
Near-Optimal Adaptive Control of a Large Grid Application*
Det Buaklee Gregory F. Tracy Mary K. Vernon Stephen J. Wright

Computer Science Department
University of Wisconsin – Madison

{det, gtracy, vernon, swright}@cs.wisc.edu

ABSTRACT
This paper develops a performance model that is used to control
the adaptive execution the ATR code for solving large stochastic
optimization problems on computational grids. A detailed analysis
of the execution characteristics of ATR is used to construct the
performance model that is then used to specify (a) near-optimal
dynamic values of parameters that govern the distribution of
work, and (b) a new task scheduling algorithm. Together, these
new features minimize ATR execution time on any collection of
compute nodes, including a varying collection of heterogeneous
nodes. The new adaptive code runs up to eight-fold faster than
the previously optimized code, and requires no input parameters
from the user to guide the distribution of work. Furthermore, the
modeling process led to several changes in the Condor runtime
environment, including the new task scheduling algorithm, that
produce significant performance improvements for master-worker
computations as well as possibly other types of grid applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
C.1.4[Parallel Architectures]: Distributed Architectures;
G.1.6[Optimization]: Stochastic Programming.

General Terms
Measurement, Performance, Experimentation.

Keywords
Parallel algorithms, parallel application performance, stochastic
optimization, adaptive computations, grid computing.

1. INTRODUCTION
This paper develops a model for near-optimal adaptive control of
the state-of-the-art stochastic optimization code ATR [18] on Grid
platforms such as Condor [19], Globus [10], or Legion [13], in
which the number and capabilities of the distributed hosts that
execute ATR varies during the course of the computation.

Stochastic optimization uses large amounts of computational
resources to solve key organizational, economic, and financial
planning decision problems that involve uncertain data. For

instance, an approximate solution of a cargo flight scheduling
problem required over 30 hours of computation on four hundred
processors. To find more accurate solutions (in which a wider
range of scenarios is considered), or to verify the quality of
approximate solutions, may require vastly greater resources. The
aim is to find the decision that optimizes the expected
performance of the system across all possible scenarios for the
uncertain demands. Since the number of scenarios may be very
large (typically 104 to 107), evaluation of the expected
performance (which requires evaluation of the performance under
each scenario) can be quite expensive. ATR is also representative
of a class of iterative algorithms that (1) have a basic fork-join
synchronization structure, (2) require an unpredictable number of
iterations to converge to a solution, and (3) can adjust the number
and sizes of the tasks that are forked per iteration.

Computational grids running middleware such as Condor
currently provide one of the most attractive environments for
running large compute-intensive applications. These grids are
inexpensive, widely accessible, and powerful. Over time,
applications submitted using grid middleware are given a “fair
share” of the computational resources that are not being used by
higher priority computations. Applications like ATR can obtain
large quantities of processing power easily and inexpensively.

To run efficiently in a grid environment, the application must be
able to execute on a heterogeneous collection of hosts whose size
varies unpredictably during execution. Moreover, it should be
able to adapt to the changes in the size and composition of the
collection of hosts, as well as to changes in the computational
demands the algorithm, as it executes. It may adapt, for instance,
by changing the distribution of work among the hosts.

It is unknown how to develop an adaptive version of a stochastic
optimization tool such as ATR that minimizes total execution time
in a grid environment. The problem is particularly complex
because the parameters that govern the amount and distribution of
work also affect intrinsic performance of the algorithm (such as
the time to initialize each iteration and the number of iterations to
reach convergence) in ways that are not easily quantified.
Furthermore, the runtime environment typically includes support
functions that add unpredictable delays to task execution times.

Previous work [18] in developing the ATR algorithm for Condor
platforms has relied on simple task scheduling and extensive
experimental measurements of total application running time as a
function of (1) the average number of allocated compute nodes,
and (2) the fixed (i.e., non-adaptive) values of the ATR
parameters that define the number and composition of the parallel
tasks in the computation. These experiments have resulted in
rules of thumb for selecting the ATR parameters as a function of
the number of compute nodes allocated. For example, when the

 *This work was partially supported by the National Science
Foundation under grants EIA-9975024 and EIA-0127857.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’02, June 22-26, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-483-5/02/0006…$5.00.

application runs on X ≤ 100 distributed Condor nodes, the rules
provide parameters to ensure that 2X to 5X parallel tasks are
available for processing at any given time, in order to keep
processor efficiencies high in the presence of the high variability
in the task execution times. Previous studies concerning adaptive
control of distributed applications (e.g., [6][14][20]) have
proposed similar kinds of experimentally determined rules of
thumb. Development of adaptive codes that minimize total
execution time for complex applications, based on more precise
modeling and adaptation strategies has, to our knowledge, not
previously been investigated.

This paper develops a precise and accurate performance model of
ATR and then uses the model to develop an adaptive version of
the code that minimizes the total execution time for a large class
of planning problems, on any collection of compute nodes
including a varying number of heterogeneous nodes. The new
adaptive code does not require any user input to guide the amount
and distribution of work, and implements parameter settings quite
different from those obtained from the “rules of thumb”
developed previously. The new adaptive code also uses (1) a
higher performance task scheduling strategy, and (2) a reduced
debug I/O level, and (3) a proposed simple change in the Condor
runtime system support that reduces needless overhead on the
master node. The latter two changes, motivated by the
development of the ATR performance model, greatly improve task
execution times as well as the predictability of the task execution
times. All three changes can greatly improve other grid
applications as well as ATR. The new adaptive code, together
with the runtime system change, reduces total execution time
compared to the previously optimized code by factors of six or
more, depending on the planning problem and grid configuration.

The remainder of this paper is organized as follows. Section 2
provides an overview of the ATR application, the Condor runtime
environment, and related work in performance of adaptive grid
codes. Section 3 describes the detailed measurement-based
performance analysis of ATR needed to develop the model.
Section 4 describes, validates, and applies the model to select
near-optimal configurations for ATR on a sizable Condor pool.
Conclusions of the work are stated in Section 5.

2. BACKGROUND
Sections 2.1 and 2.2 briefly describe the ATR stochastic
optimization application, the Condor system, and the MW runtime
support library for master-worker computations. Section 2.3 then
summarizes related work in performance modeling and
development of large distributed applications.

2.1 ATR
ATR is an iterative “asynchronous trust-region” algorithm for
solving the fundamental stochastic optimization problem: two-
stage stochastic linear programming with recourse, over a discrete
probability space. The algorithm is described in detail in [18].
Here we discuss those aspects of the algorithm that are relevant to
selecting the performance-related algorithmic parameters; in
particular, the parameters that control the number and
composition of the parallel tasks in the execution.

The problem is as follows: Given a set of N scenarios iω ,

,,,2,1 Ni = with probabilities ,,,2,1, Nipi = solve

,0, subject to)(min ≥=+ xbAxxQxcT

where),;()(
1

i

N

i
i xQpxQ ω∑

=

=

and each);(ixQ ω is the optimal objective value for a second-stage

linear program, defined as follows:

 { }.0,:min);(≥−== iiiii
T
iyi yxThWyydxQ

i
ω

To evaluate the function)(xQ thus requires the solution of

N independent second-stage linear programs. When N is large,
this process can be computationally expensive.

The function)(xQ is a piecewise linear, convex function. The
ATR algorithm builds up a lower bounding function m(x) for the

true objective function)(xQxcT + , using information gathered
during evaluation of the second-stage linear programs.

The basic structure of the algorithm, illustrated in Figure 1, is that
a master processor computes a new candidate iterate x by solving
the trust-region subproblem defined below. Worker processors
then evaluate the second-stage linear programs for this x and
produce the information needed to refine the model function m(x).
The master processor updates this model function asynchronously,
as information arrives from each worker processor. Outdated
information may also be deleted from m(x) on occasion. When
sufficient new information has been received (i.e., after all or most
of the processors working on evaluation of x have returned their
results), the master computes a new iterate x. The process then
repeats.

New iterates x are generated by solving subproblems of the form:

∆≤−≥=
∞

I
x xxxbAxxm ,0,tosubject)(min

where Ix is the “incumbent” (the best iterate identified by the
algorithm to date), while ∆ is the “trust-region radius,” which
defines the maximum distance we can move away from the
incumbent on the current step.

In general, the more scenarios N that can be included in the
formulation, the more realistic is the model. Although the problem
becomes larger and harder to solve as N increases, this effect is
less marked if we have a good initial guess of the solution. A good
strategy is therefore to start by solving an approximate problem
with a modest value of N (1000, say), and use the resulting
approximate solution as the starting point for another approximate
problem with a larger number of scenarios (5000, say). This
procedure can be repeated with progressively larger N.

To reduce the time to compute each new iterate x, the N scenarios
are partitioned into a fixed set of T tasks denoted by TNNN ,..., 21

where each jN denotes a set of scenario indices. For a given task j

a worker computes the following partial sum of)(xQ :

[]() (;).
j

j i i
i N

Q x p Q x ω
∈

= ∑

The worker also computes one partial subgradient (also known as
a “cut”) for the task. This information is used by the master to
update the partial model function)(][xm j corresponding to task j.

The complete model function)(xm is then
Tc x plus the sum of

the)(][xm j ’s over all the tasks Tj ,...2,1= .

ATR enables additional parallelism by allowing more than one
candidate iterate x to be evaluated at the same time. In order to
generate an additional candidate iterate, the master processor
computes the new iterate before all of the scenarios for the current
candidate have been evaluated, as illustrated in Figure 2. ATR
thus creates and maintains a basket of B candidates (with B
between 1 and 15).

In the previous non-adaptive version of ATR, tasks are grouped
into G equal-size task groups, each containing T/G tasks. Each
task group is a unit of work that is sent to a worker. For example,
a possible configuration for N = 10,000 is T = 100 and G = 50, so
that each task group contains two tasks, each with 100 scenarios.

We assume N to be fixed in our performance analysis. We can
affect the amount and distribution of work, by varying the
parameters B, T, and G. By increasing B, new iterates can be
solved on the workers while the master is processing the results
from other iterates, and a slow worker will only slow down the
evaluation of one of the parallel iterates. By increasing T, more
cuts are computed per value of x, making the model function

)(xm more expensive to compute (by the master) but also a better

approximation to the true objective)(xQ , which generally reduces
the number of iterations needed to solve the problem. By
increasing G, we obtain more task groups, with fewer tasks (and
therefore smaller execution times) for each group.

Previous evaluations of ATR on locally and widely distributed
Condor-MW grids have shown that for 50-100 workers, the best
execution times were obtained with three to six concurrent
candidates, 100 tasks, and 25 to 50 task groups.

The goal in this research is to create a performance model to
select the basket size B, the number of tasks, T, and the number of
task groups G, statically at program initiation time or dynamically

during the execution of the job, so as to minimize total ATR
execution time for any given planning problem of interest.

2.2 Condor/PVM and MW
The Condor system [19] manages heterogeneous collections of
computers, including workstations, PC clusters, and
multiprocessor systems. Mechanisms such as glide-in or flocking
[9] are used to include processors from separate sites in the
resource pool. When a user submits a job to the system, Condor
identifies suitable processors in the pool and assigns the
processors to the job. If a processor executing the job becomes
unavailable (for example, because it is reclaimed by its owner),
Condor migrates the job to another node in its pool, possibly
restarting from a checkpoint that it saved at an earlier time. The
size of the pool available to a particular user can change
unpredictably during a computation, although users can exercise
some control over the resources devoted to their application by
specifying the number, speed, and/or type of workers.

MW [18] is a framework that facilitates implementation of
master-worker applications on a variety of computational grid
platforms. In this study, we use the version of MW that is
implemented for Condor-PVM [32], in which the master runs on
the submitting host, and the worker tasks on other processors
drawn from the Condor pool. Condor-PVM primitives are used to
buffer and pass messages between master and workers.

2.3 Related Work
Parallel stochastic optimization algorithms have been investigated
during the past 15 years. In [4], an algorithm related to ATR (but
without the trust region and asynchrony features) is applied to
multistage problems, and implemented on a cluster of modest size.
An earlier paper [5] describes an interior-point approach in which
the linear algebra computations are implemented in parallel, but
this approach does not scale well to a large number of processors.
A small PC cluster is used in [11], where the approach is to use
interior-point methods for the second-stage problems inexactly
and an analytic center method for the master problem.

N2 N1 workers

master

NC N2 N1

master

workers
Solve secondary-
stage linear
programs

NC

master

Update m(x) and
compute new x

Update m(x) and
compute new x

Solve secondary-
stage linear
programs

Figure 1: Basic ATR Structure (B=1)

workers

master

master

Solve secondary-
stage linear
programs

Update m(x)
andcompute new x,
after j and after C.

Solve secondary-
stage linear
programs

workers

Nj N1 Nk

NC NC N1

NC

N1

master
Update m(x)
andcompute new x.

Figure 2: Asynchronous ATR Structure (B=2)

Table 1: ATR Configuration Parameters

Symbol Definition

N Number of scenarios evaluated per iterate

T Number of tasks per iteration

G Number of task groups into which scenarios are partitioned

x Vector of candidate planning decisions; “ iterate”

B Number of iterates that are evaluated in parallel

Three approaches to adaptive software control have been explored
in previous work, namely (1) provide an interface for the user to
control application steering parameters (e.g., [2]), (2) use
measured or user-provided estimates of application execution time
as a function of system configuration, to heuristically adapt
system resource management policies or application configuration
parameters, automatically at runtime [17][6][14][16][20][27], or
(3) use very simple models that compute execution time for
alternative configurations [3][8][21][23][24][25] from user-
provided or measured deterministic processing and
communication requirements per task, possibly adjusted for
runtime-measured node processing capacities and available
network bandwidth.

Regarding history-based heuristic adaptive control algorithms,
Ribler et al. [20] describe the Autopilot system that filters data
from instrumented client tasks (e.g., to characterize the dominant
file access pattern) and adapts the system resource management
policies (e.g., file prefetch policy). The related GrADS Project
work [27] measures the “ application signature” (i.e., processing,
I/O, and communication cycles as a function of time), and uses
fuzzy logic to determine whether the rates for each task are within
ranges defined by user-specified “ performance contracts” .
Algorithms for changing the configuration when the contract is
violated are not addressed in that work. Heymann et al. [14]
measure Condor-MW task execution times, and worker node
efficiencies, in each iteration. Results from synthetic MW
applications are used to estimate the number of worker nodes to
allocate to achieve 80% efficiency with no more than a 10%
increase in iteration execution time, based on the relative
processing times of the largest 20% of the tasks. This algorithm
assumes each task performs (approximately) the same work in
successive iterations, homogeneous processing nodes, and that the
application completes eachiteration before starting the next
iteration. Lan et al. use computation times measured in previous
iterations to decide whether to redistribute work in the next
iteration of an astrophysics code [17]. Chang and Karamcheti [6]
propose an application structure containing a “ tunability
interface” and an expression of user preferences. Previous
application execution measurements, runtime resource and
application monitoring, and user preferences are used to
automatically select certain parameters at runtime, for example to
select the image resolution for the available processing capacity
and a user-specified image transmission time. In the Harmony
system, Keleher et al. [16] propose an approach which the user
specifies the processing and communication time, or provides a
model to predict these values at runtime, for each possible
multidimensional configuration of the application. The system
then dynamically allocates resources to achieve a particular
system objective, such as maximizing throughput.

Previous models for adaptive runtime control compute node
processing time and communication time per iteration, using
known and/or measured quantities per data point, or image pixel,
times the number of data points or pixels assigned to the node.
For example, Ripeanu et al. [21] compute the execution time for a
load-balanced finite difference application as a function of (a) the
data assigned to each node, (b) redundant work computed by
other nodes to reduce communication between nodes, and (c) the
communication time. These calculations are used at runtime to
select the amount of redundant work per node for the measured
Grid communication costs. The AppLeS project has used similar
calculations to determine how many and which available compute
or data server nodes should be assigned to a simple adaptive
iterative Jacobi application [3], a gene sequence comparison code
[24], a magnetohydrodynamics application [22], an adaptive
parallel tomography image reconstruction application [23], and
adaptive data server selection in the SARA application [25]. For
each of these applications, a linear optimization model is
formulated to compute the work assigned to each node per
candidate system configuration and measured node processing
and communication capacities, to achieve an objective such as
minimizing total execution time or maximizing image quality for a
user-specified target refresh frequency.

The approach in this paper is most similar to the model-based
adaptive runtime control in [23]. However, we are targeting the
much more complex ATR application that does not have a known
model for estimating execution time as a function of system
configuration (i.e., parameters B, T, G, and set of workers).
Furthermore, we develop a model that more efficiently determines
how to allocate work to available compute nodes without solving
an optimization problem over all possible system configurations.

3. ATR EXECUTION TIME ANALYSIS
In this section we analyze ATR task execution times and
communication latencies to determine which aspects of the
computation and communication need to be modeled, and how to
model the total ATR execution time. The analysis is guided by the
task graphs in Figures 1 and 2, which illustrate the overall
structure of a parallel ATR execution, for basket size B equal to
one and two, respectively. (Table 1 summarizes the notation.)
The basic functions of the master process are to (a) update the
function m(x) each time a worker processor returns the results of
executing a group of tasks, and (b) compute a new iterate x when
all T tasks associated with a particular iterate x have been
completed.

In the existing non-adaptive version of ATR, the parameters B, G
and T are specified as inputs to the application and are fixed
throughout the run. G specifies the number of task groups, which
can be evaluated in parallel (by the workers). Each task group
contains T/G tasks each containing N/T scenarios. Since each
individual task generates a subgradient (or cut), each task group
returns T/G subgradients.

The goals of this work are to determine:

• whether the values of B, G, T, and the number of tasks per
group can be determined so as to minimize total ATR execution
time on a collection of workers,

• whether near-optimal adaptive values of the parameters can be
computed at runtime as the collection of workers changes, and

• how much performance improvement can be gained from the
adaptive version of the code.

The challenge for modeling and minimizing the overall ATR
execution time is that previous measurements of ATR executions
[18] have revealed that it is difficult to quantify (a) how master
execution times increase as T increases, (b) how the number of
iterates that need to be evaluated increases as B increases or T
decreases, and (c) the high degree of unpredictability in the
execution times of the master and workers, which is possibly due
to the runtime environment. These issues are addressed below;
Section 3.1 analyzes worker execution times, while Section 3.2
analyzes master execution times. Section 3.3 analyzes Condor-
PVM communication costs between a pair of local hosts, as well
as for a pair of widely separated hosts, for message sizes that are
transmitted between the master and a worker in the ATR
application. These measured computation and communication
times are used in Section 4 to develop a performance model and
optimized adaptive parameter values for the ATR code.

A standard approach in our local Condor pool is to submit a
Condor job from a shared host, which becomes the master
processor. Because the shared host typically has a relatively high
CPU load, master processing times might be highly variable
and/or large. To avoid this problem, unless otherwise noted, the
ATR measurements reported in this section are submitted from a

single-user workstation that is free of other user processes during
the run. We refer to this setup as a “ light load” master processor.

The initial analysis of execution times is based on several
planning problems, several values of N (numbers of scenarios), a
basket size B = 1, a wide range of values of T and G, and a single
worker node. After analyzing the impact of T and G with B = 1,
we investigates larger values of B. The use of a single worker
ensures that the measured master task execution times are not
inflated by unpredictable interrupts from workers that have
finished evaluating other tasks. Once the basic task execution
times are understood, interrupts can be modeled as needed.

3.1 Worker Execution Times
Table 2 summarizes the average, minimum, maximum, and
coefficient of variation (CV) in the execution time for the two
principal tasks carried out by the master, namely, updating m(x)
and computing a new iterate. The table also shows the average
and CV of the time for a worker to evaluate a task group, over all
of the iterations, for several different values of G and T. Similar
results were also obtained for other planning problems, other
values of the number of scenarios N, runs at different times of the
day, and for many different worker processors.

The measurements show that worker execution times in each
experiment have low variability (i.e., are highly predictable).
Furthermore, results in Figure 3 show that, in the common case
that N/G ≥ 25, the average worker execution time is
approximately linear in the number of scenarios evaluated, N/G,
as well as in the peak speed of the processor. The second and
third rows of Table 2 (as well as other results omitted to conserve
space) demonstrate that worker execution time is independent of
T.

The above results indicate that the execution time for a given ATR
task on a given worker can be predicted from a benchmark that
contains at least 25 scenarios, which can be run on the worker
when it is first assigned to the ATR application. We note that the
deterministic worker execution times are due to the fact that the
Condor job scheduler uses space-sharing, rather than time-
sharing, for grid nodes that are reasonably well utilized. As a
consequence, interference from other jobs need not be modeled in
predicting ATR execution times on Condor.

3.2 Master Execution Times
Table 2 shows that the master processing times, both for updating
m(x) and for computing a new iterate, are highly variable. It might

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

Number of Scenarios Evaluated (N/G)

W
or

ke
r

E
xe

cu
ti

on
 T

im
e

(s
ec

) MIPS 600
MIPS 780
MIPS 1100
MIPS 1700
Minimum
Maximum

Figure 3: Worker Execution Time
 (SSN Planning Problem, N=10,000, B=1, T/G=1)

Table 2: Example Measured Execution Times
(SSN, N=10,000)

Master Time to Update Model

Function m(x) (msec)
Master Time

 to Compute a New Iterate, x (sec)
Worker Execution

Time (sec) G T/G T

avg min max CV num it. avg min max CV avg CV

25 1 25 6.51 3.36 915.00 4.81 82 0.38 0.01 2.06 1.00 20.54 0.08

50 1 50 6.04 3.56 1405.46 5.71 47 1.32 0.01 3.05 0.68 10.56 0.02

50 2 100 6.83 3.64 1936.09 0.79 32 2.42 0.05 7.60 0.79 10.36 0.06

100 1 100 5.94 3.40 1162.59 40.20 31 1.57 0.05 3.41 0.83 5.19 0.05

200 1 200 6.12 3.84 2092.39 4.89 25 2.25 0.03 6.25 0.71 2.69 0.06

400 1 400 6.74 3.30 2411.61 3.92 21 3.33 0.05 13.27 0.75 1.35 0.08

appear that the variability in the time to update m(x) is not
important, since the average time required for each update is only
a few milliseconds. However, since the master needs to perform
this update G times per iteration (each time a worker returns the
results from evaluating a task group). Since G may be 100 or
more, and since the largest update times are on the order of 1-2
seconds (as shown in Table 2), the cumulative update time can
have a significant impact on total ATR execution time. In Section
3.2.1 we (a) analyze the causes of the execution time variability;
(b) propose two changes in the runtime system to reduce the
variability; and (c) characterize this task execution time more
precisely. We note that experimentally observed variability in
worker execution times in previous work may actually have been
due to variability in the master processing time for updating m(x).

As noted in Section 2.1, as T increases, the average time to
compute a new iterate increases, while the number of iterations
decreases. This is because T cuts are added to the model function
m(x) at each iteration, so a larger T causes the model function to
become a closer approximation to the true objective function after

fewer iterations, while making each trust-region subproblem
harder to solve. The time to compute the new iterate varies
between under one second and three to four times the average
value. We investigate these variations in more detail in Section
3.2.2 with the goal of understanding how to model these
variations as a function of G and T.

3.2.1 Time to Update m(x)
Figure 4 provides example histograms of the master execution
times for updating the model function m(x) during three different
measurement runs. The histogram for the lightly loaded (700
MIPS) master with default debug I/O corresponds to the data in
Table 2 for G = 50 and T/G = 1. Even greater variability than
shown in this histogram is observed if the master is one of the
shared Condor hosts commonly used to submit Condor jobs.

Further investigation revealed that the value of the Condor “ debug
I/O flag” commonly used for MW applications produces vast
quantities of debug output. Figure 4 provides a second histogram
(“ lightly loaded master with reduced debug I/O”) for a run with a
reduced level of debug I/O (level 5) from Condor/MW, which still
produces a significant log of the MW execution events. The
reduced debug I/O improves the average time to update m(x), but
not the variability in the execution time.

To understand the high variability in the observed execution
times, we note that due to the worker execution times (see Table
2), there can be significant periods of time (on the order of
seconds) when the ATR master is waiting for results from the
workers. Since the master processor is part of the Condor pool,
we surmised that the high variability in the time to update the
model function shown in Figure 4 is at least partly due to Condor
administrative functions or to other Condor jobs that may run on
the master processor during these periods. The third histogram in
Figure 4 shows that using an isolated master node, which is not
available for running other Condor jobs or administrative
functions during the ATR run, greatly reduces the variability as
well as the average execution time to update m(x). Thus, we
proposed a new feature for Condor that allows a user-owned host
serving as the (lightly loaded) MW master to be “ temporarily
unavailable” for running other Condor jobs.

0.01

0.1

1

10

100

1000

0 1000 2000 3000 4000

Worker Completion Event Count

T
im

e
to

 U
pd

at
e

m
(x

)
(m

se
c)

lightly loaded master, default debug level
lightly loaded master, reduced debug level
isolated master, reduced debug level

Figure 4: Example Histogram of Times to Update m(x)
(SSN Planning Problem, N=10,000, B=1, T=50, G=50)

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

Iteration Number

T
im

e
to

 C
om

pu
te

 N
ew

 x
 (

se
c) Lightly Loaded Master

Isolated Master

 (a): Impact of Isolated Master
(SSN Planning Problem, N=10,000, B=1, T=50, G=50)

0

5

10

15

20

25

30

0 200 400 600 800

Iteration Number

T
im

e
to

 C
om

pu
te

 N
ew

 x
 (

se
c)

 (b): Typical Profile (Isolated Master)
(20-term Planning Problem, N=5,000, B=1, T=200, G=50)

Figure 5: Example Histograms of Times to Compute a New Iterate, x

For the isolated master configurations, the average time to update
m(x) is 150-500 microseconds, depending on the value of T/G. In
this case, the overall ATR execution time is dominated by the
worker execution times and the time for the master to compute
new iterates (see Table 2).

3.2.2 Time to Compute a New x
Figure 5 shows a histogram of the time to compute the next
iterate, for a given planning problem and a given set of input
parameters. Figure 5(a) shows that an isolated master exhibits
lower mean and variability in execution time for computing the
new iterates than the same master in a lightly loaded (non-
isolated) configuration. The lower variability makes it easier to
optimize the application parameters that control parallelism.
Except as noted, all measurements of ATR below are obtained
with the isolated master and the reduced (but still substantial)
debug I/O level.

Figures 5(b) and 6(a) show histograms of the execution times for
computing new iterates x, for the two very different planning
problems 20term and SSN. In Figure 5(b), the starting point was
“ blind” (that is, far from the solution), while in 6(a) it was chosen
as the solution of the corresponding planning problem for a
smaller number of scenarios N. In both figures, we see a wide

variability in the time required to compute the next iterate from
one iteration to the next, but the trend is similar. Specifically, the
time required tends to increase steadily, then drops off sharply
and becomes minimal for a (possibly long) sequence of iterates.
The times increase again for the last few iterations. Similar trends
were also observed in other planning problems, and many other
starting points and parameter settings.

An ad hoc adaptive algorithm might estimate the average time to
compute the next few iterates from the time to compute the
current iterate (with fairly high accuracy in most iterations). It
could use this estimate to adjust the parameters governing
parallelism in evaluation of the current iterate(s) (namely, B and
G) so as to achieve a desired trade-off between processor
efficiency and expected total time during the next iteration.

We develop an alternative approach in Section 4 that is based on
the following observations. Figures 6(a)-(c) illustrate the
dependence between the parameter T and the number of iterations
and time required to compute each new iterate, for the SSN
planning problem and a fixed starting point. Note that increasing
T causes (a) a diminishing decrease in the number of iterations,
and (b) a diminishing increase in the time to compute each new
iterate. The overall effect, illustrated in Figure 6(d), is that the
total master processing time for computing new iterates grows

10

100

1000

10000

0 500 1000 1500 2000

Number of Tasks (T)

T
ot

al
 M

as
te

r
P

ro
ce

ss
in

g
T

im
e

(s
ec

)

N=100000

N=10000

(d) Cumulative Time to Compute New x

0

1

2

3

4

5

6

7

0 10 20 30 40

Iteration Number

T
im

e
to

 C
om

pu
te

 N
ew

 x
 (

se
c) T = 200

T = 100

0

0.5

1

1.5

2

2.5

3

3.5

4

0 400 800 1200 1600 2000

Number of Tasks (T)

A
ve

ra
ge

 T
im

e
to

 C
om

pu
te

 N
ew

 x

(s
ec

)

(c) Average Time to Compute New x vs. T

(a) Time to Compute Each New x

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Number of Tasks (T)

N
um

be
r

of
 I

te
ra

ti
on

s
(n

)

max
average
min

(b) Number of Iterations (n) vs. T

Figure 6: Impact of T on Time to Compute New x (SSN Planning Problem, N=10,000)

slowly with T. Other curves omitted for clarity show that the time
to compute the next iterate is largely independent of G. These
observations, which hold for the three planning problems and all
ATR parameter values that we analyzed, are the key insights
needed to optimize B, G, and T in Section 4.

3.2.3 Impact of Basket Size (B)
By setting B = 2, the workers can evaluate the scenarios
corresponding to one iterate x, while the master computes a new
value of x from the latest subgradient information. Since, for
practical planning problems, the master execution times tend to be
either under one second or at least as large as the worker
execution times, B should be set to at most two in order to
improve overall execution time. However, Figure 7 shows that
the total number of iterates n required for convergence of ATR
nearly doubles as B doubles. (Similar behavior was observed for
other planning problems and many values of N.) Thus, the total
execution time will not improve for B greater than one, a fact that
we have verified experimentally.

3.3 ATR Communication Times
Figures 8(a) and (b) provide the measured CondorPVM round trip
time for sending a message of a given size to another host and
receiving back a small message, a process that mimics the round-

trip communication between the master and a worker in ATR.
Figure 8(a) shows the results for hosts interconnected by a high
speed local network; Figure 8(b) provides the results for a host at
the University of Wisconsin sending to a host in Bologna, Italy.

For ATR planning problems, the size of the message from the
master to the worker typically ranges from 250 bytes to 12 KB.
Furthermore, sending a message to a given worker is overlapped
with the execution time of the worker that received the previous
message. Thus, there is approximately one round-trip time per
iteration in the critical path of an ATR computation. A
comparison of the round trip time, worker execution times, and
master execution times suggests that communication costs are
negligible for practical values of N, G, and T, even over wide area
networks.

4. NEAR-OPTIMAL ADAPTIVE ATR
The measurements reported in Section 3 have provided the data
needed to create a model of total ATR runtime. To summarize:

• Worker execution times are deterministic, approximately linear
in the number of scenarios per task group (N/G), and
independent of the number of tasks in the group (T/G).

• Communication costs between the master and workers are
negligible (over a high speed network), even when the master
and workers are widely distributed. We validate this again
below for an ATR run on a widely distributed Condor flock.

• The master processing time for updating the model function,
m(x), each time a worker returns its results, is 100-500 msec
and can be omitted in a (first-cut) model of total ATR run time.

• The time required for the master to solve the trust-region
subproblem to compute each new iterate, x, is a significant
component of total ATR execution time. Moreover, the total
master execution time to compute all iterates increases slowly
with T, while there is a significant decrease in the number of
iterates (n) that need to be considered as T increases, up to
about T=400 (or until N/T decreases to a few tens).

These observations motivate a surprisingly simple first-cut model
of the ATR execution time that can be used to optimize the
execution of ATR on various grid configurations. Because

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

Basket Size (B)

N
um

be
r

of
 I

te
ra

ti
on

s
(n

) maximum
average
minimum

Figure 7: Impact of B on Total Number of Iterations (n)

(SSN Planning Problem, N=10,000, T=200, G=50)

0
1
2
3
4
5
6
7
8
9

10

0 4 8 12 16 20 24 28 32

Siz e of Me ssage (Ki lobyte s)

R
ou

nd
 T

ri
p

T
im

e
(m

se
c)

(a) Between Local Nodes

0.00

0.28

0.56

0.84

1.12

1.40

0 4 8 12 16 20 24 28 32

Size of Message (Kilobytes)

R
ou

nd
 T

ri
p

T
im

e
(s

ec
) Experiment 1

Experiment 2

 (b) Between Wisconsin and Bologna, Italy

Figure 8: Roundtrip Message Time

interrupts, communication costs, and variability in task execution
times are not modeled, the model is even simpler than the LogGP
type of model than has been used for other large complex
applications [1, 26]. Section 4.1 presents the model and validates
that it is sufficiently detailed to estimate overall ATR execution
time, on widely distributed Condor flocks as well as on a local
Condor pool. Sections 4.2 and 4.3 demonstrate how the model,
together with improved task scheduling, can be used to minimize
ATR execution time on a varying set of homogeneous grid nodes
and a varying set of heterogeneous grid nodes, respectively.

4.1 Model Validation
For fixed values of N, G, and T, and a homogeneous set of G
worker nodes, a first-cut model of total ATR running time is
simply WM ntt + , where Mt is the total master execution time for

computing new iterates, n is the number of iterations, and Wt is

the time needed by a worker to evaluate a group of tasks
containing N/G scenarios. Table 3 evaluates the accuracy of this
model, which ignores interrupts, communication overhead and
small master execution times to update m(x). The table compares
measured ATR execution times against execution time computed

from the model using the measured components (Mt and Wt), for

several different configurations of the planning problem SSN, as
well as two representative versions of the problems Storm and 20-
term. The experiments in the table were run on a local Condor
pool or one of two Condor “ flocks” in which the master processor
is a local (isolated) master while the homogeneous workers are
compute nodes at the Albuquerque High Performance Computing

Center or at Argonne National Laboratory. In the flock
experiments, communication between the master and the workers
is via the Internet, so communication costs are more similar to
those graphed in Figure 9(b) rather than those in Figure 9(a).

Table 3 shows that over a wide range of total application
execution times, from just a few minutes to over an hour, the
runtime estimates obtained from the simple model are within
about 10% of the measured execution times, even when the
workers are geographically distant from the master.

If we employ fewer workers K than the number of task groups G,
then the model of the non-adaptive ATR running time is modified

as follows: /M Wt nt G K+    . The last row of Table 3 (and

other similar experiments omitted to conserve space) validates this
simple extended model, showing that it captures the principal
components of total run time.

For fixed N, G, and T, and a set of heterogeneous workers, the

total execution time is estimated by
max

M Wt nt+ . Table 4

validates this model for collections of heterogeneous nodes from
our local Condor pool. We obtained these results by requesting G
workers, without restricting the type of worker nodes assigned. In
this case, Condor allocated a wide variety of processors, ranging
in speed from 186 MHz to 1.7 GHz. For the non-adaptive version
of ATR, the total execution times estimated are generally as
accurate as for the homogeneous workers, unless the problem size
is fairly small (i.e., execution time is less than 10 minutes) and the
number of workers G is large. In these cases, the worker tasks are

Table 3: Simple Model Estimates of Total ATR Execution Time for Homogeneous Workers

Compute New x
(sec)

Total Execution Time
(min) Planning

Problem
N T G

Number
of

Workers num it.
(n)

Total
(tM)

Benchmark
Avgerage
(tW) (sec) Model Measured

Note

20-terms 5,000 200 50 G 597 2762.94 2.35 69.47 70.54 WI pool

ssn 40,000 100 50 G 84 297.36 30.97 48.83 52.21 WI-NM Flock

ssn 20,000 50 50 G 108 180.90 20.91 40.84 44.70 WI-Argonne Flock

ssn 20,000 100 50 G 84 244.00 20.89 33.51 36.38 WI-Argonne Flock

ssn 20,000 200 50 G 61 295.30 20.88 26.40 29.32 WI-Argonne Flock

ssn 5,000 200 50 G 131 1076.82 3.23 25.05 26.80 WI pool

ssn 10,000 25 25 G 104 65.43 12.95 23.75 26.77 WI pool

ssn 20,000 400 50 G 44 441.80 20.96 22.98 24.98 WI-Argonne Flock

ssn 10,000 50 25 G 73 59.74 12.85 16.84 18.60 WI pool

storm 10,000 200 50 G 11 2.53 82.44 16.53 18.48 WI pool

ssn 10,000 100 25 G 49 65.51 12.92 11.86 13.27 WI pool

ssn 10,000 50 50 G 66 56.70 6.44 8.14 9.23 WI pool

ssn 10,000 200 25 G 30 66.65 12.82 7.73 8.80 WI pool

ssn 10,000 100 50 G 50 71.79 6.48 6.70 8.23 WI pool

ssn 10,000 200 50 G 38 79.46 6.44 5.51 6.62 WI pool

ssn 10,000 400 50 G 26 70.45 6.43 4.07 4.92 WI pool

ssn 10,000 100 100 G 44 70.32 3.31 3.65 4.71 WI pool

ssn 10,000 100 500 2G/3 44 64.81 6.32 10.34 12.10 WI pool

small, and communication between the master and workers, which
is ignored in the model, has a secondary but non-negligible
impact on total running time. Since practical problems of interest
involve large planning problems, the model that ignores
communication costs is used below to minimize total ATR
execution time.

4.2 Adaptive Code for Homogeneous Workers
Based on the above results, we can specify an optimal adaptive
configuration for ATR algorithm, for a given number of scenarios
N and a number of available homogeneous workers, assuming the
objective is to minimize the total ATR execution time. The model
could be applied in a similar way to achieve some other objective,
such as a balance between minimizing execution time and
maximizing processor efficiencies, which is a subject left for
future work.

To (nearly) minimize total execution time on homogeneous
workers, B should be set to 1, the number of task groups G should
be set equal to the number of workers, and tasks should be
distributed equally among the workers. T could be specified by
the user, or can be set by the adaptive code to 200 or 400,
motivated by the fact that, for most planning problems and T in
this range, total master execution time does not increase greatly,
while the number of iterations decreases significantly. Table 3, as
well as many other experiments omitted to conserve space, show
that for various planning problems, number of scenarios, and
number of workers, with B=1 and G equal to the number of
workers, the running time decreases as we increase T in the range
of 25-400. Due to diminishing returns in reducing the number of
iterations, values of T larger than a few hundred, for the
representative planning problems studied in this paper, do not
improve total ATR running time. We note that if ATR is
modified to allow G to exceed T (a change that is simple in

principle), then ATR could still make productive use of more than
400 workers while still using a near-optimal value of 200 – 400
for T.

The optimal configuration for a fixed number of homogeneous
workers is easily adapted to the case where the number of workers
changes during the execution of the program. In this case, each
worker currently available is given approximately the same
number of tasks to evaluate, so that the time that the master needs
to wait for results from the workers is minimized. In the current
version of ATR, where each task is evaluated by a single worker,
it is valuable for T to be large (e.g., 400) because the work can be
distributed more evenly across the workers as the number of
workers varies.

4.3 Heterogeneous Grids
Table 4 shows that, unless the user requests a homogeneous
worker pool, the processors allocated to ATR by Condor may
have very diverse speeds, typically differing by a factor of seven
to ten. This is also true in other grid environments. Equal
partitioning of the work between processors is not a particularly
good strategy in this case, as the master processor will need to
wait for the slowest worker to complete, leaving faster workers
idle.

A better approach would be to give each worker a fraction of the
total scenarios N proportional to its speed. For instance, if we are
evaluating N scenarios, a worker with peak processing rate Mi
MIPS would receive (N/M) × Mi scenarios to evaluate, where M
is the total peak rate summed over all workers. However, the
algorithm for computing the next iterate on the master requires T
(i.e., the number of subgradients computed per iteration) to be
fixed throughout the computation, and the work assigned to each
worker must be an integral number of tasks of size N/T.

Table 4: Predicted and Measured Total ATR Execution Time on Heterogenous Workers

Worker Time (tW) (sec)
Non Adaptive Execution Time

(min)
Adaptive Execution Time

(min)

avg min max Measured Model
Number of
Workers

Measured Model
Number of

Workers Used

Estimated
Speedup

(%)

Problem
Size
(N)

11.52 4.22 42.39 48.75 47.35 50 17.02 40 65% 10,000

7.04 4.21 28.62 34.65 34.23 50 10.66 48 69% 10,000

7.03 4.19 28.62 35.07 34.22 50 11.22 48 68% 10,000

6.62 4.18 13.82 14.35 13.96 50 8.81 48 39% 10,000

4.44 2.14 21.52 17.73 16.37 100 3.97 72 78% 10,000

4.36 2.14 15.33 14.60 13.19 100 4.49 68 69% 10,000

4.49 2.14 21.54 17.85 16.57 100 3.87 68 78% 10,000

2.86 1.36 13.88 13.75 10.73 150 3.95 75 71% 10,000

2.76 1.38 9.42 9.07 6.85 150 3.61 75 60% 10,000

2.86 1.37 9.78 9.63 6.65 150 3.30 75 66% 10,000

2.11 1.68 10.21 9.67 7.15 200 2.82 100 71% 10,000

4.02 1.69 8.90 12.66 50 10.50 8.03 45 17% 10,000

7.76 2.58 19.46 22.32 50 11.43 9.86 26 49% 10,000

2.25 1.20 9.59 8.67 100 4.78 3.41 86 45% 10,000

2.84 0.83 9.60 9.52 100 6.78 3.24 67 29% 10,000

20.33 8.06 98.63 82.94 100 39.56 35.59 91 52% 100,000

Thus, the near-optimal algorithm to minimize total execution time
for a given collection of heterogeneous worker nodes is as
follows. T (the number of tasks) is again chosen to be moderately
large (e.g., 400-800), so as to create smaller tasks for balancing
the load across the heterogeneous workers. Each task contains
N/T scenarios. Using the benchmark results for each worker,
tasks are allocated one at a time to workers, such that each task
will have the earliest expected completion time given the task
assignments made so far. In this way, tasks are assigned to a
worker in proportion to its execution time for the benchmark,
such that the number of assigned tasks multiplied by the
benchmark time will be approximately the same for each worker
that is assigned at least one task. Some of the workers with high
benchmark times might not be assigned any tasks, while workers
with low benchmark times may be assigned multiple tasks.

Since this task scheduling algorithm is not implemented in the
current MW runtime library, we implemented it inside the ATR
application to experiment with its effectiveness. We are also
collaborating with MW developers who are implementing this
feature within MW.

Since the tasks can be assigned to each worker as each new iterate
is created, the schedule is adaptive in nature. It also has the
advantage of simplicity. Although the number and computational
speeds of the workers may change dynamically during the run, the
adaptive code yields minimum execution time without taking a
complex global view of the runtime environment.

Table 4 shows the predicted and measured results of applying this
near-optimal approach. The first eleven rows show the predicted
execution time of the adaptive code, for workers that were
allocated to the non-adaptive version of ATR. For the highly
heterogeneous allocations, the ATR runtime is reduced by a factor
of greater than three when the scheduling strategy that adapts to
the worker speeds is applied. The lower part of the Table shows
measured and predicted execution times from the experimental
implementation of the adaptive scheme, along with the predicted
total execution time if these runs had been performed with the
non-adaptive code. For these somewhat less heterogeneous
processor pools, factor-of-two speedups are estimated for the
adaptive code. More significant speedups can be anticipated
when the number of allocated workers changes greatly during the
ATR execution. Table 5 also shows that, compared with ATR
execution times for parameter settings recommended in the
previous “ rules of thumb” , the new adaptive ATR has speedups
that are a factor of four to eight on homogeneous workers, or a
factor of three to four on heterogeneous workers.

5. CONCLUSION
We have performed a detailed analysis of the execution of the
ATR stochastic optimization code running in a Condor grid
environment. Initial measurements of the application, in this
work as well as in previous work, showed highly variable
execution times for key components of the algorithm, particularly
on the master processor. In previous work, this issue was
addressed by creating more parallel tasks than the number of
workers, so that workers could productively evaluate scenarios
during the long and unpredictable master computations.
However, a more detailed analysis revealed simple mechanisms
for reducing the variability of the task execution times, as well as
a more complete understanding of the complex impact of the
configuration parameters on total ATR execution time. Using the
analysis, we developed and applied surprisingly simple
performance models to determine configurations of ATR that
minimize total execution time on either static and dynamic
collections of homogeneous or heterogeneous workers.
Experiments in a local Condor pool, as well as with widely
distributed Condor flocks, indicate that total execution time is
reduced, using the simple model-based adaptive execution, by
factors of four to eight compared with the non-adaptive execution
and using previously recommended configuration parameters. In
addition, the new adaptive ATR uses a task-scheduling algorithm
that can improve the performance of other parallel grid
applications. This algorithm is currently being implemented in
the Condor-MW library. The temporarily isolated master is also a
proposed improvement in the runtime environment that could
greatly benefit other master worker grid applications.

Ongoing research includes (1) applying the ATR model to more
complex objectives, such as those that take into account the
utilization of allocated processors as well as the ATR execution
time, (2) developing models to control the adaptive execution of
other complex codes, using the same approach, which emphasizes
simplicity as well as accuracy, as we’ve used for ATR, and (3)
improvements in ATR such as new heuristics for updating the
model function m(x) and assigning partial tasks to workers to
achieve better load balancing and/or higher degrees of parallelism
in evaluating a single iterate. Although the development time for
a simple high fidelity analytic model is substantial, (a) it is still a
very small fraction of the time to design and develop a complex
code such as ATR that will potentially be used to solve many
important problems, and (b) the payoffs from the model in
optimizing the adaptive execution can be significant. We also
surmise that the LogP class of models [1][7] is a reasonable
starting point for developing other model-based adaptive codes,
since previous models of simple adaptive applications (reviewed
Section 2.3) as well as the simple model developed in this paper
for ATR, can be viewed as LogP models, and since a LogGP
model of a complex non-adaptive particle transport code [26] is
also highly accurate.

ACKNOWLEDGEMENTS
The authors thank Jeff Linderoth for many helpful discussions
concerning the ATR solution algorithms and for help in running
the experiments on widely distributed Condor flocks, and Jichuan
Chang for significant improvements to Condor-MW that enabled
this work.

Table 5: Execution Time Comparisons with Previous ATR
(SSN, N=40,000, 50 Workers)

Original ATR Recommended

Values of B, G, and T
 Execution Time
(T = 100, G = 25)

Reduced Debug Default Debug

Worker Pool

B=3 B=6 B=3 B=6

New Adaptive
ATR

Execution Time

Homogeneous 61 min 92 min 68 min 149 min 18 min

Heterogeneous 80 min 112 min 25 min

REFERENCES
[1] Alexandrov, A., M. Ionescu, K. E. Schauser, and C.

Scheiman, “ LogGP: Incorporating Long Messages into the
LogP Model” , Proc. 7th Ann. ACM Symp. on Parallel
Algorithms and Architectures, Santa Barbara, CA, July 1995.

[2] Allen, G., W. Benger, T. Goodale, H. Hege, G. Lanfermann,
A. Merzky, T. Radke, E. Seidel, and J. Shalf, “ The Cactus
Code: A Problem Solving Environment for the Grid” ,
Proceedings of the 9th IEEE Int’l. Symposium on High
Performance Distributed Computing, Pittsburgh. 2000.

[3] Berman, F. and R. Wolski, “ Application –Level Scheduling
on Distributed Heterogeneous Networks” , Supercomputing
November, 1996.

[4] Birge, J. R., C. J. Donohue, D. F. Holmes, and O. G.
Svintsiski, “ A parallel implementation of the nested
decomposition algorithm for multistage stochastic linear
programs,” Mathematical Programming 75 (1996), pp.327-
352.

[5] Birge, J. R. and L. Qi, “ Computing block-angular Karmarkar
projections with applications to stochastic programming,”
Management Science 34 (1988), pp. 1472-1479.

[6] Chang, F. and V. Karamcheti, “ A Framework for Automatic
Adaptation of Tunable Distributed Applications” , Cluster
Computing: The Journal of Networks, Software and
Applications, May, 2001.

[7] Culler, D., R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. Von Eiken, “ LogP:
Towards a Realistic Model of Parallel Computation” , Proc.
4th ACM SIGPLAN Symp. On Principles and Practice of
Parallel Programming (PPoPP ’93), San Diego, CA, May
1993.

[8] Dail, H., G. Obertelli, F. Berman, R. Wolski, A. Grimshaw,
“ Application-Aware Scheduling of a Magnetohydrodynamics
Application in the Legion Metasystem” , Proc. 9th
Heterogeneous Computing Workshop, May 2000.

[9] Epema, D. H. J., M. Livny, R. van Dantzig, X. Evers, and J.
Pruyne, “ A worldwide flock of Condors: Load sharing
among workstation clusters,” Journal on Future Generation
Computer Systems 12 (1996), pp. 67-85.

[10] Foster, I. and C. Kesselman, “ The Globus Project: A Status
Report,” in Proceedings of the Heterogeneous Computing
Workshop, IEEE Press, 1998, pp. 4-18.

[11] Fragniere, E., J. Gondzio, and J.-P. Vial, “ Building and
Solving Large-Scale Stochastic Programs on an Affordable
Distributed Computing System,” Annals of Operations
Research (2000).

[12] Goux, J.-P., S. Kulkarni, J. Linderoth, and M. Yoder, “ An
enabling framework for master-worker applications on the
computational grid,” Proceedings of the IEEE Symposium
on High-Performance Distributed Computing, 2000.

[13] Grimshaw, A. S., Wm. A. Wulf, and the Legion Team,
“ Legion: The next logical step toward the world-wide virtual
computer,” Communications of the ACM 40 (1997).

[14] Heymann, E., M. Senar, E. Luque, and M. Livny, “ Adaptive
Scheduling for Master-Worker Applications on the
Computational Grid” , GRID 2000.

[15] Kapadia, N. H., J. A. B. Fortes, and C. E. Brodley,
“ Predictive Application-Performance Modeling in a
Computational Grid Environment” , 8th IEEE Int’l.
Symposium on High Performance Distributed Computing,
August 1999.

[16] Keleher, P. J., J. K. Hollingsworth, and D. Perkovic,
“ Exposing Application Alternatives” , 19th Int’l Conference
on Distributed Systems, 384-392, June 1999.

[17] Lan, Z., V. E. Taylor, “ Dynamic Load Balancing of SAMR
Applications on Distributed Systems” , Proc.
Supercomputing 2001.

[18] Linderoth, J. and Wright, S. J., “ Decomposition Algorithms
for Stochastic Programming on a Computational Grid,”
Preprint ANL/MCS-P875-0401, MCS Division, Argonne
National Laboratory, April, 2001., University of Wisconsin-
Madison, October, 2001.

[19] Livny, M., J. Basney, R. Raman, and T. Tannenbaum,
“ Mechanisms for High-Throughput Computing,” SPEEDUP
11 (1997).

[20] Ribler, R. L., H. Simitci, D. A. Reed, “ The Autopilot
Performance-Directed Adaptive Control System” , Future
Generation Computer Systems, special issue (Performance
Data Mining), Volume 18, Number 1, 2001. pp. 175-187.

[21] Ripeanu, M., A. Iamnitchi, “ Cactus Application:
Performance Predictions in a Grid Environment” ,
Conference on Parallel Computing, 2001.

[22] Salmon J.J., Warren M.S., Winckelmans G.S., Fast Parallel
Tree Codes For Gravitational And Fluid Dynamical N-Body
Problems, Int J Supercomputing Apps. 8: (2), pp. 129-142,
1994.

[23] Smallen, S., H. Casanova, F. Berman, “ Applying Scheduling
and Tuning to On-line Parallel Tomography” ,
Supercomputing 2001.

[24] Spring, N. and R. Wolski, “ Application Level Scheduling of
Gene Sequence Comparison on Metacomputers” , Proc. 12th
ACM Int’l. Conf. on Supercomputing, July 1998.

[25] Su, A., F. Berman, R. Wolski, and M. M. Strout, “ Using
AppLeS to Schedule Simple SARA on the Computational
Grid” , UCSD Tech Report,
http://apples.ucsd.edu/netpubs.html, February 1999.

[26] Sundaram-Stukel, D., and M. Vernon, “ Predictive Analysis
of a Wavefront Application Using LogGP” , Proceedings of
7th ACM SIGPLAN Symposium on Principles and Practices
of Parallel Programming, May 1999.

[27] Vraalsen, F., R. A. Aydt, C. L. Mendes, and D. A. Read,
“ Performance Contracts: Predicting and Monitoring Grid
Application Behavior” , Proceedings of the 2nd Int’l.
Workshop on Grid Computing, November 2001.

