policies that partition the system based on job sizes
effectively improve system performance, compared to
policies that don’t partition the system? If so, how
should such partitioning policies be configured?

We address the above questions in the context of
nonpreemptive backfill scheduling policies, which have
been shown to have promising performance among non-
preemptive policies [4, 3, 5]. In particular, backfill
policies that give some priority to short jobs, such as
LXF&W-backfill [2], have been shown to be compet-
itive with preemptive policies which are significantly
more difficult to implement and have higher scheduling
overhead.

We evaluate the performance of partitioned and non-
partitioned scheduling policies by simulation using four
monthly job traces that ran on NCSA O2K during De-
cember 2002 - March 2003. We evaluate policies using
more complete measures than in most of the previous
papers, including average, 95th-percentile, and maxi-
mum wait time over all jobs and over each range of re-
quested processors and runtime. The remainder of the
paper is organized as follows. Section 2 provides some
background information for this study. Sections 3 - 4
present our results of policy evaluation. Section 5 gives
a summary.

2 Background
This section provides background information for

the scheduling policy evaluation. Table 1 defines
the symbols for the job characteristics that are used
throughout the paper. Section 2.1 describes the O2K

Table 1. Job Characteristics

Symbol Definition
M Requested Memory
P Requested Processors
R Requested Runtime
T Actual Runtime

system and Section 2.2 provides the most important
characteristics of the four monthly O2K workloads that
are used to evaluate the policies. Section 2.3 defines the
priority backfill policies to be evaluated.

2.1 NCSA O2K System
Tables 2-3 show the O2K system capacity and the

bounds on job requests for processors, memory, and
runtime, during December 2002 - March 2003. The
O2K jobs were scheduled by the Maui Scheduler, which
implements a priority backfill policy. Shared jobs can
space-share the processors on the same host as long as
there are enough resources, but each dedicated job runs
exclusively on a single host. For the period of time
studied, three 128-processor hosts on the O2K were
assigned to run dedicated jobs. Those hosts also run
shared jobs that request up to 5 hours of runtime when
no dedicated jobs are available to run. The remaining
nine hosts run only shared jobs.

The workload that consists of only the O2K shared
jobs were used in previous work [2, 1] for evaluating
backfill and preemptive scheduling policies. In this
study, we use the full O2K workload.

2.2 O2K Workload Characteristics
Table 4 provides an overview of the monthly work-

loads on the NCSA O2K system during December 2002
- March 2003. For each month, the table shows the
number of jobs and total processor demand (denoted by
“proc. demand”) for jobs submitted in the month, as
well as for jobs in each given range of requested pro-
cessors. The processor demand of a given set of jobs is
the fraction of the total system that is utilized, on aver-
age, by that class during the month. That is, the pro-
cessor demand is the sum of the number of requested
processors (P) multiplied by the actual runtime (R) for
each job, expressed as a fraction of the total processor-
hours available on all twelve hosts during the month.
The memory demand is at least 20% lower than the
processor demand each month, not shown to conserve
space. Thus, processors are a more scarce resource than
memory on the O2K.

As shown in the table, (1) the monthly total proces-
sor demand is in the range of 73-92%, (2) both January

Table 2. NCSA O2K: System Size

Processors: 1440
Memory: 600 GB
11 hosts: 128 processors each

1 hosts: 32 processors

Table 3. NCSA O2K: Job Limits

Shared: P ≤ 64 & M ≤ 25 GB & R ≤ 400 hrs
Dedicated: P ≤ 128 & M ≤ 64 GB & R ≤ 400 hrs∗

(∗: R ≤ 50 hours prior to 12/19/02)

and February 2003 have a heavy load (i.e., ≥ 88%), (3)
March 2003 has the lowest load, and (3) in each month,
the jobs that request over 64 processors utilize up to
22% of the total system resources, even though these
jobs account for a very small fraction (< 3%) of all jobs.

The three months in 2003 are chosen because the
load due to the jobs requesting over 64 processors in
these months is significantly higher than in most other
months (due to a change in the system configuration).
In December 2002, the largest class of jobs account for
a lower load and this month is included to have a variety
of workloads for study.

Figure 1 plots the distribution of requested runtime in
Feb. 2003. Other months have a similar distribution. As
shown in the figure, about half of the jobs request 5, 50,
200, or 400 hours of runtime, and another significant
fraction of jobs request 10 minutes or 1 hour. As in
previous workloads, the majority of jobs (i.e., 80-85%
for the O2K) requested a power of two processors (not
shown).

2.3 Definition of Priority Backfill Policies
Priority backfill policies use a weighted sum of job

characteristics for prioritizing the jobs that are waiting
to be scheduled. Table 5 defines the weights and job
metrics that are relevant to the policies that will be eval-
uated. Table 6 provides the values of the weights used
in each policy that will be evaluated: FCFS, LxF&W,
LxF&W&P, and LPF (i.e., largest requested processors
first). Previous work shows that LxF&W-backfill has
significantly lower average and 95th-percentile wait-
ing time than FCFS-backfill, while having comparable
maximum wait time, for the shared O2K jobs [1]. Both
LxF&W&P and LPF functions use a non-zero weight
for the number of requested processors, and thus have
the potential to improve the performance of the largest
jobs.

Under the priority backfill policies, a small num-
ber of waiting jobs with the highest priority are given

Table 4. NCSA O2K Monthly Workload (December 2002 - March 2003)

Requested Processors (P)
Month Measure Total 1 2 3-4 5-8 9-16 17-32 33-64 65-128
Dec. 02 #jobs 7370 3380 294 1189 1138 1059 539 242 56

proc. demand 81% 2% 2% 8% 15% 24% 7% 12% 12%
Jan 03 #jobs 6861 3167 270 1326 869 977 333 210 183
(heavy) proc. demand 92% 2% 1% 8% 12% 25% 7% 15% 22%
Feb 03 #jobs 8121 3424 300 1957 1245 995 517 142 146
(heavy) proc. demand 88% 2% 2% 8% 15% 16% 14% 10% 21%
Mar 03 #jobs 7552 2801 300 1484 1331 1174 722 452 94

proc. demand 73% 2% 2% 8% 14% 17% 7% 5% 18%

R ≤ 1 hour
(10-min. bucket)

10 20 30 40 50 60
0

0.2

0.4

fr
ac

tio
n

of
 jo

bs

requested runtime (minutes)

1 hr. < R ≤ 10 hours
(1-hr. bucket)

2 3 4 5 6 7 8 9 10
0

0.2

0.4

fr
ac

tio
n

of
 jo

bs

requested runtime (hours)

10 hr. < R ≤ 50 hours
(5-hr. bucket)

15 20 25 30 35 40 45 50
0

0.2

0.4

fr
ac

tio
n

of
 jo

bs
requested runtime (hours)

R: > 50 hours
(50-hr. bucket)

100 150 200 250 300 350 400
0

0.2

0.4

fr
ac

tio
n

of
 jo

bs

requested runtime (hours)

Figure 1. Distribution of Requested Runtime (Feb. 2003)

Table 5. Job Priority Function Weights

Weight Job Metric to be Multiplied
Ww Jw, current job wait time in hours
Wx Jx, square root of current estimated

expansion factor = Jw + R in hours
R in hours

Wp P , requested processors

Table 6. Policy Priority Functions

Policy
Weight Values

Wx Ww Wp

FCFS 0 1 0
LxF&W 1 0.02 0
LxF&W&P 1 0.02 0.01
LPF 0 0 1
(Note LxF&W was called L

√
XF&W in [1])

a scheduled start time (i.e., a reservation). The num-
ber of jobs that receive a reservation is a parameter of
the policy. Smaller jobs that have lower priority can be
scheduled in priority order on idle resources as long as
they do not delay any reserved start times.

In previous work [1], we evaluated the impact of the
number of reservations on various priority backfill poli-
cies for the O2K shared jobs (i.e., P ≤ 64). We found
that using a few reservations (2-4) improves the maxi-
mum wait without hurting other performance measures

studied, but using more than a few reservations makes
no or minimal further improvement on the maximum
wait and in fact degrades the average wait time of all
jobs.

In Section 3, we again study the impact of the num-
ber of reservations on backfill policies, but for the full
O2K workloads that include jobs that require over 64
processors. We assume dynamic reservations [1], de-
noted by ”dynK”, which means that at each point in
time the reservations are given to the K jobs that cur-
rently have the highest priority.

3 Single-Class Backfill Policies
In this section, we evaluate alternative priority back-

fill policies, including the impact of the number of reser-
vations in each policy, assuming the policy is used to
schedule jobs on all twelve of the O2K hosts. That is,
hosts are not designated to run particular classes of jobs.
One goal is to study whether using more reservations
or giving priority to jobs that request more processors
can improve the response time for large jobs. Another
goal is to improve the priority backfill policies and to
identify the best backfill policy among the policies con-
sidered, for comparisons with class-partitioning policies
in Section 4. We vary the number of reservations in
the range of 1 to 40 for each policy: LxF&W-backfill,
FCFS-backfill, LPF-backfill, and LxF&W&P-backfill.
To show policy performance for jobs that have differ-
ent ranges of requested processors, we show results for

0

0.5

1

1.5

2

2.5

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

LxF&W/dyn1
LxF&W/dyn2
LxF&W/dyn4
LxF&W/dyn10
LxF&W/dyn15

(a) Average Wait
All jobs

0

0.1

0.2

0.3

0.4

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

LxF&W/dyn1
LxF&W/dyn2
LxF&W/dyn4
LxF&W/dyn10
LxF&W/dyn15

(b) Average Wait
Small jobs

0

1

2

3

4

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

LxF&W/dyn1
LxF&W/dyn2
LxF&W/dyn4
LxF&W/dyn10
LxF&W/dyn15

(c) Average Wait
Medium jobs

0

50

100

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

LxF&W/dyn1
LxF&W/dyn2
LxF&W/dyn4
LxF&W/dyn10
LxF&W/dyn15

av
g

w
ai

t t
im

e
(h

rs
)

(d) Average Wait
Large jobs

Figure 2. Performance Impact of Reservations

Table 7. Definition of Job Classes

Small Medium Large
P < 32 32 ≤ P ≤ 64 64 < P ≤128

three classes of jobs: small, medium, and large, as de-
fined in Table 7.

Figures 2(a)-(d) show the average wait time each
month for all jobs, and each of the three job classes,
respectively, under LxF&W-backfill with 1, 2, 4, 10,
and 15 reservations. The results for the maximum wait
(not shown) are qualitatively similar. With one reser-
vation, the average wait increases from under 0.2 hour
for small jobs and under 3 hours for medium jobs to
over 50 hours for large jobs during the two heavy-load
months (i.e., Jan. and Feb. 2003), which illustrates
the potential performance problem of non-preemptive
backfill policies for large jobs. Using 2 - 4 reservations
for LxF&W-backfill significantly improves the average
wait of all jobs as well as large jobs, while still keep-
ing the average wait for small and medium jobs rea-
sonably low, compared to that of using one reservation.
Previous results [1] showed that using a small number
of reservations (2-4) results in the best performance for
LxF&W-backfill for the shared O2K jobs. However, the
figure shows that when large jobs (i.e., P > 64) are in-
cluded in the workload, a larger number of reservations
may improve performance. In particular, during the two
heavy load months, using 10 reservations is best, as
it reduces the average wait of large jobs and also im-
proves the mean wait for medium jobs, while providing
still reasonable performance for the small jobs. The re-
sults for 20 - 40 reservations (not shown) are similar or
worse than that of 10 reservations, except for the De-
cember 2002 workload. For the December workload,
using 25 reservations significantly improves the aver-
age and maximum wait (by 30-50%) for large jobs and
at the same time having the same or better average wait
for other jobs, compared to using 10 reservations. One

problem with determining the number or reservations
is that the best number changes as the workload varies.
For example, as shown in Figure 2, the 10-reservations
policy is best has almost double the average wait time
for the large jobs compared to 2 or 4 reservations, dur-
ing December 2002.

Similar to that for LxF&W-backfill, we have eval-
uated each of the other three priority backfill policies
by varying the number of reservations, not shown to
conserve space. The key result is that the policies that
use a weight for requested processors, namely LPF and
LxF&W&P, and FCFS have similar or worse perfor-
mance than LxF&W-backfill with 10 reservations for
the three months in 2003 and LxF&W-backfill with 25
reservations in December 2002. Another conclusion
from tuning these backfill policies is that the perfor-
mance of using more than a few reservations can be
unpredictable, due to the complex interaction between
the reservations and the workloads.

To compare against the class-partitioned policies in
the next section, we use LxF&W-backfill with 25 reser-
vations for December 2002 and 10 reservations for the
three months in 2003.

4 Class-Partitioned Policies
On a heavily utilized large-scale system, partition-

ing the system based on classes of jobs, where class is
defined by the number of requested processors, may re-
duce the problem of finding enough processors to run
a large job when it has the highest priority among the
waiting jobs. In this section, we evaluate whether and to
what extent partitioning the system based on job classes
improves the performance of the O2K system.

One problem that occurs in many production job
schedulers is that the interaction between different pol-
icy configuration parameters is complex and it is diffi-
cult to optimize the parameter values over the range of
workloads that occur in practice. Thus, simplicity is one
key goal in policy design. To that end, we extend from
the best previous policy, whenever possible adding pa-

Table 8. Processor Demand By Job
Classes on NCSA O2K

P > 64
P ≤ 64

R ≤ 5h R ≤ 20h R ≤ 50h
Dec. 02 12% 6% 8% 19%
Jan. 03 22% 4% 5% 15%
Feb. 03 21% 5% 7% 15%
Mar. 03 18% 4% 6% 13%

rameters that have an impact that is reasonably intuitive
or predictable.

We consider partitioning the hosts into two parti-
tions: a class-one partition used principally for large
jobs (defined to be jobs with P > 64), and a class-two
partition used principally for small and medium jobs.
Note that host boundaries remain within each partition.
Two aspects of the policy remain to be determined.
First, how big should each partition be? Second, to what
extent should each partition run other job classes.

Dedicated partitions, i.e., no sharing of resources
between different job classes, can result in under-
utilization of resources in each partition. Thus, sim-
ilar to the policy used on the NCSA O2K (discussed
in Section 2.1), the class-one partition gives priority
to large jobs but will backfill other jobs that are short.
For the class-two partition, we consider two versions of
the policy: part-L/SM and part-L/A. In part-L/SM, only
small and medium jobs can run on class-two partition;
in Part-L/A, all jobs can run on the class-two partition.
In both versions of the class-partitioned policy, at most
two reservations can be made for resources in the class-
two partition, but large jobs can make reservations in
the class-one partition until up to two times the avail-
able resources on each host are reserved. The former
rule was found to be optimal for small and medium jobs
in previous work [1]. Allowing waiting large jobs to re-
serve all of the resources on each class-one host limits
the fragmentation of the class-one partition when large
jobs are waiting. The LxF&W policy prioritizes all of
the waiting jobs, and then schedules the highest priority
jobs that are allowed to run, backfill, and make reserva-
tions in each partition.

There are two parameters in the above class-
partitioning policies: (1) the number of the 128-
processor hosts, n, that form the class-one partition, and
(2) the runtime limit, r, for the small and medium jobs
that are eligible to run in class-one partition.

Clearly, the best values of the two parameters are not
independent, but there are simple guidelines for choos-
ing their values. First, the total processing time avail-

able on the hosts in the class-one partition should sat-
isfy all or most of the processing time requirement of
the large jobs. Second, the processing time required by
all jobs eligible to run in class-one partition should be
greater than the available time on the partition. Third,
the value of r should be selected to limit the maximum
wait time for the first large job in the queue.

Table 8 shows the processor demand of the largest
jobs and of the small and medium jobs requesting up
to each given runtime (5, 20, 50 hours). Based on the
data in the table, three 128-processor hosts (i.e., about
27% of the total number of processors on O2K) will be
needed in class-one partition to accommodate the pro-
cessor demand of large jobs (21-22%) during the two
heavy-load months. In the case of part-L/A, we also
consider n = 2, since large jobs are also allowed to run
on the class-two partition.

For the value of r, we consider 5 and 50 hours. Based
on the data in Table 8, any value under 5 hours for r

may result in under-utilization of the class-one partition,
even in the two heavy-load months. Since only a very
small fraction of jobs requesting a runtime greater than
5 hours and smaller than 50 hours in the workloads stud-
ied (Figure 1), using a value between 5 and 50 hours is
similar to using r = 5.

In the figures below, the ”single-class∗” policy refers
to the best priority backfill policy with no partitioning,
from the previous section. The name of each class-
partitioning policy consists of two components: (1) ei-
ther ”part-L/SM” or ”part-L/A” partitioning, and (2)
(nH, r), e.g., (3H,50h), specifying the number of 128-
processor hosts assigned to class-one partition and the
requested runtime limit for the small and medium jobs
that can run in class-one partition.

To begin with, we compare three policies: single-
class∗, part-L/SM(3H,5h), and part-L/A(3H,50h). Fig-
ures 3(a)-(d) show the average wait time of all jobs,
small, medium, and large jobs, respectively, under each
of the three policies. Figures 3(e)-(g) show the aver-
age slowdown, maximum wait, and 95th-percentile wait
of all jobs, and Figure 3(h) shows the 95th-percentile
wait of large jobs under each policy. The results in
Figures 3(a), (d), and (e)-(h) show that, compared to
single-class∗, part-L/SM(3H,50h) provides the same or
improved performance for all jobs in each month for
the performance measures studied, and greatly reduces
the average and 95th-percentile wait for the large jobs
in three of the four monthly workloads. Figure 3(b)-
(c) show that part-L/SM(3H,50h) also provides reason-
ably low average wait for small and medium jobs. The
results for the maximum wait for each job class (not
shown) are similar to that of the average wait. Consider-
ing the overall performance and considerably improved

0

0.2

0.4

0.6

0.8

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(a) Avg. Wait
All jobs

0

0.05

0.1

0.15

0.2

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(b) Avg. Wait
Small jobs

0

1

2

3

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(c) Avg. Wait
Medium jobs

0

10

20

30

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(d) Avg. Wait
Large jobs

0

5

10

15

av
g

sl
ow

do
w

n

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(e) Avg. Slowdown
All jobs

0

50

100

m
ax

 w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(f) Max. Wait
All jobs

0

0.5

1

1.5

2

2.5

95
−

pe
rc

en
til

e
w

ai
t (

hr
s)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(g) 95th-percentile Wait
All jobs

0

50

100

95
−

pe
rc

en
til

e
w

ai
t (

hr
s)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/SM(3H,5h)
part−L/SM(3H,50h)

(h) 95th-percentile Wait
Large jobs

Figure 3. Policy Performance Comparison: Overall Measures

performance for the large jobs, we conclude that part-
L/SM(3H,50h) outperforms the single-class policy. The
key to the higher performance of the class-partitioned
policy is the limited fragmentation of the resources in
the class-one partition where the large jobs are run.
On the other hand, part-L/SM(3H,5h) performs signifi-
cantly less well than part-L/SM(3H,50h) for small and
medium jobs, because the total demand of all jobs eligi-
ble to run on the class-one partition is too small for the
small value of r (i.e., 5 hours).

Figure 4 provides more detailed policy performance
comparisons for the January 2003 workload, which
had the largest performance difference between the two
policies. Figure 4(a)-(c) plot the average, 95-percentile,
and maximum wait time for jobs with different ranges
of actual runtime. Figure 4(d)-(g) plot the average and
maximum wait for each range of requested processors
and for each range of requested runtime. The results
in Figure 4 show that part-L/SM(3H,50h) significantly
improves the average wait and maximum wait time for
most ranges of actual runtime, the large jobs, and long
jobs (R > 5 hours), compared to that of single-class∗.

We also evaluated part-L/A partitioning by com-
paring part-L/A(2H,5h) and part-L/A(3H,50h) to part-
L/SM(3H,50h), and found that part-L/A(3H,50h) has
very similar performance to part-L/SM(3H,50h) each
month. On the other hand, part-L/A(2H,5h) has poor
performance during the two heavy-load months, as il-
lustrated in Figure 5(a)-(d), which plot the maximum

wait versus number of requested processors under each
policy during these two months and average and maxi-
mum wait of all jobs each month. Thus, although large
jobs can run on either partition in the part-L/A policy,
for high performance the class-one partition must have
enough resources to satisfy the demand of the large jobs.

5 Conclusions
In this paper, we examined the problem of providing

good performance for large-processor jobs in a heav-
ily utilized system with many small jobs, under priority
backfill policies. We use four monthly workloads from
the NCSA O2K system, which is a large-scale parallel
systems partitioned into twelve hosts during the period
when the workloads ran on the system.

The key result is that partitioning the system based
on classes of job requested processors, such that suf-
ficient resources are designated to give priority to the
largest jobs in the system, can significantly improve the
wait times of the largest jobs without significantly im-
pacting smaller jobs, compared to using many reserva-
tions (≥ 10) in backfill policies.

Although the configuration for the class-partitioned
policies depends on the load of the large jobs, it is sim-
pler and more intuitive to select the partitioned con-
figuration than to tune the number of reservations for
backfill policies. Furthermore, if too many resources
are allocated to the large jobs, the resources are still
utilized by the appropriate range of small and medium
jobs, which can be dynamically adjusted in response to

10
0

10
2

10
4

0

0.5

1

1.5

2

2.5
1m 10m 1h 10h 50h

av
g

wa
it t

im
e

(h
rs

)

actual runtime (minutes)

single−class*
part−L/SM(3H,50h)

(a) Avg. Wait vs. T

10
0

10
2

10
4

0

0.5

1

1.5

2

2.5
1m 10m 1h 10h 50h

95
−p

er
ce

nt
ile

 w
ait

 (h
rs

)

actual runtime (minutes)

single−class*
part−L/SM(3H,50h)

(b) 95th-percentile Wait vs. T

10
0

10
2

10
4

0

50

100

1m 10m 1h 10h 50h

m
ax

 w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

single−class*
part−L/SM(3H,50h)

(c) Max. Wait vs. T

1 2 4 8 16 32 64 128
0

10

20

30

av
g

w
ai

t t
im

e
(h

rs
)

number of requested processors

single−class*
part−L/SM(3H,50h)

(d) Avg. Wait vs. P

1 2 4 8 16 32 64 128
0

50

100

m
ax

 w
ai

t t
im

e
(h

rs
)

number of requested processors

single−class*
part−L/SM(3H,50h)

(e) Max. Wait vs. P

10
0

10
2

10
4

0

1

2

3

4
10m 1h 5h 50h 200h

av
g

w
ai

t t
im

e
(h

rs
)

requested runtime (minutes)

single−class*
part−L/SM(3H,50h)

(f) Avg. Wait vs. R

10
0

10
2

10
4

0

50

100

10m 1h 5h 50h 200h

m
ax

 w
ai

t t
im

e
(h

rs
)

requested runtime (minutes)

single−class*
part−L/SM(3H,50h)

(g) Max. Wait vs. R

Figure 4. Policy Performance Comparison: More Detailed Measures

1 2 4 8 16 32 64 128
0

50

100

150

m
ax

 w
ai

t t
im

e
(h

rs
)

number of requested processors

single−class*
part−L/A(2H,5h)
part−L/A(3H,50h)
part−L/SM(3H,50h)

(a) Max. Wait vs. P
Jan. 2003

1 2 4 8 16 32 64 128
0

50

100

150

m
ax

 w
ai

t t
im

e
(h

rs
)

number of requested processors

single−class*
part−L/A(2H,5h)
part−L/A(3H,50h)
part−L/SM(3H,50h)

(b) Max. Wait vs. P
Feb. 2003

0

0.2

0.4

0.6

0.8

av
g

w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/A(2H,5h)
part−L/A(3H,50h)
part−L/SM(3H,50h)

(c) Avg. Wait
All jobs

0

50

100

150

m
ax

 w
ai

t t
im

e
(h

rs
)

D
ec

. 0
2

Ja
n

03

F
eb

 0
3

M
ar

 0
3

single−class*
part−L/A(2H,5h)
part−L/A(3H,50h)
part−L/SM(3H,50h)

(d) Max. Wait
All jobs

Figure 5. Performance of part-L/A

changes in system load.
For the workloads studied, our results show that as

long as sufficient resources are used serve the largest
jobs, the remaining hosts can run only the smaller jobs
or can also run the largest jobs, with minimal difference
on the performance. However, allowing more resource
sharing among job classes as in part-L/A may be bene-
ficial for other workloads.

On-going and future work includes (1) evaluat-
ing class-partitioned policies for workloads on clus-
ters or other multi-host systems (such as NCSA IBM-
p690); (2) investigating alternative approaches to im-
prove scheduling performance for workloads with mix-
tures of large and small jobs (e.g., [4, 3]).

References

[1] S.-H. Chiang, A. Dusseau-Arpaci, and M. K. Ver-
non. The Impact of More Accurate Requested Run-
times on Production Job Scheduling Performance.

In Proc. 8th Workshop on Job Scheduling Strategies
for Parallel Processing, Scotland, July 2002.

[2] S.-H. Chiang and M. K. Vernon. Production Job
Scheduling for Parallel Shared Memory Systems.
In Proc. Int’l. Parallel and Distributed Processing
Symp. 2001, San Francisco, April 2001.

[3] A. W. Mu’alem and D. G. Feitelson. Utilization,
Predictability, Workloads, and User Runtime Esti-
mates in Scheduling the IBM SP2 with Backfill-
ing. IEEE Trans. Parallel and Distributed Syst.,
12(6):529–543, June 2001.

[4] J. Subhlok, T. Gross, and T. Suzuoka. Impact of
Job Mix on Optimizations for Space Sharing Sched-
ulers. In Proc. 1996 ACM/IEEE Supercomputing
Conf., Pittsburgh, November 1996.

[5] D. Zotkin and P. J. Keleher. Job-Length Estimation
and Performance in Backfilling Schedulers. In 8th
IEEE Int’l Symp. on High Performance Distributed
Computing, Redondo Beach, August 1999.

