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ABSTRACT 
This paper develops a performance model that is used to control 
the adaptive execution the ATR code for solving large stochastic 
optimization problems on computational grids. A detailed analysis 
of the execution characteristics of ATR is used to construct the 
performance model that is then used to specify (a) near-optimal 
dynamic values of parameters that govern the distribution of 
work, and (b) a new task scheduling algorithm. Together, these 
new features minimize ATR execution time on any collection of 
compute nodes, including a varying collection of heterogeneous 
nodes.  The new adaptive code runs up to eight-fold faster than 
the previously optimized code, and requires no input parameters 
from the user to guide the distribution of work. Furthermore, the 
modeling process led to several changes in the Condor runtime 
environment, including the new task scheduling algorithm, that 
produce significant performance improvements for master-worker 
computations as well as possibly other types of grid applications.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modeling Techniques; 
C.1.4[Parallel Architectures]: Distributed Architectures; 
G.1.6[Optimization]: Stochastic Programming. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Parallel algorithms, parallel application performance, stochastic 
optimization, adaptive computations, grid computing.  

1. INTRODUCTION 
This paper develops a model for near-optimal adaptive control of 
the state-of-the-art stochastic optimization code ATR [18] on Grid 
platforms such as Condor [19], Globus [10], or Legion [13], in 
which the number and capabilities of the distributed hosts that 
execute ATR varies during the course of the computation.   

Stochastic optimization uses large amounts of computational 
resources to solve key organizational, economic, and financial 
planning decision problems that involve uncertain data. For 

instance, an approximate solution of a cargo flight scheduling 
problem required over 30 hours of computation on four hundred 
processors.  To find more accurate solutions (in which a wider 
range of scenarios is considered), or to verify the quality of 
approximate solutions, may require vastly greater resources.  The 
aim is to find the decision that optimizes the expected 
performance of the system across all possible scenarios for the 
uncertain demands. Since the number of scenarios may be very 
large (typically 104 to 107), evaluation of the expected 
performance (which requires evaluation of the performance under 
each scenario) can be quite expensive. ATR is also representative 
of a class of iterative algorithms that (1) have a basic fork-join 
synchronization structure, (2) require an unpredictable number of 
iterations to converge to a solution, and (3) can adjust the number 
and sizes of the tasks that are forked per iteration.    

Computational grids running middleware such as Condor 
currently provide one of the most attractive environments for 
running large compute-intensive applications. These grids are 
inexpensive, widely accessible, and powerful.  Over time, 
applications submitted using grid middleware are given a “fair 
share” of the computational resources that are not being used by 
higher priority computations.  Applications like ATR can obtain 
large quantities of processing power easily and inexpensively. 

To run efficiently in a grid environment, the application must be 
able to execute on a heterogeneous collection of hosts whose size 
varies unpredictably during execution. Moreover, it should be 
able to adapt to the changes in the size and composition of the 
collection of hosts, as well as to changes in the computational 
demands the algorithm, as it executes. It may adapt, for instance, 
by changing the distribution of work among the hosts. 

It is unknown how to develop an adaptive version of a stochastic 
optimization tool such as ATR that minimizes total execution time 
in a grid environment. The problem is particularly complex 
because the parameters that govern the amount and distribution of 
work also affect intrinsic performance of the algorithm (such as 
the time to initialize each iteration and the number of iterations to 
reach convergence) in ways that are not easily quantified. 
Furthermore, the runtime environment typically includes support 
functions that add unpredictable delays to task execution times. 

Previous work [18] in developing the ATR algorithm for Condor 
platforms has relied on simple task scheduling and extensive 
experimental measurements of total application running time as a 
function of (1) the average number of allocated compute nodes, 
and (2) the fixed (i.e., non-adaptive) values of the ATR 
parameters that define the number and composition of the parallel 
tasks in the computation.  These experiments have resulted in 
rules of thumb for selecting the ATR parameters as a function of 
the number of compute nodes allocated. For example, when the 
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application runs on X ≤ 100 distributed Condor nodes, the rules 
provide parameters to ensure that 2X to 5X parallel tasks are 
available for processing at any given time, in order to keep 
processor efficiencies high in the presence of the high variability 
in the task execution times.  Previous studies concerning adaptive 
control of distributed applications (e.g., [6][14][20]) have 
proposed similar kinds of experimentally determined rules of 
thumb. Development of adaptive codes that minimize total 
execution time for complex applications, based on more precise 
modeling and adaptation strategies has, to our knowledge, not 
previously been investigated.  

This paper develops a precise and accurate performance model of 
ATR and then uses the model to develop an adaptive version of 
the code that minimizes the total execution time for a large class 
of planning problems, on any collection of compute nodes 
including a varying number of heterogeneous nodes.  The new 
adaptive code does not require any user input to guide the amount 
and distribution of work, and implements parameter settings quite 
different from those obtained from the “rules of thumb” 
developed previously. The new adaptive code also uses (1) a 
higher performance task scheduling strategy, and (2) a reduced 
debug I/O level, and (3) a proposed simple change in the Condor 
runtime system support that reduces needless overhead on the 
master node.    The latter two changes, motivated by the 
development of the ATR performance model, greatly improve task 
execution times as well as the predictability of the task execution 
times.  All three changes can greatly improve other grid 
applications as well as ATR.  The new adaptive code, together 
with the runtime system change, reduces total execution time 
compared to the previously optimized code by factors of six or 
more, depending on the planning problem and grid configuration.  

The remainder of this paper is organized as follows.  Section 2 
provides an overview of the ATR application, the Condor runtime 
environment, and related work in performance of adaptive grid 
codes.  Section 3 describes the detailed measurement-based 
performance analysis of ATR needed to develop the model.  
Section 4 describes, validates, and applies the model to select 
near-optimal configurations for ATR on a sizable Condor pool.  
Conclusions of the work are stated in Section 5. 

2. BACKGROUND 
Sections 2.1 and 2.2 briefly describe the ATR stochastic 
optimization application, the Condor system, and the MW runtime 
support library for master-worker computations. Section 2.3 then 
summarizes related work in performance modeling and 
development of large distributed applications. 

2.1 ATR 
ATR is an iterative “asynchronous trust-region” algorithm for 
solving the fundamental stochastic optimization problem: two-
stage stochastic linear programming with recourse, over a discrete 
probability space. The algorithm is described in detail in [18]. 
Here we discuss those aspects of the algorithm that are relevant to 
selecting the performance-related algorithmic parameters; in 
particular, the parameters that control the number and 
composition of the parallel tasks in the execution.   

The problem is as follows: Given a set of N scenarios iω , 
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To evaluate the function )(xQ  thus requires the solution of 

N independent second-stage linear programs. When N is large, 
this process can be computationally expensive.  

The function )(xQ is a piecewise linear, convex function.  The 
ATR algorithm builds up a lower bounding function m(x) for the 

true objective function )(xQxcT + , using information gathered 
during evaluation of the second-stage linear programs.   

The basic structure of the algorithm, illustrated in Figure 1, is that 
a master processor computes a new candidate iterate x by solving 
the trust-region subproblem defined below. Worker processors 
then evaluate the second-stage linear programs for this x and 
produce the information needed to refine the model function m(x).  
The master processor updates this model function asynchronously, 
as information arrives from each worker processor. Outdated 
information may also be deleted from m(x) on occasion. When 
sufficient new information has been received (i.e., after all or most 
of the processors working on evaluation of x have returned their 
results), the master computes a new iterate x. The process then 
repeats. 

New iterates x are generated by solving subproblems of the form: 
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∞
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where Ix  is the “incumbent” (the best iterate identified by the 
algorithm to date), while ∆  is the “trust-region radius,” which 
defines the maximum distance we can move away from the 
incumbent on the current step.   

In general, the more scenarios N that can be included in the 
formulation, the more realistic is the model. Although the problem 
becomes larger and harder to solve as N increases, this effect is 
less marked if we have a good initial guess of the solution. A good 
strategy is therefore to start by solving an approximate problem 
with a modest value of N (1000, say), and use the resulting 
approximate solution as the starting point for another approximate 
problem with a larger number of scenarios (5000, say). This 
procedure can be repeated with progressively larger N.   

To reduce the time to compute each new iterate x, the N scenarios 
are partitioned into a fixed set of T tasks denoted by TNNN ,..., 21  

where each jN denotes a set of  scenario indices. For a given task j 

a worker computes the following partial sum of )(xQ : 
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The worker also computes one partial subgradient (also known as 
a “cut”) for the task. This information is used by the master to 
update the partial model function )(][ xm j  corresponding to task j. 



The complete model function )(xm  is then 
Tc x  plus the sum of 

the )(][ xm j ’s over all the tasks Tj ,...2,1= . 

ATR enables additional parallelism by allowing more than one 
candidate iterate x to be evaluated at the same time. In order to 
generate an additional candidate iterate, the master processor 
computes the new iterate before all of the scenarios for the current 
candidate have been evaluated, as illustrated in Figure 2.  ATR 
thus creates and maintains a basket of B candidates (with B 
between 1 and 15).   

In the previous non-adaptive version of ATR, tasks are grouped 
into G equal-size task groups, each containing T/G tasks. Each 
task group is a unit of work that is sent to a worker.   For example, 
a possible configuration for N = 10,000 is T = 100 and G = 50, so 
that each task group contains two tasks, each with 100 scenarios.    

We assume N to be fixed in our performance analysis. We can 
affect the amount and distribution of work, by varying the 
parameters B, T, and G.  By increasing B, new iterates can be 
solved on the workers while the master is processing the results 
from other iterates, and a slow worker will only slow down the 
evaluation of one of the parallel iterates.  By increasing T, more 
cuts are computed per value of x, making the model function 

)(xm  more expensive to compute (by the master) but also a better 

approximation to the true objective )(xQ , which generally reduces 
the number of iterations needed to solve the problem. By 
increasing G, we obtain more task groups, with fewer tasks (and 
therefore smaller execution times) for each group.   

Previous evaluations of ATR on locally and widely distributed 
Condor-MW grids have shown that for 50-100 workers, the best 
execution times were obtained with three to six concurrent 
candidates, 100 tasks, and 25 to 50 task groups.   

The goal in this research is to create a performance model to 
select the basket size B, the number of tasks, T, and the number of 
task groups G, statically at program initiation time or dynamically 

during the execution of the job, so as to minimize total ATR 
execution time for any given planning problem of interest.  

2.2 Condor/PVM and MW 
The Condor system [19] manages heterogeneous collections of 
computers, including workstations, PC clusters, and 
multiprocessor systems. Mechanisms such as glide-in or flocking 
[9] are used to include processors from separate sites in the 
resource pool.  When a user submits a job to the system, Condor 
identifies suitable processors in the pool and assigns the 
processors to the job. If a processor executing the job becomes 
unavailable (for example, because it is reclaimed by its owner), 
Condor migrates the job to another node in its pool, possibly 
restarting from a checkpoint that it saved at an earlier time. The 
size of the pool available to a particular user can change 
unpredictably during a computation, although users can exercise 
some control over the resources devoted to their application by 
specifying the number, speed, and/or type of workers. 

MW [18] is a framework that facilitates implementation of 
master-worker applications on a variety of computational grid 
platforms.  In this study, we use the version of MW that is 
implemented for Condor-PVM [32], in which the master runs on 
the submitting host, and the worker tasks on other processors 
drawn from the Condor pool. Condor-PVM primitives are used to 
buffer and pass messages between master and workers. 

2.3 Related Work 
Parallel stochastic optimization algorithms have been investigated 
during the past 15 years. In [4], an algorithm related to ATR (but 
without the trust region and asynchrony features) is applied to 
multistage problems, and implemented on a cluster of modest size. 
An earlier paper [5] describes an interior-point approach in which 
the linear algebra computations are implemented in parallel, but 
this approach does not scale well to a large number of processors. 
A small PC cluster is used in [11], where the approach is to use 
interior-point methods for the second-stage problems inexactly 
and an analytic center method for the master problem. 
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Table 1: ATR Configuration Parameters 

Symbol Definition 

N Number of scenarios evaluated per iterate 

T Number of tasks per iteration 

G Number of task groups into which scenarios are partitioned 

x Vector of candidate planning decisions; “ iterate”  

B Number of iterates that are evaluated in parallel 

 

Three approaches to adaptive software control have been explored 
in previous work, namely (1) provide an interface for the user to 
control application steering parameters (e.g., [2]), (2) use 
measured or user-provided estimates of application execution time 
as a function of system configuration, to heuristically adapt 
system resource management policies or application configuration 
parameters, automatically at runtime [17][6][14][16][20][27], or 
(3) use very simple models that compute execution time for 
alternative configurations [3][8][21][23][24][25] from user-
provided or measured deterministic processing and 
communication requirements per task, possibly adjusted for 
runtime-measured node processing capacities and available 
network bandwidth.  

Regarding history-based heuristic adaptive control algorithms, 
Ribler et al. [20] describe the Autopilot system that filters data 
from instrumented client tasks (e.g., to characterize the dominant 
file access pattern) and adapts the system resource management 
policies (e.g., file prefetch policy).  The related GrADS Project 
work [27] measures the “ application signature”  (i.e., processing, 
I/O, and communication cycles as a function of time), and uses 
fuzzy logic to determine whether the rates for each task are within 
ranges defined by user-specified “ performance contracts” .   
Algorithms for changing the configuration when the contract is 
violated are not addressed in that work.  Heymann et al. [14] 
measure Condor-MW task execution times, and worker node 
efficiencies, in each iteration. Results from synthetic MW 
applications are used to estimate the number of worker nodes to 
allocate to achieve 80% efficiency with no more than a 10% 
increase in iteration execution time, based on the relative 
processing times of the largest 20% of the tasks.  This algorithm 
assumes each task performs (approximately) the same work in 
successive iterations, homogeneous processing nodes, and that the 
application completes eachiteration before starting the next 
iteration.  Lan et al. use computation times measured in previous 
iterations to decide whether to redistribute work in the next 
iteration of an astrophysics code [17].  Chang and Karamcheti [6] 
propose an application structure containing a “ tunability 
interface”  and an expression of user preferences.  Previous 
application execution measurements, runtime resource and 
application monitoring, and user preferences are used to 
automatically select certain parameters at runtime, for example to 
select the image resolution for the available processing capacity 
and a user-specified image transmission time. In the Harmony 
system, Keleher et al. [16] propose an approach which the user 
specifies the processing and communication time, or provides a 
model to predict these values at runtime, for each possible 
multidimensional configuration of the application.  The system 
then dynamically allocates resources to achieve a particular 
system objective, such as maximizing throughput.   

Previous models for adaptive runtime control compute node 
processing time and communication time per iteration, using 
known and/or measured quantities per data point, or image pixel, 
times the number of data points or pixels assigned to the node.  
For example, Ripeanu et al. [21] compute the execution time for a 
load-balanced finite difference application as a function of  (a) the 
data assigned to each node, (b) redundant work computed by 
other nodes to reduce communication between nodes, and (c) the 
communication time.  These calculations are used at runtime to 
select the amount of redundant work per node for the measured 
Grid communication costs.  The AppLeS project has used similar 
calculations to determine how many and which available compute 
or data server nodes should be assigned to a simple adaptive 
iterative Jacobi application [3], a gene sequence comparison code 
[24], a magnetohydrodynamics application [22], an adaptive 
parallel tomography image reconstruction application [23], and 
adaptive data server selection in the SARA application [25].  For 
each of these applications, a linear optimization model is 
formulated to compute the work assigned to each node per 
candidate system configuration and measured node processing 
and communication capacities, to achieve an objective such as 
minimizing total execution time or maximizing image quality for a 
user-specified target refresh frequency.     

The approach in this paper is most similar to the model-based 
adaptive runtime control in [23].  However, we are targeting the 
much more complex ATR application that does not have a known 
model for estimating execution time as a function of system 
configuration (i.e., parameters B, T, G, and set of workers).  
Furthermore, we develop a model that more efficiently determines 
how to allocate work to available compute nodes without solving 
an optimization problem over all possible system configurations.   

3. ATR EXECUTION TIME ANALYSIS 
In this section we analyze ATR task execution times and 
communication latencies to determine which aspects of the 
computation and communication need to be modeled, and how to 
model the total ATR execution time. The analysis is guided by the 
task graphs in Figures 1 and 2, which illustrate the overall 
structure of a parallel ATR execution, for basket size B equal to 
one and two, respectively.  (Table 1 summarizes the notation.)  
The basic functions of the master process are to (a) update the 
function m(x) each time a worker processor returns the results of 
executing a group of tasks, and (b) compute a new iterate x when 
all T tasks associated with a particular iterate x have been 
completed. 

In the existing non-adaptive version of ATR, the parameters B, G 
and T are specified as inputs to the application and are fixed 
throughout the run. G specifies the number of task groups, which 
can be evaluated in parallel (by the workers).  Each task group 
contains T/G tasks each containing N/T scenarios. Since each 
individual task generates a subgradient (or cut), each task group 
returns T/G subgradients.  

The goals of this work are to determine: 

• whether the values of B, G, T, and the number of tasks per 
group can be determined so as to minimize total ATR execution 
time on a collection of workers, 

• whether near-optimal adaptive values of the parameters can be 
computed at runtime as the collection of workers changes, and  



• how much performance improvement can be gained from the 
adaptive version of the code.  

The challenge for modeling and minimizing the overall ATR 
execution time is that previous measurements of ATR executions 
[18] have revealed that it is difficult to quantify (a) how master 
execution times increase as T increases, (b) how the number of 
iterates that need to be evaluated increases as B increases or T 
decreases, and (c) the high degree of unpredictability in the 
execution times of the master and workers, which is possibly due 
to the runtime environment.  These issues are addressed below; 
Section 3.1 analyzes worker execution times, while Section 3.2 
analyzes master execution times. Section 3.3 analyzes Condor-
PVM communication costs between a pair of local hosts, as well 
as for a pair of widely separated hosts, for message sizes that are 
transmitted between the master and a worker in the ATR 
application. These measured computation and communication 
times are used in Section 4 to develop a performance model and 
optimized adaptive parameter values for the ATR code.  

A standard approach in our local Condor pool is to submit a 
Condor job from a shared host, which becomes the master 
processor. Because the shared host typically has a relatively high 
CPU load, master processing times might be highly variable 
and/or large.  To avoid this problem, unless otherwise noted, the 
ATR measurements reported in this section are submitted from a 

single-user workstation that is free of other user processes during 
the run.  We refer to this setup as a “ light load”  master processor.   

The initial analysis of execution times is based on several 
planning problems, several values of N (numbers of scenarios), a 
basket size B = 1, a wide range of values of T and G, and a single 
worker node. After analyzing the impact of T and G with B = 1, 
we investigates larger values of B.  The use of a single worker 
ensures that the measured master task execution times are not 
inflated by unpredictable interrupts from workers that have 
finished evaluating other tasks.  Once the basic task execution 
times are understood, interrupts can be modeled as needed. 

3.1 Worker Execution Times 
Table 2 summarizes the average, minimum, maximum, and 
coefficient of variation (CV) in the execution time for the two 
principal tasks carried out by the master, namely, updating m(x) 
and computing a new iterate.  The table also shows the average 
and CV of the time for a worker to evaluate a task group, over all 
of the iterations, for several different values of G and T.  Similar 
results were also obtained for other planning problems, other 
values of the number of scenarios N, runs at different times of the 
day, and for many different worker processors.   

The measurements show that worker execution times in each 
experiment have low variability (i.e., are highly predictable).  
Furthermore, results in Figure 3 show that, in the common case 
that N/G ≥ 25, the average worker execution time is 
approximately linear in the number of scenarios evaluated, N/G, 
as well as in the peak speed of the processor.  The second and 
third rows of Table 2 (as well as other results omitted to conserve 
space) demonstrate that worker execution time is independent of 
T.   

The above results indicate that the execution time for a given ATR 
task on a given worker can be predicted from a benchmark that 
contains at least 25 scenarios, which can be run on the worker 
when it is first assigned to the ATR application.  We note  that the 
deterministic worker execution times are due to the fact that the 
Condor job scheduler uses space-sharing, rather than time-
sharing, for grid nodes that are reasonably well utilized. As a 
consequence, interference from other jobs need not be modeled in 
predicting ATR execution times on Condor. 

3.2 Master Execution Times 
Table 2 shows that the master processing times, both for updating 
m(x) and for computing a new iterate, are highly variable. It might 
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Figure 3: Worker Execution Time 
 (SSN Planning Problem, N=10,000, B=1, T/G=1) 

Table 2: Example Measured Execution Times  
(SSN, N=10,000) 

 
Master Time to Update Model 

Function m(x) (msec) 
Master Time 

 to Compute a New Iterate, x (sec) 
Worker Execution 

Time (sec) G T/G T 

avg min max CV num it. avg min max CV avg CV 

25 1 25 6.51 3.36 915.00 4.81 82 0.38 0.01 2.06 1.00 20.54 0.08 

50 1 50 6.04 3.56 1405.46 5.71 47 1.32 0.01 3.05 0.68 10.56 0.02 

50 2 100 6.83 3.64 1936.09 0.79 32 2.42 0.05 7.60 0.79 10.36 0.06 

100 1 100 5.94 3.40 1162.59 40.20 31 1.57 0.05 3.41 0.83 5.19 0.05 

200 1 200 6.12 3.84 2092.39 4.89 25 2.25 0.03 6.25 0.71 2.69 0.06 

400 1 400 6.74 3.30 2411.61 3.92 21 3.33 0.05 13.27 0.75 1.35 0.08 

 



appear that the variability in the time to update m(x) is not 
important, since the average time required for each update is only 
a few milliseconds.  However, since the master needs to perform 
this update G times per iteration (each time a worker returns the 
results from evaluating a task group).  Since G may be 100 or 
more, and since the largest update times are on the order of 1-2 
seconds (as shown in Table 2), the cumulative update time can 
have a significant impact on total ATR execution time. In Section 
3.2.1 we (a) analyze the causes of the execution time variability; 
(b) propose two changes in the runtime system to reduce the 
variability; and (c) characterize this task execution time more 
precisely.  We note that experimentally observed variability in 
worker execution times in previous work may actually have been 
due to variability in the master processing time for updating m(x). 

As noted in Section 2.1, as T increases, the average time to 
compute a new iterate increases, while the number of iterations 
decreases. This is because T cuts are added to the model function 
m(x) at each iteration, so a larger T causes the model function to 
become a closer approximation to the true objective function after 

fewer iterations, while making each trust-region subproblem 
harder to solve. The time to compute the new iterate varies 
between under one second and three to four times the average 
value.  We investigate these variations in more detail in Section 
3.2.2 with the goal of understanding how to model these 
variations as a function of G and T.     

3.2.1 Time to Update m(x) 
Figure 4 provides example histograms of the master execution 
times for updating the model function m(x) during three different 
measurement runs.  The histogram for the lightly loaded (700 
MIPS) master with default debug I/O corresponds to the data in 
Table 2 for G = 50 and T/G = 1.  Even greater variability than 
shown in this histogram is observed if the master is one of the 
shared Condor hosts commonly used to submit Condor jobs.   

Further investigation revealed that the value of the Condor “ debug 
I/O flag”  commonly used for MW applications produces vast 
quantities of debug output. Figure 4 provides a second histogram 
(“ lightly loaded master with reduced debug I/O” ) for a run with a 
reduced level of debug I/O (level 5) from Condor/MW, which still 
produces a significant log of the MW execution events.  The 
reduced debug I/O improves the average time to update m(x), but 
not the variability in the execution time. 

To understand the high variability in the observed execution 
times, we note that due to the worker execution times (see Table 
2), there can be significant periods of time (on the order of 
seconds) when the ATR master is waiting for results from the 
workers.  Since the master processor is part of the Condor pool, 
we surmised that the high variability in the time to update the 
model function shown in Figure 4 is at least partly due to Condor 
administrative functions or to other Condor jobs that may run on 
the master processor during these periods.  The third histogram in 
Figure 4 shows that using an isolated master node, which is not 
available for running other Condor jobs or administrative 
functions during the ATR run, greatly reduces the variability as 
well as the average execution time to update m(x).  Thus, we 
proposed a new feature for Condor that allows a user-owned host 
serving as the (lightly loaded) MW master to be “ temporarily 
unavailable”  for running other Condor jobs.     
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Figure 5:  Example Histograms of Times to Compute a New Iterate, x 



For the isolated master configurations, the average time to update 
m(x) is 150-500 microseconds, depending on the value of T/G.  In 
this case, the overall ATR execution time is dominated by the 
worker execution times and the time for the master to compute 
new iterates (see Table 2). 

3.2.2  Time to Compute a New x 
Figure 5 shows a histogram of the time to compute the next 
iterate, for a given planning problem and a given set of input 
parameters. Figure 5(a) shows that an isolated master exhibits 
lower mean and variability in execution time for computing the 
new iterates than the same master in a lightly loaded (non-
isolated) configuration.  The lower variability makes it easier to 
optimize the application parameters that control parallelism.  
Except as noted, all measurements of ATR below are obtained 
with the isolated master and the reduced (but still substantial) 
debug I/O level.   

Figures 5(b) and 6(a) show histograms of the execution times for 
computing new iterates x, for the two very different planning 
problems 20term and SSN. In Figure 5(b), the starting point was 
“ blind”  (that is, far from the solution), while in 6(a) it was chosen 
as the solution of the corresponding planning problem for a 
smaller number of scenarios N. In both figures, we see a wide 

variability in the time required to compute the next iterate from 
one iteration to the next, but the trend is similar. Specifically, the 
time required tends to increase steadily, then drops off sharply  
and becomes minimal for a (possibly long) sequence of iterates. 
The times increase again for the last few iterations. Similar trends 
were also observed in other planning problems, and many other 
starting points and parameter settings. 

An ad hoc adaptive algorithm might estimate the average time to 
compute the next few iterates from the time to compute the 
current iterate (with fairly high accuracy in most iterations). It 
could use this estimate to adjust the parameters governing 
parallelism in evaluation of the current iterate(s) (namely, B and 
G) so as to achieve a desired trade-off between processor 
efficiency and expected total time during the next iteration.  

We develop an alternative approach in Section 4 that is based on 
the following observations. Figures 6(a)-(c) illustrate the 
dependence between the parameter T and the number of iterations 
and time required to compute each new iterate, for the SSN 
planning problem and a fixed starting point.  Note that increasing 
T causes (a) a diminishing decrease in the number of iterations, 
and (b) a diminishing increase in the time to compute each new 
iterate.  The overall effect, illustrated in Figure 6(d), is that the 
total master processing time for computing new iterates grows 
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Figure 6:  Impact of T on Time to Compute New x  (SSN Planning Problem, N=10,000) 

 



slowly with T.  Other curves omitted for clarity show that the time 
to compute the next iterate is largely independent of G. These 
observations, which hold for the three planning problems and all 
ATR parameter values that we analyzed, are the key insights 
needed to optimize B, G, and T in Section 4. 

3.2.3 Impact of Basket Size (B) 
By setting B = 2, the workers can evaluate the scenarios 
corresponding to one iterate x, while the master computes a new 
value of x from the latest subgradient information.  Since, for 
practical planning problems, the master execution times tend to be 
either under one second or at least as large as the worker 
execution times, B should be set to at most two in order to 
improve overall execution time.  However, Figure 7 shows that 
the total number of iterates n required for convergence of ATR 
nearly doubles as B doubles. (Similar behavior was observed for 
other planning problems and many values of N.)  Thus, the total 
execution time will not improve for B greater than one, a fact that 
we have verified experimentally.  

3.3 ATR Communication Times 
Figures 8(a) and (b) provide the measured CondorPVM round trip 
time for sending a message of a given size to another host and 
receiving back a small message, a process that mimics the round-

trip communication between the master and a worker in ATR.   
Figure 8(a) shows the results for hosts interconnected by a high 
speed local network; Figure 8(b) provides the results for a host at 
the University of Wisconsin sending to a host in Bologna, Italy. 

For ATR planning problems, the size of the message from the 
master to the worker typically ranges from 250 bytes to 12 KB.  
Furthermore, sending a message to a given worker is overlapped 
with the execution time of the worker that received the previous 
message. Thus, there is approximately one round-trip time per 
iteration in the critical path of an ATR computation.  A 
comparison of the round trip time, worker execution times, and 
master execution times suggests that communication costs are 
negligible for practical values of N, G, and T, even over wide area 
networks. 

4. NEAR-OPTIMAL ADAPTIVE ATR 
The measurements reported in Section 3 have provided the data 
needed to create a model of total ATR runtime.  To summarize: 

• Worker execution times are deterministic, approximately linear 
in the number of scenarios per task group (N/G), and 
independent of the number of tasks in the group (T/G).   

• Communication costs between the master and workers are 
negligible (over a high speed network), even when the master 
and workers are widely distributed.  We validate this again 
below for an ATR run on a widely distributed  Condor flock. 

• The master processing time for updating the model function, 
m(x), each time a worker returns its results, is 100-500 msec 
and can be omitted in a (first-cut) model of total ATR run time. 

• The time required for the master to solve the trust-region 
subproblem to compute each new iterate, x, is a significant 
component of total ATR execution time. Moreover, the total 
master execution time to compute all iterates increases slowly 
with T, while there is a significant decrease in the number of 
iterates (n) that need to be considered as T increases, up to 
about T=400 (or until N/T decreases to a few tens).  

These observations motivate a surprisingly simple first-cut model 
of the ATR execution time that can be used to optimize the 
execution of ATR on various grid configurations.  Because 
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interrupts, communication costs, and variability in task execution 
times are not modeled, the model is even simpler than the LogGP 
type of model than has been used for other large complex 
applications [1, 26]. Section 4.1 presents the model and validates 
that it is sufficiently detailed to estimate overall ATR execution 
time, on widely distributed Condor flocks as well as on a local 
Condor pool.  Sections 4.2 and 4.3 demonstrate how the model, 
together with improved task scheduling, can be used to minimize 
ATR execution time on a varying set of homogeneous grid nodes 
and a varying set of heterogeneous grid nodes, respectively. 

4.1 Model Validation 
For fixed values of N, G, and T, and a homogeneous set of G 
worker nodes, a first-cut model of total ATR running time is 
simply WM ntt + , where Mt  is the total master execution time for 

computing new iterates, n is the number of iterations, and Wt  is 

the time needed by a worker to evaluate a group of tasks 
containing N/G scenarios. Table 3 evaluates the accuracy of this 
model, which ignores interrupts, communication overhead and 
small master execution times to update m(x).  The table compares 
measured ATR execution times against execution time computed 

from the model using the measured components ( Mt and Wt ), for 

several different configurations of the planning problem SSN, as 
well as two representative versions of the problems Storm and 20-
term.   The experiments in the table were run on a local Condor 
pool or one of two Condor “ flocks”  in which the master processor 
is a local (isolated) master while the homogeneous workers are 
compute nodes at the Albuquerque High Performance Computing 

Center or at Argonne National Laboratory.  In the flock 
experiments, communication between the master and the workers 
is via the Internet, so communication costs are more similar to 
those graphed in Figure 9(b) rather than those in Figure 9(a).   

Table 3 shows that over a wide range of total application 
execution times, from just a few minutes to over an hour, the 
runtime estimates obtained from the simple model are within 
about 10% of the measured execution times, even when the 
workers are geographically distant from the master.    

If we employ fewer workers K than the number of task groups G, 
then the model of the non-adaptive ATR running time is modified 

as follows: /M Wt nt G K+    . The last row of Table 3 (and 

other similar experiments omitted to conserve space) validates this 
simple extended model, showing that it captures the principal 
components of total run time. 

For fixed N, G, and T, and a set of heterogeneous workers, the 

total execution time is estimated by 
max

M Wt nt+ . Table 4 

validates this model for collections of heterogeneous nodes from 
our local Condor pool.  We obtained these results by requesting G 
workers, without restricting the type of worker nodes assigned.  In 
this case, Condor allocated a wide variety of processors, ranging 
in speed from 186 MHz to 1.7 GHz.  For the non-adaptive version 
of ATR, the total execution times estimated are generally as 
accurate as for the homogeneous workers, unless the problem size 
is fairly small (i.e., execution time is less than 10 minutes) and the 
number of workers G is large.  In these cases, the worker tasks are 

Table 3: Simple Model Estimates of Total ATR Execution Time for Homogeneous Workers 
 

Compute New x 
(sec) 

Total Execution Time 
(min) Planning 

Problem 
N T G 

Number 
of 

Workers num it. 
(n) 

Total 
(tM) 

 
Benchmark 
Avgerage 
(tW) (sec) Model Measured 

Note 

20-terms   5,000 200 50 G 597 2762.94 2.35 69.47 70.54 WI pool 

ssn 40,000 100 50 G 84 297.36 30.97 48.83 52.21 WI-NM Flock 

ssn 20,000 50 50 G 108 180.90 20.91 40.84 44.70 WI-Argonne Flock 

ssn 20,000 100 50 G 84 244.00 20.89 33.51 36.38 WI-Argonne Flock 

ssn 20,000 200 50 G 61 295.30 20.88 26.40 29.32 WI-Argonne Flock 

ssn   5,000 200 50 G 131 1076.82 3.23 25.05 26.80 WI pool 

ssn 10,000 25 25 G 104 65.43 12.95 23.75 26.77 WI pool 

ssn 20,000 400 50 G 44 441.80 20.96 22.98 24.98 WI-Argonne Flock 

ssn 10,000 50 25 G 73 59.74 12.85 16.84 18.60 WI pool 

storm 10,000 200 50 G 11 2.53 82.44 16.53 18.48 WI pool 

ssn 10,000 100 25 G 49 65.51 12.92 11.86 13.27 WI pool 

ssn 10,000 50 50 G 66 56.70 6.44 8.14 9.23 WI pool 

ssn 10,000 200 25 G 30 66.65 12.82 7.73 8.80 WI pool 

ssn 10,000 100 50 G 50 71.79 6.48 6.70 8.23 WI pool 

ssn 10,000 200 50 G 38 79.46 6.44 5.51 6.62 WI pool 

ssn 10,000 400 50 G 26 70.45 6.43 4.07 4.92 WI pool 

ssn 10,000 100 100 G 44 70.32 3.31 3.65 4.71 WI pool 

ssn 10,000 100 500 2G/3 44 64.81 6.32 10.34 12.10 WI pool 

 



small, and communication between the master and workers, which 
is ignored in the model, has a secondary but non-negligible 
impact on total running time.  Since practical problems of interest 
involve large planning problems, the model that ignores 
communication costs is used below to minimize total ATR 
execution time.    

4.2 Adaptive Code for Homogeneous Workers 
Based on the above results, we can specify an optimal adaptive 
configuration for ATR algorithm, for a given number of scenarios 
N and a number of available homogeneous workers, assuming the 
objective is to minimize the total ATR execution time.  The model 
could be applied in a similar way to achieve some other objective, 
such as a balance between minimizing execution time and 
maximizing processor efficiencies, which is a subject left for 
future work.   

To (nearly) minimize total execution time on homogeneous 
workers, B should be set to 1, the number of task groups G should 
be set equal to the number of workers, and tasks should be 
distributed equally among the workers.  T could be specified by 
the user, or can be set by the adaptive code to 200 or 400, 
motivated by the fact that, for most planning problems and T in 
this range, total master execution time does not increase greatly, 
while the number of iterations decreases significantly.  Table 3, as 
well as many other experiments omitted to conserve space, show 
that for various planning problems, number of scenarios, and 
number of workers, with B=1 and G equal to the number of 
workers, the running time decreases as we increase T in the range 
of 25-400.  Due to diminishing returns in reducing the number of 
iterations, values of T larger than a few hundred, for the 
representative planning problems studied in this paper, do not 
improve total ATR running time.  We note that if ATR is 
modified to allow G to exceed T (a change that is simple in 

principle), then ATR could still make productive use of more than 
400 workers while still using a near-optimal value of 200 – 400 
for T.   

The optimal configuration for a fixed number of homogeneous 
workers is easily adapted to the case where the number of workers 
changes during the execution of the program.  In this case, each 
worker currently available is given approximately the same 
number of tasks to evaluate, so that the time that the master needs 
to wait for results from the workers is minimized.  In the current 
version of ATR, where each task is evaluated by a single worker, 
it is valuable for T to be large (e.g., 400) because the work can be 
distributed more evenly across the workers as the number of 
workers varies.    

4.3 Heterogeneous Grids 
Table 4 shows that, unless the user requests a homogeneous 
worker pool, the processors allocated to ATR by Condor may 
have very diverse speeds, typically differing by a factor of seven 
to ten.  This is also true in other grid environments. Equal 
partitioning of the work between processors is not a particularly 
good strategy in this case, as the master processor will need to 
wait for the slowest worker to complete, leaving faster workers 
idle. 

A better approach would be to give each worker a fraction of the 
total scenarios N proportional to its speed. For instance, if we are 
evaluating N scenarios, a worker with peak processing rate Mi  
MIPS would receive (N/M) × Mi  scenarios to evaluate, where M 
is the total peak rate summed over all workers. However, the 
algorithm for computing the next iterate on the master requires T 
(i.e., the number of subgradients computed per iteration) to be 
fixed throughout the computation, and the work assigned to each 
worker must be an integral number of tasks of size N/T.  

Table 4: Predicted and Measured Total ATR Execution Time on Heterogenous Workers 
 

Worker Time (tW) (sec) 
Non Adaptive Execution Time 

(min) 
Adaptive Execution Time 

(min) 

avg min max Measured Model 
Number of 
Workers 

Measured Model 
Number of 

Workers Used 

Estimated 
Speedup 

(%) 

Problem 
Size 
(N) 

11.52 4.22 42.39 48.75 47.35 50   17.02 40 65% 10,000 

7.04 4.21 28.62 34.65 34.23 50   10.66 48 69% 10,000 

7.03 4.19 28.62 35.07 34.22 50   11.22 48 68% 10,000 

6.62 4.18 13.82 14.35 13.96 50   8.81 48 39% 10,000 

4.44 2.14 21.52 17.73 16.37 100   3.97 72 78% 10,000 

4.36 2.14 15.33 14.60 13.19 100   4.49 68 69% 10,000 

4.49 2.14 21.54 17.85 16.57 100   3.87 68 78% 10,000 

2.86 1.36 13.88 13.75 10.73 150   3.95 75 71% 10,000 

2.76 1.38 9.42 9.07 6.85 150   3.61 75 60% 10,000 

2.86 1.37 9.78 9.63 6.65 150   3.30 75 66% 10,000 

2.11 1.68 10.21 9.67 7.15 200   2.82 100 71% 10,000 

4.02 1.69 8.90   12.66 50 10.50 8.03 45 17% 10,000 

7.76 2.58 19.46   22.32 50 11.43 9.86 26 49% 10,000 

2.25 1.20 9.59   8.67 100 4.78 3.41 86 45% 10,000 

2.84 0.83 9.60   9.52 100 6.78 3.24 67 29% 10,000 

20.33 8.06 98.63   82.94 100 39.56 35.59 91 52% 100,000 
 
 



Thus, the near-optimal algorithm to minimize total execution time 
for a given collection of heterogeneous worker nodes is as 
follows. T (the number of tasks) is again chosen to be moderately 
large (e.g., 400-800), so as to create smaller tasks for balancing 
the load across the heterogeneous workers.  Each task contains 
N/T scenarios.  Using the benchmark results for each worker, 
tasks are allocated one at a time to workers, such that each task 
will have the earliest expected completion time given the task 
assignments made so far.  In this way, tasks are assigned to a 
worker in proportion to its execution time for the benchmark, 
such that the number of assigned tasks multiplied by the 
benchmark time will be approximately the same for each worker 
that is assigned at least one task.  Some of the workers with high 
benchmark times might not be assigned any tasks, while workers 
with low benchmark times may be assigned multiple tasks.   

Since this task scheduling algorithm is not implemented in the 
current MW runtime library, we implemented it inside the ATR 
application to experiment with its effectiveness. We are also 
collaborating with MW developers who are implementing this 
feature within MW. 

Since the tasks can be assigned to each worker as each new iterate 
is created, the schedule is adaptive in nature.  It also has the 
advantage of simplicity.  Although the number and computational 
speeds of the workers may change dynamically during the run, the 
adaptive code yields minimum execution time without taking a 
complex global view of the runtime environment. 

Table 4 shows the predicted and measured results of applying this 
near-optimal approach. The first eleven rows show the predicted 
execution time of the adaptive code, for workers that were 
allocated to the non-adaptive version of ATR. For the highly 
heterogeneous allocations, the ATR runtime is reduced by a factor 
of greater than three when the scheduling strategy that adapts to 
the worker speeds is applied.  The lower part of the Table shows 
measured and predicted execution times from the experimental 
implementation of the adaptive scheme, along with the predicted 
total execution time if these runs had been performed with the 
non-adaptive code.  For these somewhat less heterogeneous 
processor pools, factor-of-two speedups are estimated for the 
adaptive code.  More significant speedups can be anticipated 
when the number of allocated workers changes greatly during the 
ATR execution.  Table 5 also shows that, compared with ATR 
execution times for parameter settings recommended in the 
previous “ rules of thumb” , the new adaptive ATR has speedups 
that are a factor of four to eight on homogeneous workers, or a 
factor of three to four on heterogeneous workers.  

5. CONCLUSION  
We have performed a detailed analysis of the execution of the 
ATR stochastic optimization code running in a Condor grid 
environment.  Initial measurements of the application, in this 
work as well as in previous work, showed highly variable 
execution times for key components of the algorithm, particularly 
on the master processor.  In previous work, this issue was 
addressed by creating more parallel tasks than the number of 
workers, so that workers could productively evaluate scenarios 
during the long and unpredictable master computations.  
However, a more detailed analysis revealed simple mechanisms 
for reducing the variability of the task execution times, as well as 
a more complete understanding of the complex impact of the 
configuration parameters on total ATR execution time.  Using the 
analysis, we developed and applied surprisingly simple 
performance models to determine configurations of ATR that 
minimize total execution time on either static and dynamic 
collections of homogeneous or heterogeneous workers.  
Experiments in a local Condor pool, as well as with widely 
distributed Condor flocks, indicate that total execution time is 
reduced, using the simple model-based adaptive execution, by 
factors of four to eight compared with the non-adaptive execution 
and using previously recommended configuration parameters.  In 
addition, the new adaptive ATR uses a task-scheduling algorithm 
that can improve the performance of other parallel grid 
applications.  This algorithm is currently being implemented in 
the Condor-MW library.  The temporarily isolated master is also a 
proposed improvement in the runtime environment that could 
greatly benefit other master worker grid applications. 

Ongoing research includes (1) applying the ATR model to more 
complex objectives, such as those that take into account the 
utilization of allocated processors as well as the ATR execution 
time, (2) developing models to control the adaptive execution of 
other complex codes, using the same approach, which emphasizes 
simplicity as well as accuracy, as we’ve used for ATR, and (3) 
improvements in ATR such as new heuristics for updating the 
model function m(x) and assigning partial tasks to workers to 
achieve better load balancing and/or higher degrees of parallelism 
in evaluating a single iterate.  Although the development time for 
a simple high fidelity analytic model is substantial, (a) it is still a 
very small fraction of the time to design and develop a complex 
code such as ATR that will potentially be used to solve many 
important problems, and (b) the payoffs from the model in 
optimizing the adaptive execution can be significant.  We also 
surmise that the LogP class of models [1][7] is a reasonable 
starting point for developing other model-based adaptive codes, 
since previous models of simple adaptive applications (reviewed 
Section 2.3) as well as the simple model developed in this paper 
for ATR, can be viewed as LogP models, and since a LogGP 
model of a complex non-adaptive particle transport code [26] is 
also highly accurate.  
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Table 5: Execution Time Comparisons with Previous ATR 
(SSN, N=40,000, 50 Workers) 

 
Original ATR Recommended 

Values of B, G, and T 
 Execution Time 
(T = 100, G = 25) 

Reduced Debug Default Debug 

Worker Pool 

B=3 B=6 B=3 B=6 

New Adaptive 
ATR 

Execution Time 

Homogeneous 61 min 92 min 68 min 149 min 18 min 

Heterogeneous 80 min 112 min     25 min 
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