
ABSTRACT
Recently proposed scalable on-demand streaming protocols have
previously been evaluated using a system cost measure termed the
“ required server bandwidth” . For the scalable protocols that
provide immediate service to each client when the server is not
overloaded, this paper develops simple analytic models to evaluate
two client-oriented quality of service metrics, namely (1) the mean
client waiting time in systems where clients are willing to wait if a
(well-provisioned) server is temporarily overloaded, and (2) the
fraction of clients who balk (i.e., leave without receiving their
requested media content) in systems where the clients will tolerate
no or only very low service delays during a temporary overload.
The models include novel approximate MVA techniques that
appear to extend the range of applicability of customized AMVA
to include questions focussed on state probabilities rather than on
mean values, and to systems in which the operating points of
interest do not include substantial client queues. For example, the
new AMVA models accurately estimate the server bandwidth
needed to achieve a balking rate as low as one in ten thousand.
The analytic models can easily be applied to determine the server
bandwidth needed for a given number of media files, anticipated
total client request rate and file access frequencies, and target
balking rate or mean wait. Results show that (a) scalable media
servers that are configured with the “ required server bandwidth”
defined in previous work have low mean wait but may have
unacceptably high client balking rates (i.e., greater than one in
twenty), (b) for high to moderate client load, only a 10 – 50%
increase in the previously defined required server bandwidth is
needed to achieve a very low balking rate (e.g., one in ten
thousand), and (c) media server performance (either mean wait or
balking rate) degrades rapidly if the actual client load is more than
10% greater than the anticipated load.

1. INTRODUCTION
A problem of considerable current interest is that of providing
scalable Internet services to potentially vast numbers of clients.
Particularly challenging are scalable delivery protocols for
applications that require on-demand streaming of multimedia,
such as news services, distance education, or entertainment-on-
demand. Recently proposed protocols [3, 5-7, 9-17, 20, 22, 23]
use broadcast or multicast to reduce the required server and

network bandwidth from linear in the request rate, to sublinear.
They achieve this bandwidth reduction by dynamically
aggregating clients that make requests closely spaced in time, so
that eventually these clients share the same stream(s).

Three of the recent multicast streaming protocols, namely
patching [5, 6, 14, 16, 22], dynamic skyscraper [9, 11], and
hierarchical stream merging (HSM) [3, 7, 10-12] provide scalable
on-demand streaming without requiring clients to wait for some
period of time as in a periodic broadcast system [13, 15, 17, 20,
23] or a batching system. These three protocols and a variant of
HSM called “bandwidth skimming” [10] have been compared
using a server cost or provisioning measure termed the required
server bandwidth [11, 12]. This measure is the average
concurrent server bandwidth used if the server has infinite
bandwidth and each client request is satisfied immediately. The
previous results show that the required server bandwidth for HSM
systems, for full file requests and very general assumptions about
the client arrival process, grows only with the logarithm of the
client request rate, whereas the required server bandwidth for
patching systems with Poisson arrivals and full file requests grows
with the square root of the client request rate [11, 14]. In practical
terms, if clients request the most popular media content at a rate
greater than 50 requests per time that it takes to play the content,
the HSM system has lower required server bandwidth than
patching. The dynamic skyscraper system has required server
bandwidth that grows with the logarithm of the client request rate,
but with a larger constant factor than for HSM. Since HSM also
supports interactive client requests more efficiently than the
dynamic skyscraper protocol, we consider only the HSM and
patching protocols in this paper.

A key open question addressed in this paper is how well the
patching and HSM systems perform when the server has fixed
(well provisioned) bandwidth and two client-oriented, “quality of
service” metrics are considered, namely (1) the mean client wait if
clients wait when the server is temporarily overloaded, and (2) the
fraction of clients who leave without receiving their requested
media content if clients will tolerate no or only low service delays
during the temporary overload. The latter quantity is called the
“balking rate” in the remainder of this paper. Specifically, for
each protocol, we investigate the following questions:
1. What is the mean waiting time, or the client balking rate,

when the server is configured with the required server
bandwidth defined above for a given set of popular media
objects and a given client load?

* This work was partially supported by the U. S. National Science

Foundation under grants CCR-9975044, ANI-0117810, and
EIA-0127857, and by the Natural Sciences and Engineering
Research Council of Canada under Grant OGP-0000264.

Quality of Service Evaluations of Multicast Streaming
Protocols*

Haonan Tan
�
 Derek L. Eager

�
 Mary K. Vernon

�
 Hongfei Guo

�

 � Computer Sciences Department
�
Department of Computer Science

 University of Wisconsin-Madison, USA University of Saskatchewan, Canada
 {haonan, vernon, guo}@cs.wisc.edu eager@cs.usask.ca

To appear in Proc. ACM SIGMETRICS 2002
Int’ l. Conf. On Measurement and Modeling of
Computer Systems, Mar ina del Rey, CA, June
2002.

2. How much additional or less server bandwidth is needed to
achieve a given target client balking rate, such as one in ten
thousand, or a given target mean waiting time, such as
0.001T, where T is the requested media playing time?

3. How sensitive is the mean wait, or balking rate, to client
arrival rate higher than the anticipated rate that the server is
configured for?

For patching systems these questions are particularly relevant for
modest client loads, in which case the previously defined required
server bandwidths for patching and HSM are similar.

A key goal is to evaluate the QoS measures over a wide range of
system configurations and client workloads. Simulation is time-
consuming, and error-prone (e.g., due to lack of validation of the
streaming protocol implementation, difficulty in choosing
simulation run lengths for estimating low balking rates, etc.).
Thus, another question addressed in this paper is whether simple,
efficient analytic methods can be developed to accurately estimate
the QoS metrics of interest.

Previous work [8] has proposed analytic methods for estimating
mean wait and balking rate for relatively simple batching systems
(in which full media file transmissions start at fixed times) and for
FCFS unicast streaming systems. Developing accurate analytic
methods for the patching and HSM systems considered here is
substantially more complex for at least three reasons. First, the
multicast stream duration (or service time) is correlated with the
number of active streams for the object, and the precise form of
the correlation is not easy to characterize. Second, the client
balking rate cannot be computed using a known waiting time
distribution or known stream start times. Third, when clients wait
for service, the clients waiting for the same media file batch
together for a stream with a state-dependent start time.

Previous techniques that accurately model state-dependent
behavior such as general state-dependent service times, client
balking, or clients selectively batching while waiting for service,
are primarily based on state-space analysis (e.g., Markov Chain
analysis), which has high computational cost for large and
complex systems. Alternatively, Approximate Mean Value
Analysis (AMVA) techniques have the advantages of very low
computational cost and intuitive equations that readily permit
heuristic extensions for modeling complex system features.
However, it is not clear that AMVA can be applied to systems
where clients batch while waiting for service or to the state-
dependent stream durations that occur in scalable streaming
systems. Furthermore, AMVA seems to be inherently focused on
predicting the impact of queueing on mean performance metrics
such as mean waiting times or mean queue lengths. It is not clear
a priori, that AMVA techniques can be applied to questions such
as how to provision a system so that the probability that a client
has to wait is close to zero. Such questions may become more
important (for example) as Internet services mature and become
more utility-like. By developing customized AMVA techniques
for estimating mean wait or client balking rate in on-demand
streaming systems, we hope to obtain (a) insight into scalable
media server provisioning questions, and (b) specific techniques
and approaches that may be applicable in other contexts.

The main contributions of the paper are:

• Efficient, highly accurate customized AMVA models for
estimating mean client waiting time or client balking rate in
patching and HSM systems.

• A server configured with the previously defined “ required
server bandwidth” for a given protocol and anticipated
moderate to high client arrival rate will have mean client wait
under 0.015T for HSM or under 0.025T for patching, where T
is the time to play the media file.

• A patching or HSM system configured with the previously
defined “ required server bandwidth” will have unacceptably
high client balking rate (i.e., greater than one in twenty) if
clients are unwilling to wait for service. However the results
also show that very low balking rate (e.g., 1/10,000) can be
achieved with a relatively modest increase in server
bandwidth (i.e., on the order of a 10% – 50% increase for
high to moderate client load).

• Scalable media server performance (either mean wait or
balking rate) degrades rapidly if the actual client load is more
than 10% greater than the anticipated load.

The models for client balking rate include customized AMVA
techniques that are capable of accurately estimating the server
bandwidth needed to achieve a wide range of target balking rates
(from 10-1 to below 10-4, for example), suggesting that customized
AMVA techniques may be applicable to a significantly broader
range of metrics and system design questions than has previously
been recognized. The models for mean client waiting time, also
based on AMVA, are also interesting in that simple models are
found to be quite accurate, even though scalable streaming
systems have a number of complex features (such as stream length
being strongly correlated with the number of active streams for a
file, and batching of requests for the same file while waiting in a
queue) that might suggest a need for more complex models.

The remainder of the paper is organized as follows. Section 2
provides background on patching, hierarchical stream merging,
the “bandwidth skimming” variant of HSM, and the previous
analysis of required server bandwidth for these protocols.
Sections 3 and 4 develop models for estimating client balking rate
and mean client waiting time, respectively. Section 5 validates the
models and applies them to evaluate patching and HSM system
configurations with respect to the client QoS metrics.
Conclusions are presented in Section 6.

2. BACKGROUND
The notation used in this section and in Section 3 is summarized
in Table 1. In this section we review the patching protocol
(Section 2.1), the HSM and bandwidth skimming protocols
(Section 2.2), and the system assumptions that are made in
developing the new models in this paper (Section 2.3).

2.1 Patching
The basic operation of patching [5, 6, 14, 16, 22] is as follows.1 In
response to a given client request, the server delivers the requested
media in a single multicast stream. A client that submits a new
request for the same file soon after this stream has started listens
to the multicast, buffering the data received. Each such client is
also provided a new unicast stream (i.e., a “patch” stream) that
delivers the data that was delivered in the multicast stream prior to

1 Our protocol descriptions and analyses assume that clients have

sufficient local storage to buffer all data received in advance of
its playback time. The protocols can easily accommodate client
buffer constraints, as described in the cited earlier work.

the new client’s request. The patch stream terminates when it
reaches the point where the client joined the full-file multicast.
Both the multicast stream and the patch stream deliver data at the
file play rate so that each client can play the file in real time.
Thus, the achievable aggregate transmission rate to a client must
be at least twice the file play rate.

To keep the patch streams short, when the fraction of the file
delivered in the most recent multicast exceeds a given threshold,
the next client request triggers a new multicast rather than a patch
stream. In “optimized” patching [6, 14], the threshold for each
file is chosen to minimize the required server bandwidth (as
defined in Section 1), assuming known file request rate, Poisson
arrivals, and that each client requests the full file. We analyze
optimized patching in this performance study, but note as in
previous work that optimal choice of the threshold parameter is
difficult to achieve in practice. Letting Ni denote the average
number of requests for file i that arrive during the file play time Ti,

the optimal threshold is ii NN /)112(−+ , and the required

server bandwidth for delivery of file i, in units of the media play
rate, can be derived for Poisson request arrivals as [14]:

112)(*
, −+= iipatchingi NNB . (1)

2.2 HSM and Bandwidth Skimming
Hierarchical stream merging protocols [3, 7, 10-12] initiate a new
multicast transmission stream for each new client request. In the
simplest case, each client also listens to the closest earlier stream
for the file that is still active [12], so that its own stream can
terminate after transmitting the data that was missed in the earlier
stream, as illustrated in Figure 1. In the figure, clients A through
D request the media file at times T1, T2, T3, and T4, respectively.
At time T4, client D listens to the stream that starts at T4 as well
as the stream that was initiated for client C at time T3. At time T5,
the stream for client D can be terminated, and clients C and D are
“merged”. When clients merge, they listen to the closest earlier
stream that is still active, and so on. A number of more complex
HSM policies have very similar performance [3, 7, 12].

Bandwidth skimming is a variant of hierarchical stream merging
that uses only a small “skim” of the achievable transmission rate
to a client to support the merging. This is useful in cases where
the quality of the media content is such that a single stream at the
play rate consumes more than half of the achievable transmission
bandwidth to the client. Bandwidth skimming policies [10] use
the hierarchical stream merging strategy together with a
mechanism for effecting each merge that does not require clients
to listen to two play rate streams concurrently. For example, in
the “Partition” policy, streams are divided into substreams, and a
client A merges with another client B by listening to successively
increasing numbers of B’s substreams, while listening to
successively decreasing numbers of its own substreams.

Letting b denote the required aggregate transmission rate to a
client, in units of the media play rate, the required server
bandwidth for a given file under HSM (b = 2) or bandwidth
skimming (b < 2) and Poisson request arrivals can be
approximated by the following formula [11]:

 





+≈ 1ln)(*

/,
b

i
biskimmingbandwidthHSMi

N
NB , (2)

where ηb is the positive real constant that satisfies the following
equation:

1
1

1 =




















+

−
b

b

b
b .

For example, for HSM with b=2, the required server bandwidth
can be reasonably approximated by [11]:

 1) 1.62/ (ln 1.62)(*
, +≈ iiHSMi NNB . (3)

2.3 QoS Motivation and System Assumptions
Figure 2 plots the required server bandwidth for a media file as a
function of client request rate for the file, Ni, as computed from
equations (1) – (3) above. Previous work [12] has provided the
rationale as well as results from simulations that show that an
HSM server containing a collection of media files with given
client request rates has average client waiting time “close to zero”
if configured to support a maximum number of concurrent streams
equal to the sum of the required bandwidth for each file given in
equation (3).

This paper develops, validates, and applies models to determine
more precisely, for patching and bandwidth skimming servers as
well as HSM servers, the mean client balking rate or mean client
waiting time for various system configurations. In particular, the

P
o

si
ti

o
n

 in
 M

ed
ia

 S
tr

ea
m

Stream and
progress for
client A

Merged stream
and progress for
clients A and B

Merged stream for
clients C and D

Stream for
client B

Progress for
clients C and D

Progress for client D

Stream for Client D

Figure 1: HSM Example

T1 T2 T3 T4 T5

Time

0

10

20

30

40

50

1 10 100 1000 10000
Client Request Rate

R
eq

ui
re

d
Se

rv
er

B

an
dw

id
th

Patching

BWSkim,
b=1.2

HSM

 Figure 2: Required Server Bandwidth for File i (*
iB)

(Ni)

models can be used to determine how much server bandwidth is
needed to achieve a given target client balking rate or target mean
wait for a given set of media files and client access rates.

The next section develops the balking rate analysis; Section 4
develops the mean client waiting time analysis. In both cases, to
enable insight across a broad spectrum of client loads and server
capacities, we assume that all media files on the server are of
equal (but arbitrary) play rate and duration, the request arrival
process is Poisson, and each client requests the entire media file.
The results derived under these assumptions can be refined for
systems that have partial file accesses, media files with unequal
durations or play rates, and/or other arrival processes, as noted in
Section 6.

3. CLIENT BALKING RATE ANALYSIS
We consider a media server that is configured to deliver a
maximum number of concurrent streams, denoted by C, each at
the media play rate. If a new client request arrives when there are
already C streams serving other clients, the new client “balks” .
That is, the client leaves the system without receiving the
requested content. In the following, the unit of server capacity
sufficient for delivering a single stream is called a “channel” .

Below we develop a model and four alternative analytic methods
for estimating the fraction of clients that balk (Pbalk), as a function
of C, the total client arrival rate, and the relative popularity of
each of the media files. The solutions are validated against system
simulations in Section 5.1.

3.1 Client Balking Model
The media server is similar to an M/G/C/C system that has
Poisson arrivals, C servers (i.e., the channels), and no additional
queue for clients to wait for service, except that service times are
correlated with the number of active servers (i.e., stream durations
that are correlated with the number of active channels). Thus, the
system can be represented by the closed two-center queueing
network with C customers depicted in Figure 3, in which
customers at the queueing center represent idle channels that are
waiting to serve a new client request while customers at the upper
delay center represent active channels. The queueing center
generates new active channels at rate equal to the client request
rate λ as long as at least one channel is idle. The service times at
the delay center (i.e., the active stream durations) depend on the
streaming protocol and are correlated with the number of active
streams, with overall mean denoted by S. Once a stream ends, the

channel joins the idle channel pool in the lower queue, waiting to
be reactivated by a new client request. Note that the clients that
arrive (at rate λ) when the queue of idle channels is empty depart
immediately (i.e., balk) and have no impact on the operation of the
channels modeled in Figure 3.

Two features of the model make the solution significantly more
challenging than a queueing system with general independent
service times at the delay center. First, the average stream
duration, S, is a function of system throughput, X, which is an
output of the analysis. Second, the service time at the delay center
is correlated with the number of active streams (i.e., with the
number of customers in the delay center). Since the dependence
between stream duration and number of active streams is difficult
to characterize, we first develop solutions that ignore the
correlation, and then discover a solution that approximately
captures the impact of the correlation.

The notation for the balking model in Figure 3 is defined in Table
1. Due to the one-to-one correspondence between channel
activations and non-balking client requests, the system throughput,
denoted by X = λ(1–Pbalk), can be interpreted as the channel
activation rate. Thus, by Little’s law [19] the following equation
relates the 2-center system measures to the measure of interest,
namely, the balking rate:

)1(balkPX
SR

C −==
+

. (4)

A second observation that enables the analysis is that S can be
estimated from the (unknown) throughput of the queue, using
Little’s law, as

X

XTpB

S

K

i
ipi∑

=≈ 1

*
,)(

, (5)

where Bi,p
* is the required server bandwidth computed using

equation (1), (2) or (3) with Ni replaced by piXT. This is an
approximation since equations (1) – (3) were derived assuming
Poisson stream initiations, which is not the case for the system
with a finite number of channels.

Figure 3: Client Balking Model

C customers

/1

…

S

active channels

idle channels

Input Definition
C

λ
K
α
T

server capacity or bandwidth, in units of the media
play rate
average total client request rate
number of files available on the server
parameter of Zipf file access distribution
file play duration

Output
Pbalk
pi

Ni
Bi,p

*
S
X

Q
R
U

fraction of clients that balk, balking rate
fraction of requests for file i, pi = (1/iα)/Σ(1/jα)
normalized client request rate for file i, Ni = piλTi
required server bandwidth for file i using protocol p
overall mean stream duration
system throughput, X = λ (1–Pbalk)
mean number of idle server channels
mean queueing center residence time
average fraction of time a server channel is busy

 Table 1: Notation for Client Balking Model

Equations (4) and (5) provide three equations that relate four
unknowns, namely: X, S, R, and Pbalk. Below we propose four
methods for obtaining further equations for solving the model.
The solutions in Sections 3.2 and 3.3 are motivated by simplicity,
the solution in Section 3.4 is motivated by refinements that should
improve the accuracy of the first two models, and the model in
Section 3.5 includes a further refinement to the model in 3.4 that
partially captures the correlation between expected stream
duration and the number of active streams when a client initiates a
new stream. Section 5 will show that this fourth model has the
best overall accuracy for estimating client balking rate in patching,
HSM, and bandwidth skimming systems.

3.2 LIS–AMVA Solution
One of the simplest solutions to the model in Figure 3 is to assume
that stream durations are load independent (i.e., not correlated
with the number of active streams) and to solve the resulting
machine repair model (with unknown S) using Schweitzer’s
approximation [1, 2, 21] to estimate the mean time that a channel
remains idle (i.e., the mean residence time at the queueing center):

)
)1(

1(
1

XR
C

C
R

−+≈ , (6)

where, using Little’s law, the mean queue length at the queueing
center, Q, has been replaced by XR.

Equations (4), (5) and (6) define the LIS–AMVA model that can be
iteratively solved by successive substitution or some other suitable
technique for solving a system of non-linear equations.

Two sources of error in the above LIS–AMVA solution motivate
consideration of further solutions. The first is that balking rate
may be inherently difficult to estimate. In particular, a small
percentage error in X, as might result from the Schweitzer
approximation in (6), could yield a large error in Pbalk as
calculated from (4). A second source of error is the assumption
that average time at the delay center is independent of the number
of customers at the delay center.

3.3 LIS–IC Solution
This next approach assumes that service times at the delay center
are load independent, but does not involve estimating mean
residence time at the queueing center. Instead, we directly
estimate the probability that all channels are busy, which is the
balking rate, Pbalk. A very simple approximation that the states of
the channels are independent, yields

C
balk UP ≈ . (7)

Using U = S/(R+S) and the first equality in (4) yields

SX
SR

SC
UC =

+
= , (8)

which, by (5), can be re-written as

∑
=

≈
K

i
ipi XTpB

C
U

1

*
,)(

1
. (9)

Finally, the second equality in (4) together with (7) gives

)1(CUX −≈ . (10)
Equations (8) – (10) can be iteratively solved to obtain the
estimated balking rate, UC. Although it seems that the assumption

of independent channel states could be quite inaccurate, validation
results discussed in Section 5.1 show that the LIS–IC solution
provides more accurate results than the LIS–AMVA solution for
HSM systems.

3.4 LIS–EL/CMVA Solution
A third solution is motivated either by eliminating the Schweitzer
approximation used in the LIS–AMVA model or by a desire to
improve the estimate of balking rate used in the LIS–IC solution.
In either case, note that if the service times at the delay center are
assumed to be load-independent with known mean S, then the
model in Figure 3 is a separable queueing network [19] that is
equivalent to an ordinary M/G/C/C queue with arrival rate λ and
mean service time S.

To improve the estimate of balking rate, note that by the well-
known BCMP result [4], the separable network has the same
solution as the M/M/C/C queue. That is, the solution for generally
distributed delay center service times with mean S is the same as
for exponentially distributed service times with mean S. The
balking rate is equal to the probability that the queue contains C
customers, which is given by Erlang’s loss (EL) formula for the
M/M/C/C queue [18]:

∑
=

≈
C

i

i

C

balk

iS

CS
P

0

!/)(

!/)(
. (11)

Substituting the above into equation (4) yields























−≈

∑
=

C

i

i

C

iS

CS
X

0

!/)(

!/)(
1 . (12)

Equations (12) and (5) can be solved iteratively to estimate S and
X, and then equation (11) can be applied to obtain the balking rate
for this LIS–EL solution.

Equivalently, we can solve the model by estimating the mean
residence time at the queueing center using the arrival instant
theorem for the number of customers in the queue at the arrival
instant [19], rather than Schweitzer’s approximation. Let X(c),
R(c), and Q(c), respectively, denote the throughput, mean
residence time at the queueing center, and mean queue length at
the queueing center, when the network contains c customers, c =
1, 2,…,C. Using the arrival instant theorem and equation (5) with
X=X(C), the remaining set of equations for this LIS–CMVA
(“customized MVA”) solution are:

))1(1(
1

)(−+≈ cQcR (13a)

ScR

c
cX

+
=

)(
)(, c = 1, …, C (13b)

)()()(cRcXcQ = , (13c)

with the boundary condition Q(0) = 0. To solve the system
numerically, S can be initialized to some suitable value, and then
equations (13) followed by equation (5) with the new estimate of
X = X(C) can be repeatedly applied until convergence.

3.5 CMVA Solution
The fourth solution method is derived from the observation that in
the computational structure shown in (13a – c), the same mean
stream duration, S, is used for every network population, whereas
mean stream duration should increase when the network
population (or average number of active streams) decreases.

The CMVA solution modifies equation (5) to estimate the expected
stream duration for each network population, as follows:

)(

))((

)(1

*
,

cX

TcXpB

cS

K

i
ipi∑

=≈ , c = 2, …, C, (14)

and S(1) = T. In this approach, an iterative solution of equation
(14) and equations (13a – c) with S replaced by S(c) in (13b) is
required at each population level, c, in order to determine the
value of S(c), which approximately captures the correlation
between mean stream duration and the number of active streams.

4. CLIENT WAITING TIME ANALYSIS
We again consider a media server that is configured to deliver a
maximum of C streams concurrently. For the models developed
in this section, the clients that arrive when there are already C
active streams wait to be served. The first request to wait for any
particular media file will wait in a first-come-first-served (FCFS)
queue for server bandwidth to become available. If an arriving
request finds at least one request for the same file already waiting
in the queue, the new request batches with the request(s) already
waiting. Thus, the maximum number of request groups waiting
for service is equal to the number of files on the server.

The models developed in this section assume that while a client
waits in the queue for a channel that will deliver the beginning of
the file, the client does not listen to and buffer any other on-going
stream that may be serving the same file. Section 5.3 provides
simulation results that show the impact of listening while waiting
on mean client wait.

As in systems with client balking, stream duration is correlated
with the number of active streams for the file, and the overall
mean stream duration, S, is a function of system throughput,
which is an output of the analysis. Furthermore, clients batching
together while waiting in the queue presents another challenge to
developing a simple, accurate, and efficient analytic method for
computing the mean client wait. To develop the requisite new
models, we again proceed initially by ignoring the correlations
between stream durations and the number of active streams.

4.1 Basic Mean Wait Analysis
We first estimate the mean waiting time for the “ lead requests”
that arrive for each stream. These lead requests are either served
immediately (if the server has unused capacity when the lead
request arrives) or they are the first request to wait for a given new
stream. The mean wait for other requests that batch with the lead
requests will be estimated from the mean wait of the lead requests,
as discussed below.

The initiations of new streams by the lead requests are modeled
with a two-center queueing network that has K customer classes
(one per file) with each class having a single customer, as
illustrated in Figure 4. The lower delay center in the network
models the mean time until a new lead request for file i arrives,
which is equal to the inverse of the file i request arrival rate. The
upper FCFS queue models the time that the lead request waits in
the server queue for an available server channel. As soon as a
lead request obtains a server channel, the customer moves to the
lower delay center to generating a new lead request. If the FCFS
queue is empty and at least one server channel is unused when a
lead request arrives, then the service time in the FCFS queue is
zero. While the FCFS queue is not empty, server channels
become available to serve waiting lead requests on average every
S/C units of time, where S is the mean stream duration.

Using the notation defined in Tables 1 and 2, the mean residence
time of a lead request for file i at the FCFS queue in Figure 4, or
the mean wait for file i lead requests, can be approximated as

)(
1

∑
≠
=

+≈
K

ij
j

l
j

Cl
i QU

C

S
W . (15)

Here UC is used to approximate the probability that a lead request
finds all channels busy, where U is the average channel utilization.
Note that each lead request that is ahead of the file i lead request
in the queue contributes S/C to the lead request’s mean waiting
time.

S can be approximated by

l

K

i

l
ipi

X

TXB

S

∑
=≈ 1

*
,)(

, (16)

where Xi
lT is the average number of new streams initiated per time

T and Xl is the total throughput of the lead requests.

U is given by

C

SX
U

l
= , (17)

Figure 4: Waiting Model for Lead Client Requests

Xi
l

K customers
(one per class)

S/C (conditional)

1/λi

Output Definition
Wi mean wait for file i requests
Wi

l
Q

i
l

Xi

l
Xl

mean wait for file i lead requests
mean queue length of file i lead requests
(0 � Q

i
l <1)

throughput of file i lead requests
total throughput of lead requests

Table 2: Additional Notation for Waiting Model

and Q
i
l can be obtained from Little’s Law as

l
i

l
i

l
i WXQ = . (18)

Note that, for any incoming request, Q
i
l can be interpreted as the

probability that there is already a lead request for file i waiting in
the queue. Since a request for file i batches with any other request
waiting for that file, Xi

l and Qi
l must satisfy

i
l
i

l
i QX)1(−= . (19)

Substituting equation (18) for Qi
l into (19) gives the following

expression that can be derived directly from Figure 4:

i
l
i

l
i

W
X

/1

1

+
= . (20)

Either (20) or (19) together with equations (15) – (18) yields a
system of non-linear equations that can solved iteratively to
compute Wi

l.

The average number of file i requests that batch with a lead
request for file i is equal to λiWi

l. The mean waiting time of these
requests that batch with leading requests depends on the
distribution of the waiting times of the lead requests, which is not
computed in the analysis above. Due in part to the upper bound
on the wait queue length, one might expect the waiting time
distribution to have low variance. If the lead request waiting
times are assumed to be (approximately) deterministic, then the
average waiting time of requests that batch with a lead request is
Wi

l/2, and the overall mean waiting time for file i requests is

l
ii

l
i

l
il

ii
i

W

W
W

W
W

λ

λ

+

+
=

1

2 . (21)

Although the waiting times for lead requests are not deterministic,
validations presented in Section 5.1 show that equations (15) –
(19) and (21) are sufficiently accurate for the HSM and bandwidth
skimming systems, over a wide range of system configurations
and client loads.

4.2 Improved Analysis for Patching
For patching, we first note an issue with respect to choice of
optimal threshold values. Unlike in [6, 14, 22], it is assumed
implicitly in expresssion (16) above, and in our simulations in
Section 5, that the threshold for a file i is computed based on the
throughput of lead requests for the file (i.e., on the rate of stream
initiations), which may be lower than the arrival rate of requests
for the file (many of which may batch together in the queue). This
policy can substantially improve performance, and we have
observed no case in which it degrades performance. We also note
that queueing can substantially impact patching, since by the time
a new stream is initiated for a queued request, any previous stream
serving the same file may have passed the threshold.

Simulation results discussed in Section 5.1 indicate that the basic
mean wait model above (equations (15) – (19) and (21))
underestimates the mean waiting time in patching systems (e.g.,
see Figure 10). The simulations further show that the queueing of
client requests decreases the burstiness of new stream initiations.
A derivation of the required server bandwidth for patching in the
case of deterministic request interrarrival times is given in the
Appendix. Let Ql denote the total mean queue length of lead

requests as predicted by equations (15) – (19), and let l
iW

�
denote

the mean wait of a file i lead request assuming deterministic

stream initiations. That is, l
iW

�
is computed using equations (15) –

(19) with *
,patchingiB in equation (16) replaced by *

,patchingiB
	

from equation (A.1) in the Appendix. We have experimentally
derived the following heuristic interpolation that more accurately
models the mean wait for lead requests in a patching system:

 l
i

l
l
i

l
l

ioninterpolati W
K

Q
W

K

Q
W

+














−= 1 , (22)

which indicates that the arrival of lead requests to the server is less
bursty as the total mean queue length increases. The improved
estimate of overall mean wait for file i requests in a patching
system is then computed using equation (21), with the mean wait
for lead requests computed using equations (15) – (19) and (22).

The validation results in Section 5 will show that the above
models of mean client wait are quite accurate. To obtain even
greater model accuracy, we could consider using the arrival
instant theorem for separable networks to estimate the mean queue
length seen by an arriving lead request, or we could develop a
more accurate approximation than UC for the probability that a
lead request finds all channels busy, as we did for estimating
balking rate in Section 3. However, since mean client wait is
estimated sufficiently accurately with the above simpler models,
we do not consider more complex approaches further.

5. RESULTS
Section 5.1 provides comparisons between results of the analytic
models developed in Sections 3 and 4, and results computed by
simulating the media server with the relevant streaming protocol,
over a wide range of values of the total client request rate (N =
λT), number of popular media files on the server (K), and server
bandwidth capacity (C). The simulations include Poisson request
arrivals, the Zipf distribution of file access frequencies, stream
initiations when server bandwidth is available, stream
terminations and client merges dictated by the streaming protocol,
and client balking or queueing when there are C active streams.
The validation results will show that for each protocol, the most
accurate analytic estimates of client balking rate and mean client
waiting time can be used to evaluate protocol performance for
system configurations of practical interest.

Following the model accuracy assessments, Sections 5.2 through
5.4 provide new evaluations of the protocols with respect to the
client QoS measures. Section 5.2 considers a potential
enhancement for the protocols. Section 5.3 evaluates the
protocols with respect to the server bandwidth needed to achieve a
given target (low) client balking rate or target (low) mean waiting
time. Section 5.4 compares the policies with respect to how well a
system configured for a given anticipated client load performs
under small to moderate increases in the actual load on the system.

For simplicity, all of the experiments in this section assume the
relative file access frequencies are given by the Zipf distribution
with parameter α equal to one (see Table 1). Results could as
easily be obtained for other values of α or for other distributions
of relative file access frequencies.

5.1 Analytic Model Validations
Figure 5 provides example results of client balking rate as a
function of the media server bandwidth, C, estimated by system
simulation and by the four analytic methods developed in Sections
3.2 – 3.5, for a patching system with K = 100 popular media files
and total client request rate, N, equal to an average of 1000 client
requests per period of time equal to the media playback duration
T. Note that the CMVA estimates agree extremely well with the
simulation results. The LIS–AMVA estimates are less accurate
than the LIS–CMVA estimates due to the high sensitivity of the
balking rate measure to small errors in the system throughput

estimate. Figure 6 shows the percent error in each of the two most
accurate analytic estimates, compared with simulation estimates of
the server capacity needed as a function of the target balking rate.
Note that for 20 or 100 files, average total client request rates of
100 or 1000, and target balking rate varying from one in ten to one
in ten thousand, the CMVA estimates are within 2% of the
simulation estimates for the patching systems. Similar accuracy
of the CMVA estimates was also observed for higher client loads.

Figure 7 provides example validation results, and Figures 8 – 9
summarize the percent error for the most accurate analytic
estimates of balking rate in HSM systems and in bandwidth
skimming systems with b = 1.33. Note that for 20 or 100 files and

Figure 9: CMVA Accuracy for Bandwidth Skimming

CMVA, 20 Files CMVA, 100 Files

Target Balking Rate

%
 E

rr
o

r
in

 S
er

ve
r

B
an

d
w

id
th

 R
eq

u
ir

em
en

t

(a) N = 100 (b) N = 1000

-5

0

5

10

15

-5

0

5

10

15

10-4 10-3 10-2 10-1
 10-4 10-3 10-2 10-1

-10
-5
0
5

10
15

-10

-5

0

5

10

15

-10

-5

0
5

10

15

10-4 10-3 10-2 10-1

Target Balking Rate
10-4 10-3 10-2 10-1 10-4 10-3 10-2 10-1

(a) N = 100

(b) N = 1000

(c) N = 10000

Figure 8: CMVA Accuracy for HSM Systems

CMVA, 100 Files CMVA, 20 Files

%
 E

rr
o

r
in

 S
er

ve
r

B
an

d
w

id
th

 R
eq

u
ir

em
en

t

Figure 6: Balking Model Accuracy for Patching Systems

CMVA LIS-EL/CMVA

%
 E

rr
o

r
in

 S
er

ve
r

B
an

d
w

id
th

 R
eq

u
ir

em
en

t

-5

0

5

10

-5

0

5

10

-5

0

5

10

(a) 100 Files (b) 20 Files

10-4 10-3 10-2 10-1

Target Balking Rate
N = 100

10-4 10-3 10-2 10-1
Target Balking Rate

N = 1000

10-4 10-3 10-2 10-1
Target Balking Rate

N = 1000

0.0001

0.001

0.01

0.1

1

250 300 350

CMVA LIS-AMVA
Simulation LIS-EL/CMVA
LIS-IC

Figure 5: Example Balking Model Results
for Patching (100 Files, N = 1000)

B
al

ki
n

g
 R

at
e

Server Capacity (C)

Figure 7: Example Balking Model Results for HSM and Bandwidth Skimming Systems (100 Files)

B
al

ki
n

g
 R

at
e

(a) N = 10 (b) N = 100 (c) N = 1000

Server Capacity (C)

Server Capacity (C)

HSM

Server Capacity (C)

b = 1.33

Server Capacity (C)

HSM CMVA
b=1.33 Simulation

LIS-IC

0.0001

0.001

0.01

0.1

1

200 300 400

0.0001

0.001

0.01

0.1

1

10 15 20 25

0.0001

0.001

0.01

0.1

1

10 15 20 25
0.0001

0.001

0.01

0.1

1

50 75 100

total client load varying from 100 to 10,000 requests, on average,
per time T, the CMVA estimates of the HSM server bandwidth
needed for a given target balking rate have 0 – 15% absolute error.
For 20 files, the percent error in the CMVA estimates is slightly
lower than for 100 files for large N; thus, at extremely high client
request rate (e.g., N = 10,000) for 20 files, the CMVA solution
slightly underestimates (i.e., by 5 – 7%) the HSM server capacity
needed to achieve the target balking rate. For less extreme client
load or a larger number of popular files, the CMVA estimates are
instead slightly pessimistic (i.e., overestimate required server
bandwidth for a given desired balking rate) for the HSM system.
Figure 9 shows that the CMVA model is slightly pessimistic for
the bandwidth skimming (b = 1.33) systems as well.

Figure 10 provides example validations, and Figure 11
summarizes the accuracy of the mean client waiting time models
for each of the three protocols. The basic model for HSM and
bandwidth skimming, and the improved model for patching,
estimate the server bandwidth needed to achieve the target mean
client wait within 15% absolute error compared with the
simulation estimates. Note also that in the range of practical
target client waiting times (i.e., 0.001T to 0.01T), and for a client
request rate for the collection of popular files significantly greater
than 10, the analytic estimates are within 5% of the simulation

values for all three protocols. Furthermore, the analytic estimates
are less optimistic for the HSM systems than for the patching
systems. Hence, any analytically estimated performance gains for
HSM as compared with patching will be conservative.

Figure 12 considers the case in which clients are willing to wait
for a short time before balking. Specifically, if the wait exceeds
Wmax, they balk. We obtain the results for Wmax = 0.01T using
simulation. As shown in the figure, the server bandwidth needed
to achieve a given balking rate is similar for Wmax = 0.01T and
Wmax = 0, except in patching systems with high N, where HSM
significantly outperforms patching. Thus, the analytical estimates
of server capacity needed for a given target balking rate when
Wmax = 0 are just very slightly conservative for systems where
clients balk after a short waiting time.

For a large fraction of the system configurations we simulated, we
found the balking rate estimate from a simulation run length that
has 1000 balking events to be essentially identical to the estimate
from a run length that has only 100 balking events. Thus,
simulating more than 1000 balking events would yield negligible
improvement in accuracy. The corresponding total numbers of
client request arrivals also yielded essentially identical estimates
of mean client wait. These observations were used in determining
simulation run length. Although a few curves have odd

Figure 12: Impact of Non-Zero Maximum Wait

(20 files)

10-4 10-3 10-2 10-1
Balking Probability

10-4 10-3 10-2 10-1
Balking Probability

S
er

ve
r

C
ap

ac
ty

 (
C

)

(a) N = 100 (b) N = 1000

b=1.33
Patching
HSM

 Wmax=0 (analytic)
+ Wmax=0.01T (simulation)

35

45

55

65

50

100

150

200

Figure 13: Impact of L isten While Waiting

(100 files, N = 10000)

200

700

1200

0.0001 0.001 0.01

Mean Waiting Time
 (fraction of T)

S

er
ve

r
C

h
an

n
el

s

Patching Wait Only (analytic)
HSM + Wait & Listen (simulation)

Figure 11: Waiting Model Accuracy

Patching, improved HSM b=1.33

-15

-10

-5

0

5

10

-15

-10

-5

0

5

10

-15

-10

-5

0

5

10

%
 E

rr
o

r
in

 S
er

ve
r

 B
an

d
w

id
th

 R
eq

u
ir

em
en

t

(a) 100 files

Target Mean Wait (fraction of T)

 N = 100 N = 1000 N = 100

(b) 20 files

10-4 10-3 10-2 10-1 10-4 10-3 10-2 10-1 10-4 10-3 10-2 10-1

Figure 10: Example Waiting Model Results
 (100 files, N = 1000)

0

0.01

0.02

0.03

0.04

0.05

175 275 375

0

0.01

0.02

0.03

0.04

0.05

200 250 300 350

M
ea

n
 W

ai
ti

n
g

 T
im

e
 (

fr
ac

ti
o

n
 o

f
T

)

 Server Capacity (C)

(a) Patching

Server Capacity (C)

(b) HSM/Skimming

Patching, improved HSM
Patching, basic b=1.33

× Simulation

“wiggles” , we have verified that these are not artifacts of the run
length selection.

It takes on the order of 20-50 minutes to simulate 1000 balking
events for a single system configuration with moderate to high
client request rate and low balking rate. Thus, the highly efficient
and accurate analytic estimates offer a key advantage for rapidly
exploring system design issues such as those explored below.

5.2 Possible Protocol Enhancement
For the mean waiting time results presented above and estimated
by the analytical models, clients waiting for service do not listen
to any on-going stream that may be serving the same file. As
shown by the simulation results in Figure 13, listening while
waiting has approximately the same performance for either the
patching or the HSM systems considered in this work.

The lack of significant performance improvement for listening
while waiting may be explained by two factors. First, the required
length of a new stream under a “ listen while waiting” strategy is
determined by when the last request arrived in that batch. Second,
“ listen while waiting” offers significant improvements only if the
time spent in the queue is relatively substantial, yet practical
systems are designed for short mean client wait.

5.3 Server Bandwidth Needed for Target QoS
In this section we address the questions (a) what is the mean
waiting time, or the client balking rate, when the server is
configured with the required server bandwidth defined in Section
2 for a given set of popular media objects and a given client load,
and (b) how much server bandwidth is needed to achieve a given
target client balking rate, such as one in ten thousand, or a given
target mean waiting time, such as 0.001T, where T is the requested
media playing time. Figures 14 and 15 provide answers to these
questions for client balking rate; Figures 16 and 17 provide
answers for mean client wait, over a wide range of client loads.

In Figures 14 and 16, at each total client request rate (N), the
media server using a given protocol has bandwidth capacity equal
to the sum of the required server bandwidth as given in Section 2

for each file i (i.e., for protocol p)(),,(
1

*
,

*
i

K

i
pi NBKNCC ∑

=
== α).

Figure 14 shows that when the server is configured in this way, for
patching, HSM, or bandwidth skimming, the client balking rate
ranges from over 20% to 5 – 10% as client request rate ranges
from 10 to 10,000 requests per time T. The results are similar if
the server contains 20 media files (not shown). Such balking rates
are unacceptably high for most systems, but Figures 15(a) and (b)
show that only a modest increase in server bandwidth is needed to
achieve a balking rate as low as one in one hundred or as low as
one in ten thousand, respectively. For example, if the server
contains 100 popular files and the total client request rate for the
popular files is 1000 requests per time T, then for each of the three
protocols, server bandwidth equal to approximately 1.15C*
achieves a balking rate of one in ten thousand.

Figure 16 shows that when the server is configured with
bandwidth equal to C*(N,K,α) and the total request rate N is
greater than 100, the mean client wait is a small fraction of T.
Figure 17 shows further that only small increases in server
bandwidth are needed to achieve very low mean client wait.

The small changes in C* needed to achieve a low balking rate or
low target mean wait illustrate the advantage of aggregating the
client load for many popular files. During periods when one
media file needs more than its average server bandwidth, another
file may use less than its average server bandwidth. Thus, the
variation in the sum of the server bandwidths needed to give every
client immediate service is statistically lower than the variation for
each file. A similar result is shown for mean waiting time over a
much smaller range of system configurations in [12].

Although the value of C* is different for each streaming protocol,
Figures 15 and 17 show that the percent increase in C* needed to
achieve a given target balking rate is similar for all three
protocols.

Note that as N increases, the required server bandwidth per client

decreases (due to the sublinear growth in *
,piB illustrated in Figure

1) and the percent increase in C* needed to achieve a given low
balking rate or mean wait also decreases (as shown in Figures 15
and 17). This illustrates the significant advantages of serving
larger client populations from a given scalable media server.

Figure 15: Server Bandwidth Needed for Low Target Balking Rate

(% increase from ∑=)(*
,

*
ipi NBC)

Client Request Rate (N)

Client Request Rate (N)

Client Request Rate (N)

(a) Target Balking Rate= 0.01 (b) Target Balking Rate= 0.0001

%
 In

cr
ea

se
 f

ro
m

 C
*

20 Files 100 Files 100 Files

0

10

20

30

40

50

100 1000 10000

0

10

20

30

40

50

100 1000 10000

0

10

20

30

40

50

100 1000 10000

Patching HSM b=1.33

B
al

ki
n

g
 R

at
e

0

0.1

0.2

0.3

100 Files

10 102 103 104

Client Request Rate (N)

Figure 14: Balking Rate at

 ∑==)(*
,

*
ipi NBCC

5.4 System Robustness
Figures 18(a) and (b) and 19(a) and (b) each consider the case in
which a scalable media server is configured with bandwidth equal
to the bandwidth needed for a given anticipated client load (N) and
a given low target balking rate or mean wait, respectively. For
example, in Figure 18(a) the server is configured with the
bandwidth needed for client request rate N = 100 and balking rate
equal to one in ten thousand. As shown in Figure 15(b), C =
1.5C* for this target balking rate, 20 files, and N = 100. For each
such system, the client request rate is varied up to 1.4 – 1.5 times
the anticipated load, to determine how much the system
performance degrades when the actual client load is somewhat
higher than anticipated.

Figures 18(a) and (b) show that the HSM and bandwidth
skimming systems can tolerate a 10% increase in client request
rate without significant degradation in client balking rate, but
system performance degrades rapidly for increases in client load
greater than 10%. Patching systems are somewhat more sensitive
to client load increases, tolerating closer to a 5% increase before
service begins to rapidly degrade.

Figures 19(a) and (b) show that mean waiting time is only
insensitive to increases up to 10% in client load if the server is
configured for very low target mean wait (e.g., target mean wait

equal to 0.0001T). Mean wait degrades somewhat less rapidly
than balking rate, but performance still degrades significantly for
greater than 10% increases in client load.

6. CONCLUSIONS
This paper has developed simple, highly accurate and efficient
analytic estimates of mean client wait and the fraction of clients
that balk when a scalable on-demand media server is configured to
deliver a given maximum number of streams concurrently. The
customized AMVA estimates are noteworthy in that they capture
complex phenomenon that would suggest that more complex state
space analyses would be needed. In particular, the balking rate
analysis uses customized AMVA to estimate a probabilistic
measure rather than the usual “mean value” measures, suggesting
that customized AMVA techniques may be applicable to a
significantly broader range of performance metrics and system
design questions than has been previously demonstrated.

The results in Section 5 show that (a) scalable media servers that
are configured with the “ required server bandwidth” defined in
previous work have low mean wait but may have unacceptably
high client balking rates (i.e., greater than one in twenty), (b) for
high to moderate client load, a 10 – 50% increase in the previously
defined required server bandwidth will achieve a very low balking

Figure 18: Balking System Robustness
(Target Balking Rate = 0.0001 at anticipated N)

0

0.005

0.01

1000 1200 1400

Patching b=1.33 HSM

0

0.005

0.01

100 125 150

B
al

ki
n

g
 R

at
e

(a) Anticipated N = 100
 20 Files (C = 1.5C*

N=100)

 Client Request Rate (N) Client Request Rate (N)

(b) Anticipated N = 1000
100 Files (C = 1.2C*

N=1000)

Figure 19: Waiting System Robustness
(100 files, Anticipated N = 1000)

0

0.01

0.02

1000 1200 1400

0

0.01

0.02

1000 1200 1400

HSM b=1.33 Patching

M
ea

n
 W

ai
ti

n
g

 T
im

e
(f

ra
ct

io
n

 o
f

T
)

(a) Target W = 0.001T
(C = C*

N=1000)
 (b) Target W = 0.0001T

(C = 1.05C*
N=1000)

 Client Request Rate (N) Client Request Rate (N)

Figure 16: Mean Wait at

 ∑==)(*
,

*
ipi NBCC

Client Request Rate (N)

M
ea

n
 W

ai
ti

n
g

 T
im

e
(f

ra
ct

io
n

 o
f

T
)

0

0.005

0.01

0.015

100 1000 10000

100 Files

Figure 17: Server Bandwidth Needed for Low Target Mean Client Wait

 (% change from ∑=)(*
,

*
ipi NBC)

-10

-5

0

5

10

15

100 1000 10000
-10

-5

0

5

10

15

100 1000 10000

-10

-5

0

5

10

15

100 1000 10000

Patching HSM b=1.33

Client Request Rate (N) Client Request Rate (N)

%

 C
h

an
g

e
fr

o
m

 C
*

(a) Target Wait = 0.001T

20 Files 100 Files 100 Files

(b) Target Wait = 0.0001T

Client Request Rate (N)

rate (i.e., one in ten thousand), and (c) media server performance
(either mean wait or balking rate) degrades rapidly if the actual
client load is more than 10% greater than the anticipated load.
The analytic models can be easily applied to determine the server
bandwidth needed for a given number of media files, anticipated
total client request rate and file access frequencies, and target
balking rate or mean wait. The results can also be refined for
systems with media files that have unequal play rates or durations,
client arrivals that are more bursty than the Poisson process, and
partial file requests, either by modifying the simulator or by
extending the analytic models to include these system features.

ACKNOWLEDGEMENTS
We thank Ahmed Ayad, Babis Samios, and the anonymous
Sigmetrics 2002 reviewers for helpful comments on this work.

REFERENCES
[1] Y. Bard, “A Model of Shared DASD and Multipathing” ,

Comm. ACM 23, 10 (Oct. 1980), pp. 564-572.
[2] Y. Bard, “A Simple Approach to System Modeling” ,

Performance Evaluation 1, 3 (Aug. 1981), pp. 225-248.
[3] A. Bar-Noy, G. Goshi, R. E. Ladner, and K. Tam,

“Comparison of Stream Merging Algorithms for Media-on-
Demand”, Proc. MMCN 2002, San Jose, CA, Jan. 2002.

[4] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios,
“Open, Closed and Mixed Networks of Queues with
Different Classes of Customers” , J. ACM 22, 2 (Apr. 1975),
pp. 248-260.

[5] S. Carter and D. Long, “ Improving Video-on-Demand Server
Efficiency Through Stream Tapping” , Proc. ICCCN ’97, Las
Vegas, NV, Sept. 1997.

[6] Y. Cai, K. A. Hua, and K. Vu, “Optimizing Patching
Performance”, Proc. MMCN ’99, San Jose, CA, Jan. 1999.

[7] E. G. Coffman, Jr., P. Jelenkovic, and P. Momcilovic,
“Provably Efficient Stream Merging” , Proc. 6th Int’ l.
Workshop on Web Caching and Content Distribution,
Boston, MA, June 2001.

[8] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley,
“Channel Allocation under Batching and VCR Control in
Video-on-Demand Systems”, J. Parallel and Distributed
Computing 30, 2 (Nov. 1995), pp. 168-179.

[9] D. L. Eager and M. K. Vernon, “Dynamic Skyscraper
Broadcasts for Video-on-Demand”, Proc. MIS ’98, Istanbul,
Turkey, Sept. 1998.

[10] D. L. Eager, M. K. Vernon and J. Zahorjan, “Bandwidth
Skimming: A Technique for Cost-Effective Video-on-
Demand”, Proc. MMCN 2000, San Jose, CA, Jan. 2000.

[11] D. L. Eager, M. K. Vernon and J. Zahorjan, “Minimizing
Bandwidth Requirements for On-Demand Data Delivery” ,
IEEE Trans. on Knowledge and Data Engineering 13, 5
(Sept./Oct. 2001), pp. 742-757.

[12] D. L. Eager, M. K. Vernon and J. Zahorjan, “Optimal and
Efficient Merging Schedules for Video-on-Demand Servers” ,
Proc. ACM MULTIMEDIA ’99, Orlando, FL, Nov. 1999.

[13] L. Gao, J. Kurose, and D. Towsley, “Efficient Schemes for
Broadcasting Popular Videos” , Proc. NOSSDAV ’98,
Cambridge, UK, July 1998.

[14] L. Gao and D. Towsley, “Supplying Instantaneous Video-
on-Demand Services Using Controlled Multicast” , Proc.
ICMCS ’99, Florence, Italy, June 1999.

[15] A. Hu, “Video-on-Demand Broadcasting Protocols: A
Comprehensive Study” , Proc. IEEE Infocom 2001,
Anchorage, AL, Apr. 2001.

[16] K. A. Hua, Y. Cai and S. Sheu, “Patching: A Multicast
Technique for True Video-on-Demand Services” , Proc. ACM
MULTIMEDIA ’98, Bristol, U.K., Sept. 1998.

[17] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: A New
Broadcasting Scheme for Metropolitan Video-on-Demand
Systems”, Proc. ACM SIGCOMM ’97, Cannes, Sept. 1997.

[18] L. Kleinrock, Queueing Systems Volume 1: Theory, John
Wiley and Sons, New York, NY, 1975.

[19] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative System Performance, Prentice-Hall,
Englewood Cliffs, NJ, 1984.

[20] J. F. Paris, S. W. Carter, and D. D. E. Long, “A Hybrid
Broadcasting Protocol for Video on Demand”, Proc. MMCN
’99, San Jose, CA, Jan. 1999.

[21] P. Schweitzer, “Approximate Analysis of Multiclass Closed
Networks of Queues” , International Conference on
Stochastic Control and Optimization, Amsterdam,
Netherlands, 1979.

[22] S. Sen, L. Gao, J. Rexford, and D. Towsley, “Optimal
Patching Schemes for Efficient Multimedia Streaming” ,
Proc. NOSSDAV ’99, Basking Ridge, NJ, June 1999.

[23] S. Viswanathan and T. Imielinski, “Metropolitan Area
Video-on-Demand Service using Pyramid Broadcasting” ,
Multimedia Systems 4, 4 (Aug. 1996), pp. 197-208.

APPENDIX
This appendix derives the required server bandwidth for
immediate on-demand streaming using the patching protocol and
for a given media file with deterministic request interarrival times.

Let T, y, and λi denote the play duration, patching threshold (as a
fraction of T), and request rate, respectively, for any given media
file i. Since request interarrival times are deterministic, for each
full-file multicast there will be precisely m =  iyT patch streams
initiated, and the duration of these patch streams, in their initiation
order, will be 1/λi¸ 2/λi¸…, m/λi. The elapsed time between
successive full-file multicasts is simply (m+1)/λi. Therefore, the
required server bandwidth for file i is given by

 ,
)1(2

)1(2

/)1(i

1 i
*
, +

++
=

+

+

=

∑
=

m

mmN

m

j
T

B i

m

j
patchingi

�
 (A.1)

where Ni is the average number of requests that arrive for the file
per period of length T. By taking the derivative with respect to m

and setting the result to zero, 12 −iN is found to be the

(possibly non-integral) value of m that minimizes required server
bandwidth. The integral value of m that minimizes required server

bandwidth is either  12 −N  , or  12 −N . Substitution of
each of these expressions into (A.1) above, and taking the
minimum, yields the required server bandwidth with optimal
threshold. Note that the required server bandwidth grows with the
square root of the request rate, as in the case of Poisson arrivals.

