
ABSTRACT 
Recently proposed scalable on-demand streaming protocols have 
previously been evaluated using a system cost measure termed the 
“ required server bandwidth” .  For the scalable protocols that 
provide immediate service to each client when the server is not 
overloaded, this paper develops simple analytic models to evaluate 
two client-oriented quality of service metrics, namely (1) the mean 
client waiting time in systems where clients are willing to wait if a 
(well-provisioned) server is temporarily overloaded, and (2) the 
fraction of clients who balk (i.e., leave without receiving their 
requested media content) in systems where the clients will tolerate 
no or only very low service delays during a temporary overload.   
The models include novel approximate MVA techniques that 
appear to extend the range of applicability of customized AMVA 
to include questions focussed on state probabilities rather than on 
mean values, and to systems in which the operating points of 
interest do not include substantial client queues.  For example, the 
new AMVA models accurately estimate the server bandwidth 
needed to achieve a balking rate as low as one in ten thousand.  
The analytic models can easily be applied to determine the server 
bandwidth needed for a given number of media files, anticipated 
total client request rate and file access frequencies, and target 
balking rate or mean wait.  Results show that (a) scalable media 
servers that are configured with the “ required server bandwidth”  
defined in previous work have low mean wait but may have 
unacceptably high client balking rates (i.e., greater than one in 
twenty), (b) for high to moderate client load, only a 10 – 50% 
increase in the previously defined required server bandwidth is 
needed to achieve a very low balking rate (e.g., one in ten 
thousand), and (c) media server performance (either mean wait or 
balking rate) degrades rapidly if the actual client load is more than 
10% greater than the anticipated load. 

1. INTRODUCTION 
A problem of considerable current interest is that of providing 
scalable Internet services to potentially vast numbers of clients.  
Particularly challenging are scalable delivery protocols for 
applications that require on-demand streaming of multimedia, 
such as news services, distance education, or entertainment-on-
demand.  Recently proposed protocols [3, 5-7, 9-17, 20, 22, 23] 
use broadcast or multicast to reduce the required server and 

network bandwidth from linear in the request rate, to sublinear.  
They achieve this bandwidth reduction by dynamically 
aggregating clients that make requests closely spaced in time, so 
that eventually these clients share the same stream(s). 

Three of the recent multicast streaming protocols, namely 
patching [5, 6, 14, 16, 22], dynamic skyscraper [9, 11], and 
hierarchical stream merging (HSM) [3, 7, 10-12] provide scalable 
on-demand streaming without requiring clients to wait for some 
period of time as in a periodic broadcast system [13, 15, 17, 20, 
23] or a batching system.  These three protocols and a variant of 
HSM called “bandwidth skimming”  [10] have been compared 
using a server cost or provisioning measure termed the required 
server bandwidth [11, 12].  This measure is the average 
concurrent server bandwidth used if the server has infinite 
bandwidth and each client request is satisfied immediately. The 
previous results show that the required server bandwidth for HSM 
systems, for full file requests and very general assumptions about 
the client arrival process, grows only with the logarithm of the 
client request rate, whereas the required server bandwidth for 
patching systems with Poisson arrivals and full file requests grows 
with the square root of the client request rate [11, 14].  In practical 
terms, if clients request the most popular media content at a rate 
greater than 50 requests per time that it takes to play the content, 
the HSM system has lower required server bandwidth than 
patching.  The dynamic skyscraper system has required server 
bandwidth that grows with the logarithm of the client request rate, 
but with a larger constant factor than for HSM.  Since HSM also 
supports interactive client requests more efficiently than the 
dynamic skyscraper protocol, we consider only the HSM and 
patching protocols in this paper.  

A key open question addressed in this paper is how well the 
patching and HSM systems perform when the server has fixed 
(well provisioned) bandwidth and two client-oriented, “quality of 
service”  metrics are considered, namely (1) the mean client wait if 
clients wait when the server is temporarily overloaded, and (2) the 
fraction of clients who leave without receiving their requested 
media content if clients will tolerate no or only low service delays 
during the temporary overload.  The latter quantity is called the 
“balking rate”  in the remainder of this paper.  Specifically, for 
each protocol, we investigate the following questions: 
1. What is the mean waiting time, or the client balking rate, 

when the server is configured with the required server 
bandwidth defined above for a given set of popular media 
objects and a given client load?  
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2. How much additional or less server bandwidth is needed to 
achieve a given target client balking rate, such as one in ten 
thousand, or a given target mean waiting time, such as 
0.001T, where T is the requested media playing time?  

3. How sensitive is the mean wait, or balking rate, to client 
arrival rate higher than the anticipated rate that the server is 
configured for?   

For patching systems these questions are particularly relevant for 
modest client loads, in which case the previously defined required 
server bandwidths for patching and HSM are similar.  

A key goal is to evaluate the QoS measures over a wide range of 
system configurations and client workloads.  Simulation is time-
consuming, and error-prone (e.g., due to lack of validation of the 
streaming protocol implementation, difficulty in choosing 
simulation run lengths for estimating low balking rates, etc.).  
Thus, another question addressed in this paper is whether simple, 
efficient analytic methods can be developed to accurately estimate 
the QoS metrics of interest. 

Previous work [8] has proposed analytic methods for estimating 
mean wait and balking rate for relatively simple batching systems 
(in which full media file transmissions start at fixed times) and for 
FCFS unicast streaming systems.   Developing accurate analytic 
methods for the patching and HSM systems considered here is 
substantially more complex for at least three reasons.  First, the 
multicast stream duration (or service time) is correlated with the 
number of active streams for the object, and the precise form of 
the correlation is not easy to characterize.   Second, the client 
balking rate cannot be computed using a known waiting time 
distribution or known stream start times.  Third, when clients wait 
for service, the clients waiting for the same media file batch 
together for a stream with a state-dependent start time.   

Previous techniques that accurately model state-dependent 
behavior such as general state-dependent service times, client 
balking, or clients selectively batching while waiting for service, 
are primarily based on state-space analysis (e.g., Markov Chain 
analysis), which has high computational cost for large and 
complex systems.  Alternatively, Approximate Mean Value 
Analysis (AMVA) techniques have the advantages of very low 
computational cost and intuitive equations that readily permit 
heuristic extensions for modeling complex system features.  
However, it is not clear that AMVA can be applied to systems 
where clients batch while waiting for service or to the state-
dependent stream durations that occur in scalable streaming 
systems.   Furthermore, AMVA seems to be inherently focused on 
predicting the impact of queueing on mean performance metrics 
such as mean waiting times or mean queue lengths.  It is not clear 
a priori, that AMVA techniques can be applied to questions such 
as how to provision a system so that the probability that a client 
has to wait is close to zero.  Such questions may become more 
important (for example) as Internet services mature and become 
more utility-like. By developing customized AMVA techniques 
for estimating mean wait or client balking rate in on-demand 
streaming systems, we hope to obtain (a) insight into scalable 
media server provisioning questions, and (b) specific techniques 
and approaches that may be applicable in other contexts. 

The main contributions of the paper are:  

• Efficient, highly accurate customized AMVA models for 
estimating mean client waiting time or client balking rate in 
patching and HSM systems. 

• A server configured with the previously defined “ required 
server bandwidth”  for a given protocol and anticipated 
moderate to high client arrival rate will have mean client wait 
under 0.015T for HSM or under 0.025T for patching, where T 
is the time to play the media file. 

• A patching or HSM system configured with the previously 
defined “ required server bandwidth”  will have unacceptably 
high client balking rate (i.e., greater than one in twenty) if 
clients are unwilling to wait for service.  However the results 
also show that very low balking rate (e.g., 1/10,000) can be 
achieved with a relatively modest increase in server 
bandwidth (i.e., on the order of a 10% – 50% increase for 
high to moderate client load).     

• Scalable media server performance (either mean wait or 
balking rate) degrades rapidly if the actual client load is more 
than 10% greater than the anticipated load. 

The models for client balking rate include customized AMVA 
techniques that are capable of accurately estimating the server 
bandwidth needed to achieve a wide range of target balking rates 
(from 10-1 to below 10-4, for example), suggesting that customized 
AMVA techniques may be applicable to a significantly broader 
range of metrics and system design questions than has previously 
been recognized.  The models for mean client waiting time, also 
based on AMVA, are also interesting in that simple models are 
found to be quite accurate, even though scalable streaming 
systems have a number of complex features (such as stream length 
being strongly correlated with the number of active streams for a 
file, and batching of requests for the same file while waiting in a 
queue) that might suggest a need for more complex models. 

The remainder of the paper is organized as follows. Section 2 
provides background on patching, hierarchical stream merging, 
the “bandwidth skimming”  variant of HSM, and the previous 
analysis of required server bandwidth for these protocols.  
Sections 3 and 4 develop models for estimating client balking rate 
and mean client waiting time, respectively.  Section 5 validates the 
models and applies them to evaluate patching and HSM system 
configurations with respect to the client QoS metrics.  
Conclusions are presented in Section 6. 

2. BACKGROUND 
The notation used in this section and in Section 3 is summarized 
in Table 1.  In this section we review the patching protocol 
(Section 2.1), the HSM and bandwidth skimming protocols 
(Section 2.2), and the system assumptions that are made in 
developing the new models in this paper (Section 2.3). 

2.1  Patching 
The basic operation of patching [5, 6, 14, 16, 22] is as follows.1  In 
response to a given client request, the server delivers the requested 
media in a single multicast stream.  A client that submits a new 
request for the same file soon after this stream has started listens 
to the multicast, buffering the data received.  Each such client is 
also provided a new unicast stream (i.e., a “patch”  stream) that 
delivers the data that was delivered in the multicast stream prior to 

                                                 
1 Our protocol descriptions and analyses assume that clients have 

sufficient local storage to buffer all data received in advance of 
its playback time.  The protocols can easily accommodate client 
buffer constraints, as described in the cited earlier work.   



  

the new client’s request.  The patch stream terminates when it 
reaches the point where the client joined the full-file multicast.  
Both the multicast stream and the patch stream deliver data at the 
file play rate so that each client can play the file in real time.  
Thus, the achievable aggregate transmission rate to a client must 
be at least twice the file play rate.  

To keep the patch streams short, when the fraction of the file 
delivered in the most recent multicast exceeds a given threshold, 
the next client request triggers a new multicast rather than a patch 
stream.  In “optimized”  patching [6, 14], the threshold for each 
file is chosen to minimize the required server bandwidth (as 
defined in Section 1), assuming known file request rate, Poisson 
arrivals, and that each client requests the full file.  We analyze 
optimized patching in this performance study, but note as in 
previous work that optimal choice of the threshold parameter is 
difficult to achieve in practice.  Letting Ni denote the average 
number of requests for file i that arrive during the file play time Ti, 

the optimal threshold is ii NN /)112( −+ , and the required 

server bandwidth for delivery of file i, in units of the media play 
rate, can be derived for Poisson request arrivals as [14]: 

112)(*
, −+= iipatchingi NNB .                 (1) 

2.2  HSM and Bandwidth Skimming 
Hierarchical stream merging protocols [3, 7, 10-12] initiate a new 
multicast transmission stream for each new client request. In the 
simplest case, each client also listens to the closest earlier stream 
for the file that is still active [12], so that its own stream can 
terminate after transmitting the data that was missed in the earlier 
stream, as illustrated in Figure 1.  In the figure, clients A through 
D request the media file at times T1, T2, T3, and T4, respectively.  
At time T4, client D listens to the stream that starts at T4 as well 
as the stream that was initiated for client C at time T3. At time T5, 
the stream for client D can be terminated, and clients C and D are 
“merged”. When clients merge, they listen to the closest earlier 
stream that is still active, and so on.  A number of more complex 
HSM policies have very similar performance [3, 7, 12]. 

Bandwidth skimming is a variant of hierarchical stream merging 
that uses only a small “skim” of the achievable transmission rate 
to a client to support the merging.  This is useful in cases where 
the quality of the media content is such that a single stream at the 
play rate consumes more than half of the achievable transmission 
bandwidth to the client.  Bandwidth skimming policies [10] use 
the hierarchical stream merging strategy together with a 
mechanism for effecting each merge that does not require clients 
to listen to two play rate streams concurrently.  For example, in 
the “Partition”  policy, streams are divided into substreams, and a 
client A merges with another client B by listening to successively 
increasing numbers of B’s substreams, while listening to 
successively decreasing numbers of its own substreams. 

Letting b denote the required aggregate transmission rate to a 
client, in units of the media play rate, the required server 
bandwidth for a given file under HSM (b = 2) or bandwidth 
skimming (b < 2) and Poisson request arrivals can be 
approximated by the following formula [11]: 
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where ηb is the positive real constant that satisfies the following 
equation: 
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For example, for HSM with b=2, the required server bandwidth 
can be reasonably approximated by [11]: 

  1)  1.62/ (ln  1.62 )(*
, +≈ iiHSMi NNB .             (3) 

2.3  QoS Motivation and System Assumptions 
Figure 2 plots the required server bandwidth for a media file as a 
function of client request rate for the file, Ni, as computed from 
equations (1) – (3) above.   Previous work [12] has provided the 
rationale as well as results from simulations that show that an 
HSM server containing a collection of media files with given 
client request rates has average client waiting time “close to zero”  
if configured to support a maximum number of concurrent streams 
equal to the sum of the required bandwidth for each file given in 
equation (3).   

This paper develops, validates, and applies models to determine 
more precisely, for patching and bandwidth skimming servers as 
well as HSM servers, the mean client balking rate or mean client 
waiting time for various system configurations.  In particular, the 
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models can be used to determine how much server bandwidth is 
needed to achieve a given target client balking rate or target mean 
wait for a given set of media files and client access rates.   

The next section develops the balking rate analysis; Section 4 
develops the mean client waiting time analysis.  In both cases, to 
enable insight across a broad spectrum of client loads and server 
capacities, we assume that all media files on the server are of 
equal (but arbitrary) play rate and duration, the request arrival 
process is Poisson, and each client requests the entire media file.  
The results derived under these assumptions can be refined for 
systems that have partial file accesses, media files with unequal 
durations or play rates, and/or other arrival processes, as noted in 
Section 6.  

3. CLIENT BALKING RATE ANALYSIS 
We consider a media server that is configured to deliver a 
maximum number of concurrent streams, denoted by C, each at 
the media play rate. If a new client request arrives when there are 
already C streams serving other clients, the new client “balks” .  
That is, the client leaves the system without receiving the 
requested content.  In the following, the unit of server capacity 
sufficient for delivering a single stream is called a “channel” .  

Below we develop a model and four alternative analytic methods 
for estimating the fraction of clients that balk (Pbalk), as a function 
of C, the total client arrival rate, and the relative popularity of 
each of the media files.  The solutions are validated against system 
simulations in Section 5.1. 

3.1  Client Balking Model    
The media server is similar to an M/G/C/C system that has 
Poisson arrivals, C servers (i.e., the channels), and no additional 
queue for clients to wait for service, except that service times  are 
correlated with the number of active servers (i.e., stream durations 
that are correlated with the number of active channels).   Thus, the 
system can be represented by the closed two-center queueing 
network with C customers depicted in Figure 3, in which 
customers at the queueing center represent idle channels that are 
waiting to serve a new client request while customers at the upper 
delay center represent active channels.  The queueing center 
generates new active channels at rate equal to the client request 
rate λ as long as at least one channel is idle.  The service times at 
the delay center (i.e., the active stream durations) depend on the 
streaming protocol and are correlated with the number of active 
streams, with overall mean denoted by S.  Once a stream ends, the 

channel joins the idle channel pool in the lower queue, waiting to 
be reactivated by a new client request.  Note that the clients that 
arrive (at rate λ) when the queue of idle channels is empty depart 
immediately (i.e., balk) and have no impact on the operation of the 
channels modeled in Figure 3.  

Two features of the model make the solution significantly more 
challenging than a queueing system with general independent 
service times at the delay center.  First, the average stream 
duration, S, is a function of system throughput, X, which is an 
output of the analysis.  Second, the service time at the delay center 
is correlated with the number of active streams (i.e., with the 
number of customers in the delay center).  Since the dependence 
between stream duration and number of active streams is difficult 
to characterize, we first develop solutions that ignore the 
correlation, and then discover a solution that approximately 
captures the impact of the correlation. 

The notation for the balking model in Figure 3 is defined in Table 
1. Due to the one-to-one correspondence between channel 
activations and non-balking client requests, the system throughput, 
denoted by X = λ(1–Pbalk), can be interpreted as the channel 
activation rate. Thus, by Little’s law [19] the following equation 
relates the 2-center system measures to the measure of interest, 
namely, the balking rate: 

)1( balkPX
SR

C −==
+

.                    (4) 

A second observation that enables the analysis is that S can be 
estimated from the (unknown) throughput of the queue, using 
Little’s law, as 

X
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S

K

i
ipi∑

=≈ 1
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where Bi,p
* is the required server bandwidth computed using 

equation (1), (2) or (3) with Ni replaced by piXT. This is an 
approximation since equations (1) – (3) were derived assuming 
Poisson stream initiations, which is not the case for the system 
with a finite number of channels.  

Figure 3:  Client Balking Model 
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Equations (4) and (5) provide three equations that relate four 
unknowns, namely:  X, S, R, and Pbalk.  Below we propose four 
methods for obtaining further equations for solving the model.  
The solutions in Sections 3.2 and 3.3 are motivated by simplicity, 
the solution in Section 3.4 is motivated by refinements that should 
improve the accuracy of the first two models, and the model in 
Section 3.5 includes a further refinement to the model in 3.4 that 
partially captures the correlation between expected stream 
duration and the number of active streams when a client initiates a 
new stream.  Section 5 will show that this fourth model has the 
best overall accuracy for estimating client balking rate in patching, 
HSM, and bandwidth skimming systems. 

3.2  LIS–AMVA Solution  
One of the simplest solutions to the model in Figure 3 is to assume 
that stream durations are load independent (i.e., not correlated 
with the number of active streams) and to solve the resulting 
machine repair model (with unknown S) using Schweitzer’s 
approximation [1, 2, 21] to estimate the mean time that a channel 
remains idle (i.e., the mean residence time at the queueing center): 

)
)1(

1(
1

XR
C

C
R

−+≈ ,                           (6) 

where, using Little’s law, the mean queue length at the queueing 
center, Q, has been replaced by XR. 

Equations (4), (5) and (6) define the LIS–AMVA model that can be 
iteratively solved by successive substitution or some other suitable 
technique for solving a system of non-linear equations.   

Two sources of error in the above LIS–AMVA solution motivate 
consideration of further solutions.  The first is that balking rate 
may be inherently difficult to estimate.  In particular, a small 
percentage error in X, as might result from the Schweitzer 
approximation in (6), could yield a large error in Pbalk as 
calculated from (4).  A second source of error is the assumption 
that average time at the delay center is independent of the number 
of customers at the delay center. 

3.3  LIS–IC Solution   
This next approach assumes that service times at the delay center 
are load independent, but does not involve estimating mean 
residence time at the queueing center.  Instead, we directly 
estimate the probability that all channels are busy, which is the 
balking rate, Pbalk.  A very simple approximation that the states of 
the channels are independent, yields 

C
balk UP ≈ .                             (7) 

Using U = S/(R+S) and the first equality in (4) yields 

SX
SR
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which, by (5), can be re-written as 
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Finally, the second equality in (4) together with (7) gives 

)1( CUX −≈ .                          (10) 
Equations (8) – (10) can be iteratively solved to obtain the 
estimated balking rate, UC.  Although it seems that the assumption 

of independent channel states could be quite inaccurate, validation 
results discussed in Section 5.1 show that the LIS–IC solution 
provides more accurate results than the LIS–AMVA solution for 
HSM systems. 

3.4  LIS–EL/CMVA Solution 
A third solution is motivated either by eliminating the Schweitzer 
approximation used in the LIS–AMVA model or by a desire to 
improve the estimate of balking rate used in the LIS–IC solution.  
In either case, note that if the service times at the delay center are 
assumed to be load-independent with known mean S, then the 
model in Figure 3 is a separable queueing network [19] that is 
equivalent to an ordinary M/G/C/C queue with arrival rate λ and 
mean service time S.   

To improve the estimate of balking rate, note that by the well-
known BCMP result [4], the separable network has the same 
solution as the M/M/C/C queue. That is, the solution for generally 
distributed delay center service times with mean S is the same as 
for exponentially distributed service times with mean S.  The 
balking rate is equal to the probability that the queue contains C 
customers, which is given by Erlang’s loss (EL) formula for the 
M/M/C/C queue [18]:   
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Substituting the above into equation (4) yields 
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Equations (12) and (5) can be solved iteratively to estimate S and 
X, and then equation (11) can be applied to obtain the balking rate 
for this LIS–EL solution. 

Equivalently, we can solve the model by estimating the mean 
residence time at the queueing center using the arrival instant 
theorem for the number of customers in the queue at the arrival 
instant [19], rather than Schweitzer’s approximation. Let X(c), 
R(c), and Q(c), respectively, denote the throughput, mean 
residence time at the queueing center, and mean queue length at 
the queueing center, when the network contains c customers, c = 
1, 2,…,C.  Using the arrival instant theorem and equation (5) with 
X=X(C), the remaining set of equations for this LIS–CMVA 
(“customized MVA”) solution are: 

 ))1(1(
1

)( −+≈ cQcR                    (13a)                 

ScR

c
cX

+
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)(
)( , c = 1, …, C                    (13b) 

)()()( cRcXcQ = ,                       (13c) 

with the boundary condition Q(0) = 0. To solve the system 
numerically, S can be initialized to some suitable value, and then 
equations (13) followed by equation (5) with the new estimate of 
X = X(C) can be repeatedly applied until convergence. 



  

3.5  CMVA Solution 
The fourth solution method is derived from the observation that in 
the computational structure shown in (13a – c), the same mean 
stream duration, S, is used for every network population, whereas 
mean stream duration should increase when the network 
population (or average number of active streams) decreases.   

The CMVA solution modifies equation (5) to estimate the expected 
stream duration for each network population, as follows: 
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and S(1) = T.  In this approach, an iterative solution of equation 
(14) and equations (13a – c) with S replaced by S(c) in (13b) is 
required at each population level, c, in order to determine the 
value of S(c), which approximately captures the correlation 
between mean stream duration and the number of active streams. 

4. CLIENT WAITING TIME ANALYSIS 
We again consider a media server that is configured to deliver a 
maximum of C streams concurrently.   For the models developed 
in this section, the clients that arrive when there are already C 
active streams wait to be served.  The first request to wait for any 
particular media file will wait in a first-come-first-served (FCFS) 
queue for server bandwidth to become available. If an arriving 
request finds at least one request for the same file already waiting 
in the queue, the new request batches with the request(s) already 
waiting.  Thus, the maximum number of request groups waiting 
for service is equal to the number of files on the server. 

The models developed in this section assume that while a client 
waits in the queue for a channel that will deliver the beginning of 
the file, the client does not listen to and buffer any other on-going 
stream that may be serving the same file. Section 5.3 provides 
simulation results that show the impact of listening while waiting 
on mean client wait. 

As in systems with client balking, stream duration is correlated 
with the number of active streams for the file, and the overall 
mean stream duration, S, is a function of system throughput, 
which is an output of the analysis.  Furthermore, clients batching 
together while waiting in the queue presents another challenge to 
developing a simple, accurate, and efficient analytic method for 
computing the mean client wait.  To develop the requisite new 
models, we again proceed initially by ignoring the correlations 
between stream durations and the number of active streams. 

4.1  Basic Mean Wait Analysis       
We first estimate the mean waiting time for the “ lead requests”  
that arrive for each stream.   These lead requests are either served 
immediately (if the server has unused capacity when the lead 
request arrives) or they are the first request to wait for a given new 
stream.  The mean wait for other requests that batch with the lead 
requests will be estimated from the mean wait of the lead requests, 
as discussed below. 

The initiations of new streams by the lead requests are modeled 
with a two-center queueing network that has K customer classes 
(one per file) with each class having a single customer, as 
illustrated in Figure 4.  The lower delay center in the network 
models the mean time until a new lead request for file i arrives, 
which is equal to the inverse of the file i request arrival rate.  The 
upper FCFS queue models the time that the lead request waits in 
the server queue for an available server channel.  As soon as a 
lead request obtains a server channel, the customer moves to the 
lower delay center to generating a new lead request.  If the FCFS 
queue is empty and at least one server channel is unused when a 
lead request arrives, then the service time in the FCFS queue is 
zero.  While the FCFS queue is not empty, server channels 
become available to serve waiting lead requests on average every 
S/C units of time, where S is the mean stream duration.     

Using the notation defined in Tables 1 and 2, the mean residence 
time of a lead request for file i at the FCFS queue in Figure 4, or 
the mean wait for file i lead requests, can be approximated as 
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∑
≠
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+≈
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S
W .                            (15) 

Here UC is used to approximate the probability that a lead request 
finds all channels busy, where U is the average channel utilization.  
Note that each lead request that is ahead of the file i lead request 
in the queue contributes S/C to the lead request’s mean waiting 
time. 

S can be approximated by 
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where Xi
lT is the average number of new streams initiated per time 

T and Xl is the total throughput of the lead requests.  

U is given by 
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l
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Figure 4:  Waiting Model for  Lead Client Requests  
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Table 2:  Additional Notation for  Waiting Model 



  

and Q
i
l can be obtained from Little’s Law as 

l
i

l
i

l
i WXQ = .                           (18) 

Note that, for any incoming request, Q
i
l can be interpreted as the 

probability that there is already a lead request for file i waiting in 
the queue.  Since a request for file i batches with any other request 
waiting for that file, Xi

l and Qi
l must satisfy 

i
l
i

l
i QX )1( −= .                        (19) 

Substituting equation (18) for Qi
l into (19) gives the following 

expression that can be derived directly from Figure 4: 
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Either (20) or (19) together with equations (15) – (18) yields a 
system of non-linear equations that can solved iteratively to 
compute Wi

l. 

The average number of file i requests that batch with a lead 
request for file i is equal to λiWi

l.  The mean waiting time of these 
requests that batch with leading requests depends on the 
distribution of the waiting times of the lead requests, which is not 
computed in the analysis above.  Due in part to the upper bound 
on the wait queue length, one might expect the waiting time 
distribution to have low variance.  If the lead request waiting 
times are assumed to be (approximately) deterministic, then the 
average waiting time of requests that batch with a lead request is 
Wi

l/2, and the overall mean waiting time for file i requests is  
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Although the waiting times for lead requests are not deterministic, 
validations presented in Section 5.1 show that equations (15) – 
(19) and (21) are sufficiently accurate for the HSM and bandwidth 
skimming systems, over a wide range of system configurations 
and client loads.  

4.2  Improved Analysis for  Patching 
For patching, we first note an issue with respect to choice of 
optimal threshold values.  Unlike in [6, 14, 22], it is assumed 
implicitly in expresssion (16) above, and in our simulations in 
Section 5, that the threshold for a file i is computed based on the 
throughput of lead requests for the file (i.e., on the rate of stream 
initiations), which may be lower than the arrival rate of requests 
for the file (many of which may batch together in the queue).  This 
policy can substantially improve performance, and we have 
observed no case in which it degrades performance.  We also note 
that queueing can substantially impact patching, since by the time 
a new stream is initiated for a queued request, any previous stream 
serving the same file may have passed the threshold.   

Simulation results discussed in Section 5.1 indicate that the basic 
mean wait model above (equations (15) – (19) and (21)) 
underestimates the mean waiting time in patching systems (e.g., 
see Figure 10).  The simulations further show that the queueing of 
client requests decreases the burstiness of new stream initiations.  
A derivation of the required server bandwidth for patching in the 
case of deterministic request interrarrival times is given in the 
Appendix. Let Ql denote the total mean queue length of lead 

requests as predicted by equations (15) – (19), and let l
iW

�
denote 

the mean wait of a file i lead request assuming deterministic 

stream initiations.  That is, l
iW

�
is computed using equations (15) – 

(19) with *
,patchingiB  in equation (16) replaced by *

,patchingiB
	

 

from equation (A.1) in the Appendix.  We have experimentally 
derived the following heuristic interpolation that more accurately 
models the mean wait for lead requests in a patching system: 
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which indicates that the arrival of lead requests to the server is less 
bursty as the total mean queue length increases.  The improved 
estimate of overall mean wait for file i requests in a patching 
system is then computed using equation (21), with the mean wait 
for lead requests computed using equations (15) – (19) and (22).  

The validation results in Section 5 will show that the above 
models of mean client wait are quite accurate.  To obtain even 
greater model accuracy, we could consider using the arrival 
instant theorem for separable networks to estimate the mean queue 
length seen by an arriving lead request, or we could develop a 
more accurate approximation than UC for the probability that a 
lead request finds all channels busy, as we did for estimating 
balking rate in Section 3.  However, since mean client wait is 
estimated sufficiently accurately with the above simpler models, 
we do not consider more complex approaches further.  

5. RESULTS 
Section 5.1 provides comparisons between results of the analytic 
models developed in Sections 3 and 4, and results computed by 
simulating the media server with the relevant streaming protocol, 
over a wide range of values of the total client request rate (N = 
λT), number of popular media files on the server (K), and server 
bandwidth capacity (C).  The simulations include Poisson request 
arrivals, the Zipf distribution of file access frequencies, stream 
initiations when server bandwidth is available, stream 
terminations and client merges dictated by the streaming protocol, 
and client balking or queueing when there are C active streams.    
The validation results will show that for each protocol, the most 
accurate analytic estimates of client balking rate and mean client 
waiting time can be used to evaluate protocol performance for 
system configurations of practical interest.   

Following the model accuracy assessments, Sections 5.2 through 
5.4 provide new evaluations of the protocols with respect to the 
client QoS measures.  Section 5.2 considers a potential 
enhancement for the protocols.  Section 5.3 evaluates the 
protocols with respect to the server bandwidth needed to achieve a 
given target (low) client balking rate or target (low) mean waiting 
time.  Section 5.4 compares the policies with respect to how well a 
system configured for a given anticipated client load performs 
under small to moderate increases in the actual load on the system. 

For simplicity, all of the experiments in this section assume the 
relative file access frequencies are given by the Zipf distribution 
with parameter α equal to one (see Table 1).   Results could as 
easily be obtained for other values of α or for other distributions 
of relative file access frequencies.  



  

5.1  Analytic Model Validations 
Figure 5 provides example results of client balking rate as a 
function of the media server bandwidth, C, estimated by system 
simulation and by the four analytic methods developed in Sections 
3.2 – 3.5, for a patching system with K = 100 popular media files 
and total client request rate, N, equal to an average of 1000 client 
requests per period of time equal to the media playback duration 
T.  Note that the CMVA estimates agree extremely well with the 
simulation results.  The LIS–AMVA estimates are less accurate 
than the LIS–CMVA estimates due to the high sensitivity of the 
balking rate measure to small errors in the system throughput 

estimate.  Figure 6 shows the percent error in each of the two most 
accurate analytic estimates, compared with simulation estimates of 
the server capacity needed as a function of the target balking rate.  
Note that for 20 or 100 files, average total client request rates of 
100 or 1000, and target balking rate varying from one in ten to one 
in ten thousand, the CMVA estimates are within 2% of the 
simulation estimates for the patching systems.  Similar accuracy 
of the CMVA estimates was also observed for higher client loads. 

Figure 7 provides example validation results, and Figures 8 – 9 
summarize the percent error for the most accurate analytic 
estimates of balking rate in HSM systems and in bandwidth 
skimming systems with b = 1.33.  Note that for 20 or 100 files and 

Figure 9:  CMVA Accuracy for  Bandwidth Skimming 
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Figure 8:  CMVA Accuracy for  HSM Systems 
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Figure 6:  Balking Model Accuracy for  Patching Systems 
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total client load varying from 100 to 10,000 requests, on average, 
per time T, the CMVA estimates of the HSM server bandwidth 
needed for a given target balking rate have 0 – 15% absolute error.  
For 20 files, the percent error in the CMVA estimates is slightly 
lower than for 100 files for large N; thus, at extremely high client 
request rate (e.g., N = 10,000) for 20 files, the CMVA solution 
slightly underestimates (i.e., by 5 – 7%) the HSM server capacity 
needed to achieve the target balking rate.  For less extreme client 
load or a larger number of popular files, the CMVA estimates are 
instead slightly pessimistic (i.e., overestimate required server 
bandwidth for a given desired balking rate) for the HSM system.  
Figure 9 shows that the CMVA model is slightly pessimistic for 
the bandwidth skimming (b = 1.33) systems as well.   

Figure 10 provides example validations, and Figure 11 
summarizes the accuracy of the mean client waiting time models 
for each of the three protocols.  The basic model for HSM and 
bandwidth skimming, and the improved model for patching, 
estimate the server bandwidth needed to achieve the target mean 
client wait within 15% absolute error compared with the 
simulation estimates.  Note also that in the range of practical 
target client waiting times (i.e., 0.001T to 0.01T), and for a client 
request rate for the collection of popular files significantly greater 
than 10, the analytic estimates are within 5% of the simulation 

values for all three protocols.  Furthermore, the analytic estimates 
are less optimistic for the HSM systems than for the patching 
systems.  Hence, any analytically estimated performance gains for 
HSM as compared with patching will be conservative. 

Figure 12 considers the case in which clients are willing to wait 
for a short time before balking.  Specifically, if the wait exceeds 
Wmax, they balk.  We obtain the results for Wmax = 0.01T using 
simulation.  As shown in the figure, the server bandwidth needed 
to achieve a given balking rate is similar for Wmax = 0.01T and 
Wmax = 0, except in patching systems with high N, where HSM 
significantly outperforms patching.  Thus, the analytical estimates 
of server capacity needed for a given target balking rate when 
Wmax = 0 are just very slightly conservative for systems where 
clients balk after a short waiting time. 

For a large fraction of the system configurations we simulated, we 
found the balking rate estimate from a simulation run length that 
has 1000 balking events to be essentially identical to the estimate 
from a run length that has only 100 balking events.  Thus, 
simulating more than 1000 balking events would yield negligible 
improvement in accuracy.  The corresponding total numbers of 
client request arrivals also yielded essentially identical estimates 
of mean client wait.  These observations were used in determining 
simulation run length.  Although a few curves have odd 

Figure 12:  Impact of Non-Zero Maximum Wait 
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“wiggles” , we have verified that these are not artifacts of the run 
length selection. 

It takes on the order of 20-50 minutes to simulate 1000 balking 
events for a single system configuration with moderate to high 
client request rate and low balking rate.  Thus, the highly efficient 
and accurate analytic estimates offer a key advantage for rapidly 
exploring system design issues such as those explored below. 

5.2 Possible Protocol Enhancement 
For the mean waiting time results presented above and estimated 
by the analytical models, clients waiting for service do not listen 
to any on-going stream that may be serving the same file.  As 
shown by the simulation results in Figure 13, listening while 
waiting has approximately the same performance for either the 
patching or the HSM systems considered in this work. 

The lack of significant performance improvement for listening 
while waiting may be explained by two factors.  First, the required 
length of a new stream under a “ listen while waiting”  strategy is 
determined by when the last request arrived in that batch.  Second, 
“ listen while waiting”  offers significant improvements only if the 
time spent in the queue is relatively substantial, yet practical 
systems are designed for short mean client wait. 

5.3  Server  Bandwidth Needed for  Target QoS     
In this section we address the questions (a) what is the mean 
waiting time, or the client balking rate, when the server is 
configured with the required server bandwidth defined in Section 
2 for a given set of popular media objects and a given client load, 
and (b) how much server bandwidth is needed to achieve a given 
target client balking rate, such as one in ten thousand, or a given 
target mean waiting time, such as 0.001T, where T is the requested 
media playing time.  Figures 14 and 15 provide answers to these 
questions for client balking rate; Figures 16 and 17 provide 
answers for mean client wait, over a wide range of client loads. 

In Figures 14 and 16, at each total client request rate (N), the 
media server using a given protocol has bandwidth capacity equal 
to the sum of the required server bandwidth as given in Section 2 

for each file i (i.e., for protocol p )(),,(
1

*
,

*
i

K

i
pi NBKNCC ∑

=
== α ). 

Figure 14 shows that when the server is configured in this way, for 
patching, HSM, or bandwidth skimming, the client balking rate 
ranges from over 20% to 5 – 10% as client request rate ranges 
from 10 to 10,000 requests per time T. The results are similar if 
the server contains 20 media files (not shown). Such balking rates 
are unacceptably high for most systems, but Figures 15(a) and (b) 
show that only a modest increase in server bandwidth is needed to 
achieve a balking rate as low as one in one hundred or as low as 
one in ten thousand, respectively.  For example, if the server 
contains 100 popular files and the total client request rate for the 
popular files is 1000 requests per time T, then for each of the three 
protocols, server bandwidth equal to approximately 1.15C* 
achieves a balking rate of one in ten thousand.   

Figure 16 shows that when the server is configured with 
bandwidth equal to C*(N,K,α) and the total request rate N is 
greater than 100, the mean client wait is a small fraction of T.  
Figure 17 shows further that only small increases in server 
bandwidth are needed to achieve very low mean client wait. 

The small changes in C* needed to achieve a low balking rate or 
low target mean wait illustrate the advantage of aggregating the 
client load for many popular files.  During periods when one 
media file needs more than its average server bandwidth, another 
file may use less than its average server bandwidth.  Thus, the 
variation in the sum of the server bandwidths needed to give every 
client immediate service is statistically lower than the variation for 
each file.  A similar result is shown for mean waiting time over a 
much smaller range of system configurations in [12]. 

Although the value of C* is different for each streaming protocol, 
Figures 15 and 17 show that the percent increase in C* needed to 
achieve a given target balking rate is similar for all three 
protocols.  

Note that as N increases, the required server bandwidth per client 

decreases (due to the sublinear growth in *
,piB illustrated in Figure 

1) and the percent increase in C* needed to achieve a given low 
balking rate or mean wait also decreases (as shown in Figures 15 
and 17).  This illustrates the significant advantages of serving 
larger client populations from a given scalable media server. 

Figure 15:  Server  Bandwidth Needed for  Low Target Balking Rate 
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5.4 System Robustness 
Figures 18(a) and (b) and 19(a) and (b) each consider the case in 
which a scalable media server is configured with bandwidth equal 
to the bandwidth needed for a given anticipated client load (N) and 
a given low target balking rate or mean wait, respectively. For 
example, in Figure 18(a) the server is configured with the 
bandwidth needed for client request rate N = 100 and balking rate 
equal to one in ten thousand.  As shown in Figure 15(b), C = 
1.5C* for this target balking rate, 20 files, and N = 100.   For each 
such system, the client request rate is varied up to 1.4 – 1.5 times 
the anticipated load, to determine how much the system 
performance degrades when the actual client load is somewhat 
higher than anticipated.  

Figures 18(a) and (b) show that the HSM and bandwidth 
skimming systems can tolerate a 10% increase in client request 
rate without significant degradation in client balking rate, but 
system performance degrades rapidly for increases in client load 
greater than 10%.  Patching systems are somewhat more sensitive 
to client load increases, tolerating closer to a 5% increase before 
service begins to rapidly degrade. 

Figures 19(a) and (b) show that mean waiting time is only 
insensitive to increases up to 10% in client load if the server is 
configured for very low target mean wait (e.g., target mean wait 

equal to 0.0001T).  Mean wait degrades somewhat less rapidly 
than balking rate, but performance still degrades significantly for 
greater than 10% increases in client load. 

6. CONCLUSIONS 
This paper has developed simple, highly accurate and efficient 
analytic estimates of mean client wait and the fraction of clients 
that balk when a scalable on-demand media server is configured to 
deliver a given maximum number of streams concurrently.  The 
customized AMVA estimates are noteworthy in that they capture 
complex phenomenon that would suggest that more complex state 
space analyses would be needed.  In particular, the balking rate 
analysis uses customized AMVA to estimate a probabilistic 
measure rather than the usual “mean value”  measures, suggesting 
that customized AMVA techniques may be applicable to a 
significantly broader range of performance metrics and system 
design questions than has been previously demonstrated. 

The results in Section 5 show that (a) scalable media servers that 
are configured with the “ required server bandwidth”  defined in 
previous work have low mean wait but may have unacceptably 
high client balking rates (i.e., greater than one in twenty), (b) for 
high to moderate client load, a 10 – 50% increase in the previously 
defined required server bandwidth will achieve a very low balking 

Figure 18:  Balking System Robustness 
(Target Balking Rate = 0.0001 at anticipated N) 
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rate (i.e., one in ten thousand), and (c) media server performance 
(either mean wait or balking rate) degrades rapidly if the actual 
client load is more than 10% greater than the anticipated load.  
The analytic models can be easily applied to determine the server 
bandwidth needed for a given number of media files, anticipated 
total client request rate and file access frequencies, and target 
balking rate or mean wait.  The results can also be refined for 
systems with media files that have unequal play rates or durations, 
client arrivals that are more bursty than the Poisson process, and 
partial file requests, either by modifying the simulator or by 
extending the analytic models to include these system features.   
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APPENDIX 
This appendix derives the required server bandwidth for 
immediate on-demand streaming using the patching protocol and 
for a given media file with deterministic request interarrival times.  

Let T, y, and λi denote the play duration, patching threshold (as a 
fraction of T), and request rate, respectively, for any given media 
file i.  Since request interarrival times are deterministic, for each 
full-file multicast there will be precisely m =  iyT patch streams 
initiated, and the duration of these patch streams, in their initiation 
order, will be 1/λi¸ 2/λi¸…, m/λi. The elapsed time between 
successive full-file multicasts is simply (m+1)/λi. Therefore, the 
required server bandwidth for file i is given by 
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where Ni is the average number of requests that arrive for the file 
per period of length T.  By taking the derivative with respect to m 

and setting the result to zero, 12 −iN  is found to be the 

(possibly non-integral) value of m that minimizes required server 
bandwidth.  The integral value of m that minimizes required server 

bandwidth is either  12 −N  , or  12 −N .  Substitution of 
each of these expressions into (A.1) above, and taking the 
minimum, yields the required server bandwidth with optimal 
threshold.  Note that the required server bandwidth grows with the 
square root of the request rate, as in the case of Poisson arrivals. 


