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Abstract

Parallel algorithm designers need computational models that take
first order system costs into account, but are also simple enough to
use in practice. This paper introduces the LoPC model, which is
inspired by the LogP model but accounts for contention for message
processing resources in parallel algorithms on a multiprocessor or
network of workstations. LoPC takes the � , � and � parameters
directly from the LogP model and uses them to predict the cost of
contention, � .

This paper defines the LoPC model and derives the general form
of the model for parallel applications that communicate via active
messages. Model modifications for systems that implement coher-
ent shared memory abstractions are also discussed. We carry out the
analysis for two important classes of applications that have irregular
communication. In the case of parallel applications with homoge-
neous all-to-any communication, such as sparse matrix computa-
tions, the analysis yields a simple rule of thumb and insight into
contention costs. In the case of parallel client-server algorithms,
the LoPC analysis provides a simple and accurate calculation of the
optimal allocation of nodes between clients and servers. The LoPC
estimates for these applications are shown to be accurate when com-
pared against event driven simulation and against a sparse matrix
computation on the MIT Alewife multiprocessor.

1 Introduction

Light-weight user-level message passing paradigms, like Active
Messages [33], are an increasingly popular tool for writing parallel
applications. To design effective algorithms, programmers need a
simple cost model that accurately reflects first-order system over-
heads. In this paper we are particularly interested in algorithms
that are loosely synchronized or that have irregular communica-
tion patterns, including hash algorithms, client-server applications,
and applications that use indirect array accesses. Coherent shared-
memory systems also often exhibit irregular communication be-
cause the home-node for each coherence unit is found using a simple
hash function.

The LogP model [10] has been successful at accurately mod-
eling and optimizing tightly synchronized algorithms with regular,
ordered communication patterns on active-message based systems.
The LogP model is simple to use and accounts for network latency
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and message passing overhead. However, it does not make any
prediction about the costs of contention.

There is evidence that contention for message-processing re-
sources is a significant factor in the total application run time for
many fine-grain message-passing algorithms (i.e., those that com-
municate frequently), including those with irregular communication
patterns and those that have regular communication patterns but are
not tightly synchronized. For example, Dusseau et al used LogP to
analyze a variety of sorting algorithms with irregular communica-
tion patterns [11]. They found that some of their models underes-
timated execution time and attributed the difference to contention
costs. Furthermore, Holt et al [18] used LogP as a framework for an
experimental study of contention in memory controllers for shared
memory; for a variety of SPLASH benchmark applications and a
variety of controller speeds and network latencies they find that
contention in the memory controller dominates the costs of handler
service time and network latency.

Regular communication patterns can also demonstrate con-
tention. Brewer and Kuszmal [5] measured the communication
costs in regular, all-to-all communication patterns carefully de-
signed on the CM-5 to interleave message arrivals across proces-
sors so as to avoid contention. They discovered that the pattern
quickly became virtually random, largely due to small variances
in the interconnect. The original LogP paper also notes that the
model underestimates the cost of regular all-to-all communication
on the CM-5 unless extra barriers are inserted to resynchronize the
communication pattern. However, low-latency barriers like those
on the CM-5 are very expensive relative to other hardware com-
ponents [28]. Few, if any, current generation multiprocessors or
NOWs implement this feature.

The goal of this paper is to create a new model for analyzing par-
allel algorithms, LoPC, that provides algorithm running times that
include accurate predictions of contention costs. LoPC is inspired
by LogP and, like LogP, is motivated by Valiant’s observation [30]
that the parallel computing community requires models that accu-
rately account for both important algorithmic operations and realis-
tic costs for hardware primitives. The LoPC approach is to use the
parameters required for a LogP analysis (network latency, message
processing overhead and number of processors) to analyze a queue-
ing model to calculate execution time inflation due to contention.
The challenge is to generate an accurate yet simple and efficient
analysis that yields insight into algorithm behavior and trade-offs.
In particular, the questions addressed in this research are:

1. Can we develop an approximate model that is sufficiently
accurate yet also yields insights about contention for message
processing resources?

2. How significant is the contention in important classes of al-
gorithms?

3. What insights can we obtain about the contention or the al-
gorithms?
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Figure 1: Parallel Architecture with Active Message Communica-
tion

We illustrate the LoPC model for two important classes of paral-
lel algorithms: applications with homogeneous all-to-any commu-
nication, and homogeneous client-server applications. The former
class includes dense and sparse matrix computations, and in that
case the LoPC model is validated against a sparse matrix applica-
tion running on the MIT Alewife multiprocessor. The LoPC models
for both classes of algorithms are also shown to be accurate by com-
paring against results from detailed event driven simulations.

Using the LoPC model we derive a number of interesting in-
sights about the costs of contention in parallel applications that are
not tightly synchronized. For example, for algorithms with homo-
geneous all-to-any communication patterns we derive tight bounds
on the total cost of contention and find that the cost of contention
per message is approximately equal to the cost of processing an
extra message. Thus, we are able to develop a simple rule of thumb
to accurately predict the run time of this broad class of algorithms.
Furthermore, the LoPC queueing model is itself both simple and
computationally efficient, and can be used to compute algorithm
run times in more general cases.

In the case of homogeneous client-server applications, such as
workpile algorithms, the LoPC analysis allows us to find an optimal
allocation of nodes between clients and servers.

Because LoPC is both simple to use and accurately models
contention costs, we believe it is a tool that could be broadly ap-
plicable to studying algorithmic and architectural tradeoffs on both
current and next generation parallel architectures. Given a small
number of parameters that represent the algorithm and architecture
under study, a numerical solution of the LoPC equations generates
the runtime of the application including the cost of contention for
processing resources.

The next section discusses the architectural assumptions in the
LoPC model. Section 3 describes the parameters and analysis of
the LoPC model. Section 4 contains a complete LoPC analysis
for algorithms with homogeneous all-to-any communication and
derives bounds on the total cost of contention. Section 5 uses
LoPC to find the optimal allocation between clients and servers
in homogeneous client-server applications. Section 6 discusses
related work. Section 7 concludes. A detailed description of the
general LoPC model is contained in Appendix A.

2 Architectural Assumptions

The systems modeled by LoPC consist of a set of processing
nodes each with an interface to a high speed interconnect, (see
Figure 1.) Each node may send a message to any other node.
The message contains a pointer to a handler and some amount
of data (typically around eight words for the systems modeled in

Parameter Description� Number of requests made by each processor	
Average local work per request
�� 

Fraction of messages from node �
directed to node �

Table 1: Algorithmic Parameters

this paper). When that message arrives at the destination node,
it interrupts the running job. The destination processor atomically
runs the handler and then returns to its background job. If additional
requests arrive while the atomic handler is running, they are queued
in a hardware FIFO. When the first handler finishes, the processor
is again interrupted for each additional message in the queue. The
Alewife machine [2], used to validate the analyses in this paper,
provides hardware network input queues that can hold up to 512
bytes of data.

This type of communication model using messages, called Ac-
tive Messages [33], is general enough to implement more complex
communication and synchronization protocols, which we believe
makes it a good basis for algorithm analysis in modern parallel sys-
tems. A number of existing machines provide efficient support for
communication with active messages [2, 9, 14, 20, 24, 28, 32].

We make two further assumptions in the LoPC model that appear
to result in very little loss in accuracy yet great gain in simplicity.
First, we assume that the hardware message buffers at the nodes
are infinitely large. Second, we assume that the interconnect is
contention free. We model contention only for message processing
resources in the processor nodes. The model can be extended to in-
clude analysis of contention in the network, as noted in Section 3.2.
However, a number of researchers have found that for many real ap-
plications contention in current interconnection networks accounts
for only a minimal portion of total runtime [10, 18, 26]. Further-
more, for the algorithms investigated in this paper we found that
network contention is insignificant.

To simplify the explanation of the LoPC model, the analyses in
this paper will assume: 1) a single CPU per node, 2) a single com-
putation thread per CPU, 3) message handlers run on the processor
(interrupting local computation), 4) message send (i.e., put) opera-
tions block for a reply and 5) messages are relatively short (around
eight words for the algorithms discussed in this paper). The model
can be generalized in fairly straightforward ways to include multi-
ple CPUs per node, message co-processors, and asynchronous send
operations. Alexandrov et al have extended LogP to model much
longer messages [3] and we believe that such extensions can also
be incorporated into LoPC. Validating such models is the subject of
future research.

The next section gives an example of how the LoPC model is
parameterized and explains how the analysis is carried out.

3 The LoPC Model

LoPC extends the LogP parameters and analysis to calculate the
average cost of contention, � . In this section we describe the LoPC
model parameters and then the analysis that yields the algorithm
execution time including contention costs.

3.1 Parameterization for LoPC

The parameters of the LoPC model are very similar to the pa-
rameters for the LogP model, with some simple extensions that



enable calculation of message processing contention costs. The
parameters� involve both an algorithmic characterization and an ar-
chitectural characterization. The model predicts total application
run times from these two characterizations. Both of these parame-
terizations are discussed below.

3.1.1 Algorithmic Parameters

Algorithmic characterization for either LogP or LoPC analysis starts
with specifying the total number of arithmetic and communication
operations performed by the algorithm as a function of the problem
size and the number of processors. As with the LogP model, the
method for deriving parameters varies from algorithm to algorithm.
To illustrate the technique we will calculate the number of arithmetic
and communication operations for a sparse matrix-vector multiply
routine. The algorithmic parameters for the model are shown in
Table 1.

Suppose we have an ����� matrix, � , that is cyclically dis-
tributed across � processors such that row � of the matrix is as-
signed to processor � mod � , and a vector � that is also cyclically
distributed, as shown in Figure 2. We wish to multiply ����� to
produce the vector � , again cyclically distributed. Each processor
will be responsible for the ����� dot products corresponding to the
rows of � that are assigned to it.

To compute the dot product of row � � with � , the processor
requires the value of the element � 
 corresponding to each non-
zero value � � 
 . We will assume that these values are requested
with get operations. A message is sent to the remote node with
the address of the required value. The handler on the remote node
loads the value from memory and sends it in a message back to
the originator. The node that originates the request is blocked until
the reply message returns. We expect that, on average, 1 ��� of the
required values from � will be assigned locally. For these values no
remote request operation is required.

Given the number of non-zero values, � , in the matrix � the
average amount of work done by each node consists of � �!�"�#�
multiply-add operations and � �$�%���&�(')�+* 1 ,-�#� get operations1.
The average local work done between remote requests,

	
, is equal

to . /0�1�2�3')�4* 1 , multiply-add operations. These are exactly the
quantities required to parameterize the LogP model.

The LoPC model requires one further set of parameters, namely
the fraction of messages from node � that are directed to node � , 
 � 
 .
For this algorithm,


�� 
 � 1 �3')�5* 1 , for all � and � . Using these
values, the LoPC model will calculate the average run time of the
algorithm, including the costs of contention for message processing
resources.

3.1.2 Architectural Parameters

The architectural parameters used by the LoPC model are very
similar to those used by the LogP model, as shown in Table 2. In
both models � represents the number of processors in the system.

The average service time in the network, 687 , corresponds ex-
actly to the network latency parameter, � in the LogP model. This
is the time that the message spends in the interconnect between the
completion of message injection by the processor, and the arrival
of the message at the remote node. It does not include any process-

1These calculations assume that the non-zero elements are approximately evenly
distributed among the processors, as expected for many large sparse matrix computa-
tions. The parameters would be modified in the obvious way for uneven distribution
of the work.

b = 19

Figure 2: Sparse Matrix-vector Multiply, matrix � cyclically dis-
tributed among four nodes; circles indicate non-zero elements of A;
colors indicate the node assignments.

LoPC LogP Description� � Number of processors687 � Average time (latency) in
the interconnect6:9 � Average cost of message processing

- ; Peak processor to network bandwidth

Table 2: Architectural Parameters of the LoPC Model. An op-
tional parameter, � 29 , can be used to specify variability in message
processing time.

ing costs for the message. The processor overheads for handling
messages are covered in other parameters.

LoPC’s 6 9 parameter corresponds approximately to the � pa-
rameter in the LogP model in that it measures message processing
overhead. The LogP model assumes a polling model with relatively
expensive sends; thus the � parameter in LogP represents both the
cost of a send and the cost of processing an incoming message. In
contrast, the LoPC model assumes an interrupt model with rela-
tively low costs for sending a message. 6 9 represents the cost of
taking a message interrupt and handling the corresponding request.
On most machines, the majority of this cost will be devoted to the
interrupt. The LoPC analyses in this paper assume that message
send operations have zero cost. The model can easily be extended
to include non-negligible send cost.

We have not included LogP’s ; parameter in LoPC. The ; , or
“gap” parameter represents the maximum rate at which a processor
can inject messages into the network. Most current generation ma-
chines are balanced, in the sense that they can accept new messages
into the network as fast as the processor can compose them. If, in
the future, network interface bandwidth again becomes a bottleneck
(as on the CM-5), the ; parameter could be added back to the LoPC
model, but we did not find it useful for the analyses and validations
in this paper.

Finally, LoPC also permits the specification of a parameter, � 29 ,
that represents the squared coefficient of variation of service times
for message handlers. By default, the LoPC model assumes expo-
nential distributions, (i.e., � 29 � 1). We include the � 29 parameter
because many message handlers consist of short instruction streams
with service time distributions that are closer to constant than ex-
ponential. We can represent this in the LoPC model by setting� 29 � 0.

In summary, the parameterization of the LoPC and LogP models
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Figure 3: Timeline of a Compute/request Cycle, Including Contention.

is very similar. LoPC has a somewhat different interpretation of the� architectural parameter, the additional visit count parameters,

�� 


,
and the optional coefficient of variation in request processing time,� 29 .
3.2 The LoPC Analysis

The LoPC analysis assumes a message passing machine with �
nodes that can communicate through a high-speed interconnect.
Each node, � , runs a thread < � . Contention is suffered by the com-
putation thread, < � , because of interference from request handlers
which have higher priority. The request and reply handlers, =?> and=A@ , suffer contention delays due to queueing while other handlers
complete.

The LoPC model calculates the runtime of an application, in-
cluding the cost of contention for message processing resources,
from the parameters specified in Section 3.1. These include the
algorithm specific parameters, � , 	 , and


 � 

, and the architecture

specific parameters, 687 , 6 9 and � . Given the average computation
time between requests,

	
, and the total number of requests, � , the

LoPC analysis derives B , the mean round trip time of a complete
compute/request cycle, to get the total application runtime, � B .

The contention delays are computed using Approximate Mean
Value Analysis. LoPC generates a system of equations that can
be solved to produce the total runtime of the algorithm including
processor contention. This section discusses the general form of
those equations, which in the general case are solved numerically.
However, the approximations permit dramatic simplification of the
system of equations for important special cases. For example the
equations reduce to “rules of thumb” for algorithms with homoge-
neous all-to-any communication and for homogeneous client-server
systems, as shown in sections 4 and 5.

The LoPC analysisbegins with breakingdown the average round
trip time, B � , of a compute/request cycle at each node � . The time-
line for a compute/request cycle for a given thread, < � , is shown in
Figure 3. The cycle starts with the cost, BDC � , of running < � , includ-
ing the average local work

	
plus the cost of handling interrupting

requests that have higher priority. Section 3.1.1 discusses how to
derive the parameter

	
for the algorithm being modeled. After the

compute time
	

is complete, the thread makes a blocking request
to some other node and begins waiting for a reply. Each request
travels through the interconnect, which is assumed to be contention
free, at an average delay of 687 and arrives with some probability,
 � 


, at one of the �E* 1 other nodes, � .
At the point when a request arrives at node � , it waits for the

completion of any handlers that might already be queued, and then
interrupts the thread, < 
 , running on the destination node to run
a high-priority request handler, = > , for an average delay of 6F9
including the cost of taking the interrupt. The mean response time at

the remote node, including average time for handler processing plus
mean queueing delay, is denoted by BG> 
 . When the handler finishes
it sends a message through the interconnect, again with delay 6 7 ,
to the requesting node. Finally, when the message arrives back at
its home it queues behind waiting requests and then interrupts the
processor to run a high-priority reply handler, =�@ , for an average
delay for queueing plus service of BD@ � . The reply handler unblocks
the local thread, which returns to work.

Thus, the total average round trip time for a compute/request
cycle, B � , is given by:

B � �HB C �JI 6:7 I0K 
 
�� 
 BG> 
2I 687 I BD@ � ' 1 ,
Figure 4 shows a pictorial representation of the queueing delays

in the compute/request cycle. Assuming a load-balanced applica-
tion, once we have calculated B � , the average round trip time for
a compute/request cycle of a thread, we can calculate the expected
total application runtime by multiplying B � by � , the total number
of requests made by the thread2.

To predict the interference and queueing delays at processor re-
sources (i.e., to compute BDC � , B > 
 , and B @ � ), we follow the general
techniques of Approximate Mean Value Analysis (AMVA). The
notation is given in Table 3. Appendix A derives the equations
in their general form, including the ability to model “multi-hop”
requests. Due to careful selection of approximations in the analy-
sis, the equations simplify for important classes of algorithms that
have homogeneous threads. For example, sections 4 and 5 derive
the simpler equations that result in closed form solutions for two
such classes of algorithms. Section 4 derives tight bounds on the
contention costs of algorithms with homogeneous all-to-any com-
munication, and Section 5 derives a simple and accurate closed
form expression for the optimal number of servers in a client-server
algorithm. Below we discuss one of the MVA approximations that
make the closed form expressions possible.

Mean Value Analysis relies on Little’s result, which states that
for any queueing system the average number of customers in the
system is equal to the product of the throughput and the average res-
idence time in the system. In the LoPC model equations, we most
often use Little’s result in the form �L�$MNB , where � is the num-
ber of threads in a particular system or subsystem, M is throughput
and B is the average round trip time for a particular thread. Little’s
result is very general, and makes no assumptions about scheduling
discipline, maximum queue length, specific service time distribu-
tions, or the behavior of external system components. We use
Little’s result to calculate the utilization of each node in the system,

2Load-imbalance and possible associated synchronization costs can be accounted
for in the calculation of total application runtime using ad hoc techniques that have
been proposed in the performance modeling literature. Discussion and application of
such techniques is beyond the scope of this paper.
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B Average round trip time for a compute/request cycleM System throughputBO> Average response time of high-priority request handlerBG@ Average response time of high-priority reply handlerBGC Average residence time of computation threadP > Average number of requests queued at a nodeP @ Average number of replies queued at a nodeQ > Processor utilization by requestsQ @ Processor utilization by replies

Table 3: Notation. Terms related to request handlers have subscriptR ; terms related to reply handlers have subscript � .

to find the average number of messages waiting for service at each
node and to compute the total system throughput.

The cornerstone of Mean Value Analysis, the Arrival Theo-
rem [19, 29], states that for a broad class of queueing networks the
average queue length observed by an arriving customer is equal to
the average steady state queue length in a network with the arriving
customer removed. In a queueing network with multiple classes of
customers, like LoPC, where each thread is represented by a differ-
ent customer class, the recurrence is complex, requiring a recursive
solution that is exponential in the number of threads.

To remove this recursion on the number of customers in the
system, we use an approximation to the arrival theorem, due to
Bard [4], which assumes that the average queue length at request
arrival time is approximately equal to the average queue length.
This approximation will overestimate the average observed queue
lengths and response times, and underestimate throughput. How-
ever, the error diminishes asymptotically as the number of threads,� , increases. The key advantage of Bard’s approximation is that
its simplicity allows us to derive several simple and useful rules of
thumb for contention costs. If more precise estimates of contention
are required, the exact MVA equations, or the Bard-Schweitzer
approximation, can be used instead, at the cost of reduced insight.

Due to Bard’s approximation, the general form of the LoPC
model, derived in Appendix A, is much less complex than the ex-
ponential system that would be given by the “exact” form of the
Arrival Theorem. The resulting system of equations can be solved
numerically, or for communication patterns that exhibit homogene-
ity the system can be further simplified to produce “rules of thumb”
to guide system or algorithm design, as shown in the next two
sections.

Note that neither LoPC nor LogP models contention for network
resources. Again at the cost of additional complexity in the model,
one could incorporate contention at network links or switches into
LoPC. For the communication patterns studied in this paper, net-
work contention costs are minimal compared to contention for mes-
sage processing resources.

4 Algorithms with Homogeneous All-to-Any Com-
munication

The general LoPC model, discussed in Section 3 and derived in Ap-
pendix A, produces a system of equations that can be solved numer-
ically. In this section we consider an important special case, namely
parallel algorithms with homogeneous all-to-any communication.
In these algorithms each thread performs the same average amount
of work per compute/request cycle and each request is equally likely
to visit any of the other processors. For such algorithms, we can
make use of the homogeneity and the model approximations to
derive closed form expressions that tightly bound the cost of con-
tention. We derive the equations for this special case in detail as an
example of how to perform a LoPC analysis. In Section 5 we show
how to use LoPC to derive the optimal allocation of nodes to clients
and servers for a work-pile algorithm.

Examples of algorithms that exhibit homogeneous all-to-any
communication are the load-balanced sparse matrix-vector multi-
plication discussed in Section 3.1, algorithms where the commu-
nication pattern is dependent on a complex graph structure, and
algorithms like radix sort, where the communication pattern is de-
pendent on the results of performing a hash on each input data
element.

As discussed in Section 3.2, a LoPC analysis derives the total
time, B � , for a compute/request cycle at node � in terms of its
subcomponents: BDC � , the average time the thread computes; 6 7 ,
the network latency; BO> 
 , the average request handler response time
at each node � ; and B @ � , the reply handler mean response time. (See
equation 1.) In this section we will show how to derive each of these
terms for the class of algorithms where we can drop the subscripts� and � because all nodes are statistically homogeneous. Although
the equations are simplified due to the homogeneity among threads,
the analysis uses the same techniques as the general model derived
in Appendix A.

The next section goes through the analysis in detail. Sections 4.2
and 4.3 explain how to extend the model for shared memory commu-
nication and non-exponential distributions of message processing
time, respectively. Section 4.4 compares the results of LoPC to an
event driven simulation of a synthetic micro-benchmark. Finally,
Section 4.5 completes the LoPC analysis of the sparse matrix-vector
multiply discussed in Section 3.1 and compares results against the
measured costs of running this algorithm on the MIT Alewife mul-
tiprocessor.

4.1 The LoPC Equations

We begin by calculating the total system throughput, M , in terms of
the total time for a compute/request cycle, B . There is one thread
per processor in the system, each with throughput 1 �#B , so the total
system throughput is given by:

MS� �B&T ' 2 ,
Since each node receives an equal fraction of the request mes-

sages, the rate at which request messages arrive at each node is



given by M���� . Using Little’s result, we can calculate the average
message input queue lengths,

P > for request messages and
P @ for

reply messages, as follows:

P >G� M � BG>VU P @W� M � BD@ T ' 3 ,
Likewise, the utilizations,

Q > and
Q @ of a node by request and

reply handlers, respectively, can be calculated using Little’s result:

Q >D� Q @X� M � 6 9 T ' 4 ,
We can calculate the average response time for an individual

request at a given node � by noting that the response time is given
by the cost of servicing this request plus all the requests that were
in the queue when this request arrived. By Bard’s approximation
to the Arrival Theorem, we approximate the queue length at arrival
time by the steady state queue length. For request handlers we take
into account the contention caused by other request handlers and by
reply handlers, as follows:

B > �H6:9#' 1 I P > I P @ , T ' 5 ,
Since only one thread is assigned to each node and all send op-

erations are blocking operations, only one reply message can queue
at any given node; thus, we only need to account for contention
caused by requests:

B @ �16F9Y' 1 I P > , T ' 6 ,
When the reply handler finishes there may be additional requests

queued. Since these have higher priority than the computation
thread they will run first. In addition, once the computation thread
does resume, additional request messages may arrive, interrupting
the computation thread. We compute the average total time for the
thread computation including handler interrupts, BGC , by using the
BKT preempt-resume priority approximation [6, 7, 13]:

B C � 	ZI 6F9 P >
1 * Q > T ' 7 ,

We use the BKT approximation because it is more accurate than the
simpler shadow server approximation, and it yields a simpler result
than the Chandy-Lakshmi priority approximation [6, 13].

The set of equations (1) through (7) completely characterize the
execution time of a compute/request cycle, including contention
for processor resources, for algorithms with homogeneous all-to-
any communication. The algorithm running time is computed by
multiplying B by the LogP algorithmic parameter � , the average
number of requests made by each thread, defined in Section 3.1.1.
Section 4.4 discusses the solution of this non-linear system. The
next two sections explain how to extend the LoPC analysis to deal
with shared memory communication and non-exponential service
time distributions, respectively.

4.2 Shared Memory Communication

A shared memory system can be thought of as a message passing
system with special hardware, sometimes called a protocol pro-
cessor, to handle requests and replies. In such a system request
handlers will not interfere with computation threads. In essence
shared memory systems introduce an extra degree of parallelism
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Figure 5: Fraction of Execution Time Devoted to Contention as
Handler Variance Changes ( �H� 32, 6:7:� 6,

	 � 1000)

into each node so that request handler processing can proceed si-
multaneously with computation. In this case we simply model B C
as
	

.

One other change is required if the shared memory algorithm
includes non-blocking (or asynchronous) communication. Approx-
imate MVA techniques for modeling such asynchronous commu-
nication [17] are well-known and have been employed in validated
AMVA models of shared memory architectures [8, 21, 31]. Other-
wise, the shared-memory model for the specified class of algorithms
is the same as the message-passing model. In particular, handlers
still contend with each other for protocol processor resources.

4.3 Non-exponential Message Processing Times

The analysis presented above holds for any distribution of the lo-
cal computation time between requests, but assumes exponential
message handler processing times. In our experience, message
handlers often consist of relatively short instruction streams with
similar cache behavior across invocations and few, if any, branches.
Thus, for many applications the service time distributions for han-
dlers will be much closer to a constant distribution. This section
discusses how to extend the model with an approximation, due to
Reiser and Lavenberg [27], to account for arbitrary handler service
time distributions, with squared coefficient of variation given by � 29 .
For most systems it will be appropriate to assume either � 29 � 0 or� 29 � 1.

When a message arrives at a given node, there is a probability
that it will find a handler currently in service at that node. This
probability is approximated by the utilization,

Q > or
Q > IHQ @ , for

a reply or request message arrival, respectively. The residual life of

the handler in service is given by 1 gih 2j
2 6:9 , which assumes a random

arrival instant. The arriving message is delayed by this residual life
of the message at the head of the queue, and by the full service time
of the rest of the handlers in the queue. The total delay caused by
the handlers queued when a reply message arrives at a node is thus:



6F9Y' P > * Q > I 1
I � 29
2
Q > ,k�16F9V' P > I � 29 * 1

2
Q > , T

We then modify the response time equations as follows:

B > �H6:9Y' 1 I P > I P @ I � 29 * 1
2
' Q > IEQ @ ,l,mU ' 5 no,

B @ �16F9V' 1 I P > I � 29 * 1
2
Q > , T ' 6 no,

Note that the equation for B C does not change. Since the thread
restarts at the point when the high-priority reply handler finishes, the
thread observes the complete service times of any request handlers
left in the FCFS queue when the reply handler finishes.

Figure 5 shows the LoPC estimates of the fraction of algorithm
execution time devoted to contention versus the coefficient of vari-
ation in handler processing time, � 29 , for a variety of values of
average handler occupancy, 6 9 . In the figure,

	
is equal to 1000

cycles. For handler processing times that are a significant fraction
of
	

, the fraction of execution time devoted to contention is sig-
nificant, and there is a nontrivial difference between the estimated
execution time for constant message handling times, � 29 � 0, as
compared to exponential handling times, � 29 � 1.

4.4 LoPC Results: Contention Cost Insight

By solving equations (3), (4), (5’) and (6’) for
P > and

P @ and then
plugging the results back into equations (5’), (6’) and (7) we can
derive equations for BG> , BD@ and B C entirely in terms of B , the total
time for a compute/request cycle, and the model inputs 6F9 , 687 and	

. If we then assume � 29 � 0 and use these derived forms of BO> ,BG@ and B C in the definition of B , equation (1), we find that:

B � 	
1 *46 9 ��B I 2 687 I 2 6F9 I

5 6 29
2 ')B0*p6 9 , I

2 6 39B 2 *4BW6:92*q6 29 I
3 6 49')Br*46 9 ,s')B 2 *qBX6 9 *q6 29 , T (8)

Completing the LoPC analysis thus requires solving a quartic
equation. The straightforward way to proceed is to use an equation
solver to find a numerical solution, as was done to generate the
results in Figure 5. Here we take a different approach that leads to
tight bounds on the total response time. From these bounds we will
derive a simple rule of thumb for algorithm running time.

The fixed points of equation (8) are the solutions of R. We note
the following about the right hand side of equation (8), t�u BGv :
w t�u BGv is continuous and strictly decreasing in the feasible

range of R, B5x 	ZI 2 6 7 I 2 6F9w lim y:z|{0t�u BGvJ� 	ZI 2 687 I 2 6 9
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Figure 6: Runtime of a Compute/request Cycle for Algorithms with
Homogeneous All-to-any Communication, ��� 32, 6 9 � 200
cycles, 6878� 6, � 29 � 0.

Therefore equation (8) has exactly one fixed point that is greater
than
	�I

2 687 I 2 6 9 . We find further that t�u 	�I 2 6:7 I 3 T 46 6 9 vi�	�I
2 6:7 I 3 T 46 6 9 , so

	ZI
2 6:7 I 2 6:9(�0B(�W� 	ZI 2 687 I 3 T 46 6F9 ' 9 ,

where B � is the desired fixed point of equation (8). This technique
is applicable for arbitrary � 29 . Only the constants will change.

The lower bound for B � represents the contention free execution
time, or LogP cost estimate, for algorithms with all-to-any commu-
nication. The upper bound represents the maximum value for the
numerical solution of the LoPC model. An interesting feature of
these bounds is that the upper bound on contention is equal to 1 T 46
times the handler processing time.

To check that the LoPC predictions are reasonable, we have
built a simple event driven simulator with which to compare our
results. The simulator models the state of each of the � simulated
machine nodes, including the message queues. Local work and high
priority handlers are modeled in the simulator as having constant
cost. The network latency between any two nodes is taken to be
the Manhattan distance between the two nodes given their positions
on a two dimensional mesh. The destination of request messages
are selected with a random number generator according to the visit
counts


 � 

.

Figure 6 shows the bounds on the running time of a com-
pute/request cycle ( B ) along with the running time estimates from
numerical solution of the LoPC model, and the running times mea-
sured in our simulator. The LoPC cost estimates agree closely with
the simulation results. Also, as might be expected, the average run-
ning time is closer to the upper bound than to the contention-free
(LogP) lower bound.

We can get some intuitive idea of why the actual cycle time
is closer to the upper bound or why, to a first approximation, the
total cost of contention is equal to the cost of an extra handler per
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Figure 8: Breakdown of Runtime Costs for Sparse Matrix-vector
Multiply Running on MIT Alewife Machines of a Variety of Sizes.
For each machine size the left hand bar shows the measured runtime
on Alewife, the right hand bar shows the LoPC prediction.

compute/request cycle, by considering the cases where
	

is very
large or very small. Recall that requests arrive at rate � �1� 1y . If

	
is very large,

	�� B and, on average, one interrupting request will
arrive each time the local thread runs. In this case

	
is expanded

to include one extra handler time. If, on the other hand,
	

is
very small (say 0), and 6:7i��6 9 then the average queue length for
handlers throughout the system is nearly 1 and the utilization by
handlers is quite high (nearly 1). As a result an arriving handler
usually has to queue for about the length of a residual life of a
handler ( 6:9�� 2). Since each cycle requires both a request and a
reply handler the cost of queueing adds another factor of 6 9 to the
total response time.

Figure 7 shows the contention costs for one compute/request
cycle in algorithms with homogeneous all-to-any communication
on a 32 node machine, as measured on the simulator and estimated
by LoPC. The figure gives the average total contention in one com-
pute/request cycle, as well as the average contention for the request
message, reply message, and local processing. In this and the pre-
vious figure LoPC gives systematically pessimistic estimates. This
is due to the Bard and BKT approximations that overestimate the
queue length at the time of message arrival and the interference
of high priority requests on the node, respectively. In the worst
case observed in these validation experiments, when

	 � 0, LoPC
overestimates the total cost of contention by 17%. Most of this
error is in the contention faced by reply handlers that LoPC over-
estimates by 76%. However, LoPC overestimates total runtime by
only 7% when

	 � 0, with the error asymptotically decreasing
to 0 as the work between requests (

	
) increases. In contrast, the

contention free LogP model underestimates total runtime by 37%
when
	 � 0. Furthermore, the total error of the contention free

model (about equal to the cost of running a handler) remains con-
stant even as the work between requests increases, so that even
when
	 � 1000 the error in total runtime of the contention free

model is still 13%.

4.5 Results: Sparse Matrix-Vector Multiply

An example algorithm that exhibits homogeneous all-to-any com-
munication is the sparse matrix-vector multiply discussed in Sec-
tion 3.1. In this section we compare the measured running time
of an implementation of a sparse matrix-vector multiply running
on the MIT Alewife machine against the estimates of the LoPC
model. The input matrix for this experiment was 13000 � 13000
with 654800 non-zero entries.

The measured cost of each multiply-add operation on Alewife
was 59 cycles. The latency through the network on Alewife is
relatively small, about 6 cycles on a 32 node machine. We measured
the overhead, 6 9 , for handling a message including the cost of
the interrupt, at about 145 cycles. Message handling times are
approximately deterministic (i.e., � 29 � 0).

Figure 8 shows the breakdown of runtime per non-zero element
in the sparse matrix. We ran the algorithm on Alewife configura-
tions with a varying number of processors from 2 to 32. Each left
hand bar in the graph shows the time as measured on Alewife, while
each right hand bar shows the time predicted by LoPC. As in Sec-
tion 4.4 we find that LoPC’s predictions are slightly pessimistic with
a percentage error that diminishes as � increases. LoPC overesti-
mates total runtime by about 14% on a machine with just two nodes
and about 9% on a machine with 32 nodes. These experimental
results confirm that the insight regarding the impact of contention
is valid.

5 Client-Server Communication

In this section we use the LoPC model to derive the optimal
number of servers for parallel client-server algorithms, such as
work-pile algorithms, on a system with � processors. Both this
model and the model in the previous section are special cases of
the general LoPC model derived in Appendix A. As in the previous



Ps

cP

+

So

Sl Sl

W So

Figure 9: Queueing Delays for Client-Server Algorithms

section we take advantage of application specific features, including
thread homogeneity, to simplify the equations.

The objective of work-pile algorithms is to achieve load bal-
ance for algorithms in which there are a large number of relatively
independent chunks of work to be processed and where the amount
of work required to process each chunk is highly variable. The
machine is partitioned into �i� client nodes that actually perform
the work, and �i�����5*r�8� server nodes that distribute work to
the clients. Each client node will process a chunk of work and
when finished with that chunk, will request another chunk from a
randomly chosen server. Because each client node issues requests
to the servers at the same average rate, and the compute threads
on the servers simply respond to the client requests, the model of
Section 3.2 reduces to that shown in Figure 9.

The system has � � threads running (one per client). At any
given point in time, some of these threads will be working and
some of them will be in the process of making a request for more
work from one of the servers. A key system design issue is how
many nodes to allocate as servers. If too few nodes are allocated
as servers then the servers will become a bottleneck. On the other
hand, if too many nodes are allocated as servers, there will be too
few clients to actually do the work. We would like to determine the
proper distribution of nodes between clients and servers such that
throughput (chunks processed per unit time) is maximized.

We begin the analysis with the following argument that the
maximum system throughput will occur for an allocation such that
the average number of requests being handled by each server is one.
Suppose instead that on average only ����* 1 threads are requesting
service. Then, on average, one of the servers will be idle, and we
could get higher throughput if that node were acting as a client.
Suppose, on the other hand, that on average �i� I 1 customers are
at the servers. Then on average at least one customer must be
waiting for service at a server that is already in use. If we reduce
the total number of customers to �i�2* 1 and increase the number
of servers to � � we will achieve higher throughput. At the optimal
number of servers, then, the average number of customers at the
servers is � � and the average queue length at each individual server
is ���%�����O� 1.

We can use this information to find a closed form solution for the
optimal number of servers given the algorithmic parameter

	
for

the average amount of work done by the client between requests,
and a machine with � processors, network latency 687 , handler
occupancy 6:9 , and handler service time variation � 29 . By Little’s
result we can calculate the queue length,

P � , at each individual
server in terms of the total system throughput, M , and the average
response time at the servers, BD� :

P � � M� � B � ; P 9-�%�� � 1  ¡M 9l�%� � � 9-����B 9-���� T ' 10 ,
Again by Little’s result we can determine the total system

throughput in terms of the total number of threads and the aver-
age round trip time, B , to process a chunk of work (including time
at both the client and server):

MS� �i�B � �E*4���B ' 11 ,
We can now combine equations (10) and (11) to determine the

optimal number of servers in terms of average residence times:

� 9-�%�� � �(B 9-����B 9-�%� I B 9l�%�� T ' 12 ,
By Little’s result and equation (10) we can determine the uti-

lization at the servers:

Q �2� M� � 6 9 ; Q 9-�%�� � 6F9B 9-���� T ' 13 ,
By combining the terms for utilization and queue length with

Bard’s approximation to the Arrival Theorem, we determine the
average response time for a request at any of the servers:

BD�O�H6 9 ' 1 I P � I � 29 * 1
2
Q ��,mU ' 14 ,

or

B 9-���� �16 9 ' 2 I ')� 29 * 1 ,-6:9
2 B 9-���� , T ' 15 ,

This equation is simplified by solving for B 9l�%�� :

B 9l�%�� �H6 9 ' 1 IL¢ 2 ')� 29 I 1 ,
2

, T ' 16 ,
Substituting equation (16) for B 9-�%�� into equation (10) gives a closed
form expression for the optimal system throughput.

Now that we have determined the average response time of a
request at the servers, we can calculate the total average round trip
time of a complete compute/request cycle. This includes the cost of
doing a chunk of work at the client, a trip through the network from
client to server, the cost of making a request at the server, a return
trip through the network and finally the cost of the reply handler at
the client:

B0� 	ZI 687 I BD� I 687 I 6 9 T ' 17 ,
Finally, by substituting equations (16) and (17) into equation

(12), we find the optimal number of servers in terms of the model
input parameters:
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2 ,-6 9	ZI

2 687 I ' 3 I ¢ 2 ')� 29 I 1 ,l,-6 9 T ' 18 ,
Figure 10 shows the throughput estimates of this LoPC model as

compared with an event driven simulation of a work-pile algorithm
running on a 32 processor machine, for each number of servers,� � � 1 to 31, and clients, � � � 32 *$� � . The black squares
on the LoPC curves show the estimated optimal number of servers
from equation (18). The LoPC throughput estimates are conserva-
tive, with worst case error between observed and predicted optimal
throughput equal to 3%.

By examining the throughputs of both the clients and the servers
ignoring contention, as in a LogP analysis, we can find optimistic
bounds on the throughput of the client-server algorithm. First,
consider the upper bound on throughput due to the servers. Since
each server can have throughput at most 1 ��6:9 , M �W« � � �#6F9 .

Next consider the upper bound on throughput due to the clients.
The minimum time for a complete compute/request cycle is given
by
	¬I 6:7 I 6 9 I 6:7 I 6 9 , assuming that the thread suffers no

contention at the server. For a system with � � clients this means
that the throughput, MA� « �V­® g 2 ¯#°og 2 ¯ j . These bounds are shown
with dotted lines in Figure 10. The contention-free bounds are
asymptotically correct, but, unfortunately, the error is quite high in
the range where the client-server algorithm has optimal parallelism.
The contention-free analysis also underestimates the number of
nodes that should be allocated to the servers for optimal throughput.

6 Related Work

As noted in Section 1, several studies have used LogP as a frame-
work for studying applications with asynchronous communication
patterns. Lewandowski [22] successfully used LogP to analyze a
parallel branch and bound algorithm with a relatively small amount

of communication relative to processing. Dusseau et al [11] com-
pared LogP analyses of a variety of parallel sorting algorithms with
implementations of those algorithms running on a CM-5 with Ac-
tive Messages. For those algorithms with irregular communication
patterns, radix sort and sample sort, they found that their LogP mod-
els underestimate communication costs and attribute the difference
to contention.

Holt et al [18] have performed an empirical study of the sensi-
tivity of several of the SPLASH benchmarks, running on coherent
shared memory machines, to the � , � and � parameters of the LogP
model. They found that application performance is highly depen-
dent on the cost of contention in the message coprocessor. As in
our study, they found that their applications were not sensitive to
the ; , (gap), parameter of the LogP model.

A recent study by Martin et al [25] finds similar empirical results
for a variety of fine grain message passing benchmarks running on
a network of workstations. They also find that as message overhead
increases application runtime increases by a factor greater than
predicted by a simple contention free model.

Contention has also been studied in a more formal framework.
For example, Dwork et al [12] and Gibbons et al [15] have ex-
tended the PRAM model, traditionally used for parallel algorithm
complexity analysis, to account for contention. However this ex-
tended PRAM model assumes that each individual memory location
has a queue associated with it, whereas LoPC makes the more real-
istic assumption that queues are associated with message processing
resources.

A study by Liu et al [23] modelsmore restricted messagepassing
systems in which there is only a single, finite length, queue per
processor. They find, as do the studies with more relaxed resource
constraints, that for several algorithms contention is bounded by a
constant factor. One goal of the LoPC model is to correctly predict
the constant factors that are of concern to applications programmers.

Finally, two recent works [1, 16] propose analytic models to pre-
dict parallel program performance, including communication and
contention costs. The thesis work by Adve [1] models a parallel
program with a deterministic task graph and uses mean value anal-
ysis to predict mean task execution times, including contention.
The work by Harzallah and Sevcik [16] breaks parallel program
execution into phases and uses mean value analysis to predict the
execution time of each phase, including contention. These stud-
ies also illustrate the accuracy of mean value analysis in analyzing
the contention due to communication in parallel algorithms, but
they have different architectural and algorithmic abstractions than
LoPC, and they have not attempted to derive direct insights from
the analytic equations.

7 Conclusion and Future Work

This paper has defined a new model called LoPC, which is based on
the LogP model and uses a small number of parameters to analyze
total application runtime including the impact of contention for
message processing resources. The LoPC analysis requires a simple
set of algorithmic parameters ( � , 	 , and


 � 

) and architectural

parameters ( � , � , and � ). Carefully selected approximations in
the mean value analysis that is used to analyze contention yield
closed form results for at least two important classes of algorithms
with two different common communication patterns. Appendix A
provides the general equations that can be solved quickly for any
parallel algorithm that communicates using active messages. The
extensions needed for shared memory systems were identified in
Section 4.2.



Using the LoPC model, we quantified the impact of contention
for message processing resources for algorithms with homoge-
neous all-to-any communication (e.g., sparse matrix-vector mul-
tiply). The LoPC analysis showed that the total contention cost is
bounded by a small constant factor and, to a first approximation,
the cost of contention is equal to the cost of an extra handler per
compute/request cycle.

For client-server algorithms with homogeneous clients and ho-
mogeneous servers, the LoPC analysis yields simple closed form
results for the maximum system throughput and the optimal alloca-
tion of machine nodes between clients and servers. We also showed
that an analysis that ignores contention for message processing re-
sources, such as LogP, overestimates the maximum system through-
put and underestimates the optimal server node allocations for this
class of algorithms.

The LoPC models were validated against event driven simula-
tions and against a sparse matrix benchmark running on the MIT
Alewife machine. In the experiments performed in this paper the
LoPC model produces estimates of application running time and
throughput that are highly accurate; the maximum observed error
in total application runtime was 9% on a 32 node machine. For
the usual reasons, system throughput predictions proved even more
accurate than total runtime predictions.

Because LoPC is both simple to use and accurately models
contention costs, it is a tool that could be broadly applicable to
studying algorithms and architectural tradeoffs on both current and
next generation parallel architectures. Although only the message
passing version of the model has been validated, we expect that the
model extensions for communication contention in shared-memory
machines will also validate well.

Ongoing work with LoPC includes analysis of further paral-
lel applications and classes of applications, as well as extend-
ing the model, using a technique pioneered by Heidelberger and
Trivedi [17], to model non-blocking requests such as those that
occur in shared memory systems. With this extension we plan to
use LoPC to evaluate cost-performance tradeoffs between shared-
memory and message-passing communication primitives.
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A The General LoPC Model

The notation used in this appendix is defined in Table 3. We are
given a system with � processors, each of which has a thread
assigned to it. For each thread � (the thread assigned to processor� ) we are given that the thread requires

	��
service on the local

processor and then makes a blocking request. The request will
require, on average,


 �²±
visits to each node ³ . Note that in general

we permit ´ �±%µ 1


 �²±A¶
1, so we can easily model communication

patterns that require “multi-hop” requests.

By Little’s result we can determine the throughputof each thread� as:

M � � 1yF· �¸� 1 U T�T%T Um� ' 19 ,
Where B � is the average response time for thread � .
In addition, we can find the average throughput for each thread� through each node ³ as:

M �¹± � 
 �²± M � �lU"³A� 1 U T%T%T Uº� ' 20 ,
Again by Little’s result we can determine, for each node, ³ , the

utilization of that node by request handlers.

Q > ± �H6 9
�K �¹µ

1

M �²± ³A� 1 U T%T%T Uº� ' 21 ,
And similarly, we can find the utilization of each node, ³ , by

reply handlers.

Q @ ± �$M ± 6F9 ³?� 1 U T%T%T Um� ' 22 ,
Once again by Little’s result we can find the average queue

lengths on each node, ³ , of request and reply handlers

P > ± �HB > ±
�K �²µ

1

M �¹± ³�� 1 U T%T�T Um� ' 23 ,
P @ ± �$M ± BG@ ± ³A� 1 U T"T%T Um� ' 24 ,

Next, using Bard’s approximation to the arrival theorem we
calculate the average response times for request and reply handlers
at each node from the average queue lengths at the node:

BO> ± �16F9Y' 1 I P > ±2I P @ ± , ³A� 1 U T%T%T Us� ' 25 ,
B @ ± �56F9V' 1 I P > ± , ³�� 1 U T�T%T Uº� T ' 26 ,

By the BKT priority approximation, combined with Bard’s ap-
proximation, we calculate the response time for each computation
thread:

B C ± � ¯ j"»i¼¾½ g ® ½1 ¿�À ¼¾½ ³�� 1 U T"T%T Um� T ' 27 ,
LoPC can model machines with protocol-processor support by

avoiding modeling contention between handlers and the computa-
tion threads by instead using B C ± � 	 ± .

Finally, we put all the parts together to arrive at the total response
time for a compute/request cycle:

B � � BDC � I 687 I B @ � I�K ±%µ
1


 �²± ')6:7 I B > ± ,
��� 1 U T%T%T Um� (28)

Note that this is more general than equation (1) to account for
the possibility of requests that require multiple hops through the
network. In addition, the model can be extended to represent han-
dler service time distributions other than exponential, as discussed
in Section 4.3.
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