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1. Introduction

Fork/join stations are used to model synchronization constraints be-
tween entities in a queuing network. The fork/join station of interest in
this chapter consists of a server with zero service times and two input
buffers. As soon as there is one entity in each buffer, an entity from each
of the buffers is removed and joined together. The joined entity exits
the fork/join station instantaneously. Subsequent to its departure, the
joined entity forks back into the component entities, which then each
get routed to other parts of the network. Fork/join stations find many
applications in queuing models of manufacturing and computer systems.
In queuing models of assembly systems, the assembly station is typically
modeled using a fork/join station (Harrison [7], Latouche [17], Hopp and
Simon [8], Rao and Suri [23, 24]). Fork/join stations are also used model
the synchronization constraints in models of material control strategies
for multi-stage manufacturing systems (Buzacott and Shanthikumar [5],
Di Mascolo et al. [6], Krishnamurthy et al. [11]). In computer systems
analysis, queuing networks with fork/join stations have been studied
in the context of parallel processing, database concurrency control, and
communication protocols (Baccelli et al. [3], Prabhakar et al. [21], Varki
[37]).

As a starting point for understanding the behavior of queuing net-
works with fork/join stations, several researchers have analyzed such
fork/join stations in isolation. The typical inputs for such an analysis
are the capacity of each input buffer and a description of the arrival pro-
cess of entities to each input buffer. Performance measures of interest
include synchronization delays, queue length distributions at the differ-
ent input buffers, and in the case of finite customer populations, station
throughput.

For the sake of analytical tractability, a majority of the previous re-
search efforts assume that the fork/join stations have Poisson inputs
(Harrison [7], Bhat [4], Lipper and Sengupta [19], Hopp and Simon [8],
Som et al. [25], Takahashi et al. [28]). Although these results are use-
ful, in many of the applications cited above the input processes are not
Poisson. In fact, often the input processes have variability quite differ-
ent from that of a Poisson process. Most approaches that analyze more
general arrival processes such as those reported in Takahashi et al. [29],
and Takahashi and Takahashi [30], assume infinite populations for each
arrival process. However, if the fork/join station is part of a closed queu-
ing network, then once the queue length of an input buffer equals the
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size of the population that can arrive to the buffer, the arrival process
shuts down.

For fork/join stations that are a part of a closed queuing network, ex-
act analysis can be computationally prohibitive. The analysis of fork/join
stations with general arrival processes from finite populations can be-
come very complex even when the inter-arrival times have a Coxian dis-
tribution [12]. Thus approximations for the performance of the fork/join
stations in particular and the network in general can be highly useful.
In this chapter, we derive approximate expressions for throughput and
mean queue lengths at the input buffers of a fork/join station with gen-
eral inputs from finite populations. The approximations are based on
the assumption that the arrivals to the fork/join stations are renewal,
but they only use the first two moments of the inter-renewal distribu-
tions and can therefore be used to predict performance for a wide variety
of systems. In the literature such approximations are often referred to
as two-moment approximations.

The two-moment approximations developed in this research find im-
mediate applications in analyzing closed queuing network models of
many manufacturing and computer systems. For instance, the approxi-
mations can be used to analyze closed queuing network models of fabri-
cation/assembly systems, and material control strategies such as kanban
systems. Alternatively, the approximations can be used to analyze closed
queuing network models of parallel and distributed computing systems.
In addition to these immediate applications, these approximations can
be used as building blocks in parametric decomposition approaches for
solving larger closed queuing networks with multiple synchronization
constraints.

The outline of this chapter is as follows. Section 2 provides some
background on two-moment approximations and describes the fork/join
station under consideration. The approach to developing two-moment
approximations consists of two parts. First, insights obtained from the
literature on exact analyses for the cases of exponential and Coxian inter-
arrival times are discussed in Section 3. Next, based on these insights, a
general form for the approximations is proposed in Section 4. In Section
5 the detailed form of the approximation equations is identified and the
accuracy of the approximations is tested against simulation. Section 6
discusses a numerical example and Section 7 provides the concluding
remarks.
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2. Background

2.1. Two-Moment Approximations

Two-moment approximations have been used extensively to obtain
performance measures of simple queues. For instance, Marshall [20],
Kuehn [15], Whitt [32, 35] and Kimura [16] assume that the arrival and
service processes at the queues are renewal processes characterized by
their mean and squared coefficient of variation (SCV) and develop two-
moment approximations for performance measures such as mean waiting
times, mean queue lengths and SCV of the inter-departure times from
M/G/1, GI/G/1, and GI/G/s queues.

Apart from their use in analysis of queues in isolation, two-moment
approximations form an integral part of the parametric decomposition
approach to estimating the steady state performance measures of non-
product form queuing networks. See Whitt [32], Suri et al. [26, 27]
and the references therein for applications of this approach. The main
idea behind the parametric decomposition approach is to first character-
ize the arrival and service processes approximately by renewal processes
and then analyze the individual queues in the network separately. The
inter-renewal times are characterized by two parameters, one to repre-
sent the rate and the other to represent the variability. In most cases
the variability parameter is the SCV of the inter-renewal times. Using
this information about the traffic processes, the individual queues in the
network are analyzed separately using the two-moment approximations
for simple queues and equations that link the output process from a
node to the input process of the subsequent nodes in the network are
developed. These equations are then used to analyze the networks more
efficiently.

Although the parametric decomposition method has several attractive
features, thus far it has not been applied to analyzing closed queuing
networks with fork/join synchronization stations. The primary reason
for this is that two-moment approximations characterizing performance
measures at a fork/join station with inputs from finite populations have
not been developed. Previous approaches to analyzing queuing networks
with fork/join synchronization stations have less efficient solution meth-
ods such as product form approximation (Di Mascolo et al. [6]) and
mean value analysis approaches (Varki [37]). The aim of this research is
to develop such two-moment approximations for performance measures
at a fork/join station so that the parametric decomposition approach
can be used to analyze a larger class of closed queuing networks. Apart
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from their use in analyzing the performance of queuing networks with
several synchronization stations, the approximations for the fork/join
station in isolation finds direct applications in the performance analysis
of several fabrication/assembly systems and parallel/distributed com-
puting systems. We discuss this in detail in the next section.

2.2. System Description

We describe our model of the fork/join station and explain how it
could be used to represent the synchronization behavior in particular
manufacturing and computer systems. The model, is illustrated in Fig-
ure 1.1, and Table 1.1 summarizes the notation used in the model and
throughout the remainder of the chapter.
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Figure 1.1. Fork/Join Station illustrated as part of two sub-networks

As shown in the figure the fork/join station has two input buffers,
B1 and B2. SNi denotes the rest of the queuing network for entities
that arrive to buffer Bi, i = 1, 2. If an entity arriving in buffer B1(B2)
finds buffer B2(B1) empty, it waits for the corresponding entity to arrive
in input buffer B2(B1). As soon as there is at least one entity in each
queue, one entity is removed from each buffer. The removed entities join
together, and immediately depart from the fork/join station. As a result
the contents of both input buffers are reduced by one. Subsequent to
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departure from the fork/join station, the joined entity forks back into
two entities that are routed back to SN1 and SN2 respectively. In SN1

and SN2 these entities are subjected to random delays before they re-
visit the fork/join station. There is a finite population of size Ki for
each entity i. Consequently, the number of entities in input buffer Bi

and queuing network SNi always sum up to Ki, i = 1, 2. Additionally,
the arrival process to buffer Bi shuts down when there are Ki units in
buffer Bi.

Since the sub-networks SN1 and SN2 from which entities arrive to
input buffers can have different configurations resulting in arbitrary de-
lays, the arrival processes to the fork/join stations can have arbitrary
characteristics. However, analysis of fork/join stations for general ar-
rival processes can be quite complicated. To simplify our analysis, and
in keeping with other two-moment approximation methods, we will as-
sume that the arrival processes are independent renewal processes and
that the inter-arrival times to the input buffers are independent and
identically distributed (i.i.d) having means 1/λ1, 1/λ2, and SCVs c2

1,
c2
2, respectively. Since we assume that the arrival process to buffer

B1(B2) shuts down once it has K1(K2) units, the arrival processes are
renewal between shut downs. With these assumptions, our model of this
fork/join station is completely characterized by the parameter 6-tuple
(λ1, c

2
1, K1, λ2, c

2
2, K2). For a fork/join station characterized thus, our

Table 1.1. Notation

Notation Description

λi Rate of arrivals to buffer Bi, i = 1, 2

c2

i SCV of inter-arrival times at buffer Bi, i = 1, 2

Ki Finite population of entities arriving at buffer Bi, i = 1, 2

λD Throughput as computed for general inputs

L̄i Mean queue length at buffer Bi, i = 1, 2 for general inputs

c2 The average of SCVs of inter-arrival times at the two buffers
i.e., c2 = (1/2)(c2

1 + c2

2)

ĉ2

D Variability parameter of departure process for general inputs

λx

D Throughput as computed for arrival process x where
x = E(Exponential), C(Coxian)

L̄x

i Mean queue length at buffer Bi, i = 1, 2 as computed
for arrival process x where x = E(Exponential), C(Coxian)

EH A 2 Stage Erlang/Hyper-exponential combination

SL A Shifted exponential/Lognormal combination
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goal is to obtain approximations for the throughput, λD, the variability
parameter, ĉ2

D and the mean queue length of each buffer, L̄i, i = 1, 2.

The variability parameter ĉ2
D is beyond the scope of this chapter.

In fact characterizing the variability of the departure process from the
fork/join station as well as developing two-moment approximations for
the variability parameter (ĉ2

D) of the departure process, is quite chal-
lenging. In particular, the correlations between the successive inter-
departure times need to be accounted for so as to capture the impact of
such correlations on performance measures (such as queue lengths) at
the subsequent queues in the network. These issues require substantial
investigation and discussion, and are addressed in a separate paper (Kr-
ishnamurthy et al. [14]).

Next we provide three practical examples of the queuing system de-
scribed above.

1 First, the fork/join station described above can represent a syn-
chronization station before an assembly operation in a fabrica-
tion/assembly system (Rao and Suri [23, 24]). In this case K1(K2)
could correspond to the fixed number of automated guided vehi-
cles (AGVs) circulating in the fabrication sub-network SN1(SN2)
feeding the assembly station. Entities in buffers B1 and B2 cor-
respond to fabricated parts that are to be assembled. The join
operation corresponds to the kitting operation, while the fork op-
eration corresponds to the release of free AGVs carrying the parts
required for assembly. These AGVs would go back to the fabrica-
tion sub-networks SN1 and SN2 to be restocked with parts.

2 As a second example, the model could represent the synchroniza-
tion constraint in a kanban control system. In modern manufactur-
ing, kanban systems are a popular form of material control (Buza-
cott and Shanthikumar [5], Di Mascolo et al. [6], Liberopoulos and
Dallery [18]). If the fork/join station models the synchronization
constraint in a multi-stage kanban system, SN1 and SN2 could
correspond to upstream and downstream manufacturing stages re-
spectively and K1(K2) would be the number of kanbans in stage
SN1(SN2). Each entity in buffer B1 corresponds to a part with
an upstream kanban attached to it. Each entity in buffer B2 cor-
responds to a free kanban returning from the downstream stage.
During the join operation a part and upstream kanban are joined
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with a downstream kanban and during the fork operation, the up-
stream kanban is sent back to SN1, while the part and downstream
kanban are sent to SN2.

3 Finally, this fork/join station model can also be applied to repre-
sent the synchronization behavior of parallel programs contending
for shared resources in a parallel or distributed computer system.
See Heidelberger and Trivedi [9].

2.3. System Assumptions and Approach

As discussed in Section 1, our goal is to obtain two-moment approxi-
mations for throughput, λD, and mean queue lengths L̄1 and L̄2 at the
input buffers B1 and B2 for a fork/join station specified by the param-
eter 6-tuple (λ1, c

2
1, K1, λ2, c

2
2, K2). To do so we first study the impact

of the mean rates of the input processes (λ1, λ2), and population size
(K1, K2) on the performance of the fork/join station using the exact ex-
pressions reported in Som et al. [25] and Takahashi et al. [28]. Although
these expressions are exact only for the case of exponentially distributed
inter-arrival times, the insights about the impact of arrival rates help us
understand behavior for more general arrival processes. To study the
impact of second moments of the arrival distributions (in particular c2

1

and c2
2) on the performance of the fork/join station, a model assuming

Poisson inputs is inadequate. In Krishnamurthy et al. [12], we analyze
a fork/join station where the inter-arrival times have a 2-phase Coxian
distribution. This permits analysis for input processes with a wide range
of means (0,∞) and SCVs [0.5,∞). From this analysis we observe the
impact of both means and SCVs on the performance measures. Using
insights from all the above cases, we develop two-moment approxima-
tions for the more general case.

In developing the approximations, we assume that the ratio of input
rates ρ = λ1/λ2 lies in the interval [0.3,3.0]. This is justified for most
practical situations, since in a high performance system one would not
normally expect the arrivals rates at one input buffer of a synchroniza-
tion station to be more than three times that of the other. We also
assume that both c2

1 and c2
2 lie in the interval [0.5,4.0]. These values

cover a significant portion of the range of SCVs observed in practice. In
addition many of the prior research on parametric decomposition and
two-moment approximations have focused on a similar range of param-
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eters (Albin [2], Buzacott and Shanthikumar [5], Kamath et al.[10]).

3. Insights from Exact Analysis

3.1. Impact of Mean Arrival Rates

We will use the notation in Table 1.1 noting that a superscript ‘E’
denotes the station performance measures that are estimated assuming
exponential inter-arrival times. Assuming without loss of generality that
λ1 ≤ λ2, Takahashi et al. [28] derive the following expressions for the
throughput λE

D and mean queue lengths L̄E
i , i = 1, 2 at the fork/join

station:

If ρ = λ1

λ2
6= 1,

λE
D = λ1

(

1 − ρK1+K2

1 − ρK1+K2+1

)

(1.1)

L̄E
1 =

(

ρK2+1

1 − ρ

)(

1 − ρK1

1 − ρK1+K2+1

)

−
(

K1ρ
K1+K2+1

1 − ρK1+K2+1

)

(1.2)

L̄E
2 =

(

K2

1 − ρK1+K2+1

)

−
(

ρ

1 − ρ

)(

1 − ρK2

1 − ρK1+K2+1

)

(1.3)

and if ρ = λ1

λ2
= 1,

λE
D = λ1

(

K1 + K2

K1 + K2 + 1

)

(1.4)

L̄E
i =

Ki(Ki + 1)

2(K1 + K2 + 1)
for i = 1, 2. (1.5)

Based on these expressions we obtain the following insights about the
performance of the fork/join station for the case of exponential inputs.

1 The upper bound of the throughput, λE
D from the fork/join station

is min(λ1, λ2). If ρ = 1, the bound is nearly achieved for moderate
K1 and K2.

2 The throughput λE
D, depends on the values of K1 and K2 only

through their sum (K1 + K2).
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3 When the input rates are unequal, substantial queues are observed
at the buffers of the input processes with higher rates of arrivals,
i.e., L̄E

1 � L̄E
2 when λ1 > λ2.

4 When ρ = 1, we have λE
D < λ1 = λ2 and L̄E

i < Ki

2 for Ki < ∞, i =
1, 2.

Note that taking limits as Ki, i = 1, 2 tend to infinity in the equations
above we can confirm three of the key observations made in Harrison [7]
with regard to the performance of fork/join stations in open networks
of queues. In particular, we observe from equation 1.1 that the slower
of the two arrival processes controls the throughput from the fork/join
station, i.e., when λ1 < λ2 the throughput λE

D from the fork/join station
is λ1. Further, in this case the mean queue length L̄E

2 at buffer B2 grows
without bound (See equation 1.3). Finally, as shown in Harrison [7],
when λ1 = λ2 the mean queue lengths at both the buffers grow without
bound (See equation 1.5).

3.2. Impact of SCVs of Inter-arrival Times

Next we study the impact of higher moments of the arrival distribu-
tions on the performance of the fork/join station. Let the inter-arrival
times to the input buffers have means, 1/λi, and SCV, c2

i , for i = 1, 2,
respectively. Then using this information and the additional constraint
of balanced means, one can derive a unique 2-phase Coxian distribution
to characterize the inter-arrival times at each input buffer. In Krishna-
murthy et al. [12] we present an exact analysis of such a system and
compute the performance measures. We use the insights gained from
the exact analysis to understand the impact of the SCVs of the input
processes on station performance measures.

The decision to use these 2-phase Coxian distributions to model the
inter-arrival times for given values of means and SCVs is motivated by
the following factors. First, exact analytical results are available for the
case where the inter-arrival times have 2 phased Coxian distribution.
Second, this analysis is valid for the entire range of means and SCVs for
which we intend to derive the approximations. Third, choosing other
two parameter distributions such as Gamma, shifted exponential or log-
normal distributions would imply that new exact analysis would have
to be carried out in order to obtain estimates of performance measures.
Since our main aim is to develop two-moment approximations for gen-
eral inputs, we study the impact of higher moments of the arrival dis-
tributions on the performance of the fork/join station using the analysis
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available for the case of Coxian inputs to gain the necessary insights, de-
velop the approximations and then test their performance against simu-
lation for different input distributions. One of the observations from the
analysis for Coxian inputs is that the closed form expressions for mean
queue length and throughput are substantially more complicated than
those obtained for exponential inputs. Therefore we present the insights
gained from the numerical results obtained from the exact computations.

The parameter values (λ1, c
2
1, K1, λ2, c

2
2, K2) used to obtain insights

into the impact of c2
i , i = 1, 2 on the throughput and mean queue lengths

are summarized in Table 1.2. Note that each of the SCVs ranges from
0.5 to 4.0. Furthermore, we let the finite population of each entity vary
from 2 to 20, in order to determine whether throughput under the more
general 2-phase Coxian arrival processes is significantly affected by each
finite population size, or whether it depends primarily on the sum of
the populations (as it did for the exponential case). We vary these key
parameters across the given range of values, for each of several pairs of
input arrival rates such that the ratio of arrival rates varies is between
0.3 and 3. For a given pair of arrival rates, we could multiply each arrival
rate by some constant, α, which could correspond to changing the arbi-
trary time unit for specifying the rate by a factor of α. In this case, we
would obtain a system throughput that is scaled appropriately. Thus,
the ratio of the arrival rates is key determinant of station performance,
rather than the magnitude of each arrival rate (e.g., the choice of 1.0 for
the equal rates is arbitrary; both could be 0.5 or both could be 2.0).

Table 1.2. Parameters for analysis for Coxian inputs

Parameter Values

(λ1, λ2) (0.3, 1.0), (0.4, 1), (0.5, 1), (0.83, 1.25), (0.9, 1.1), (1.0,1.0),
(1.1, 0.9), (1.25,0.83), (2.0, 1.0), (3.0, 1.0)

c2

1 0.5, 0.8, 1.0, 2.0, 4.0

c2

2 0.5, 0.8, 1.0, 2.0, 4.0

K1 2, 4, 6, 8, 10, 20

K2 2, 4, 6, 8, 10, 20

For each pair of arrival rates, there are 900 system configurations rep-
resenting different combinations of the other parameter values. It would
be tedious to present results for all these cases. Instead we focus on
the main insight obtained from the set of results. Sample results are
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summarized in Tables 1.3 and 1.4, and plotted in Figures 1.2 and 1.3.
For additional results, the reader is referred to Krishnamurthy et al.
[12] and Krishnamurthy et al. [14]. The values of λC

D, L̄C
1 and L̄C

2 were
obtained from the exact analysis for Coxian inputs. The superscript ‘C’
serves as a reminder that the inter-arrival times have a 2-phase Coxian
distribution. Interestingly, one of the insights from the exponential case
seems to apply here as well: Tables 1.3 and 1.4 show that, for fixed
values of the SCVs, the throughput appears to depend on K1 and K2

only through their sum K1 + K2. Figure 1.2 shows the impact of the
SCVs on the values of K1 and K2 required to obtain a given throughput
while figure 1.3 shows the sensitivity of mean queue lengths to SCVs
for different ratios of the arrival rates. The results from the numerical
computations lead to the following set of insights:

1 For any values of the SCVs, the upper bound of the throughput,
λC

D from the fork/join station is min(λ1, λ2). This throughput is
achieved as (K1, K2) → ∞.

2 For given values of c2
1, c2

2 and (K1 + K2) the value of throughput,
λC

D is insensitive to the choice of K1 and K2. See Tables 1.3 and
1.4.

3 As in the case of Poisson inputs, substantial queues are observed
at the buffers of the input processes with higher rates of arrivals,
i.e., L̄C

2 � L̄C
1 when λ2 > λ1. See Table 1.3.

4 When input rates are equal, i.e. ρ = 1, λC
D is quite sensitive to c2

1,
and c2

2. See Table 1.4 and Figure 1.2.

5 When ρ increases above 1 or decreases below 1, the station per-
formance measures become increasingly less sensitive to the SCVs
and are more primarily dependent on ρ. See Table 1.3 and Figure
1.3.

6 Define c2 =
c2
1
+c2

2

2 , that is c2 is the average of the two arrival SCVs.
We observe that for a given ρ and c2:
If c2 < 1, then λC

D > λE
D.

If c2 > 1, then λC
D < λE

D.
If (ρ − 1)(c2 − 1) < 0, then L̄C

1 > L̄E
1 and L̄C

2 < L̄E
2 .

If (ρ − 1)(c2 − 1) > 0, then L̄C
1 < L̄E

1 and L̄C
2 > L̄E

2 .

Finally we observe from Tables 1.3 and 1.4, and Figures 1.2 and 1.3
that when 0.5 < ρ < 2, c2

i 6= 1, for i = 1, 2, the performance measures
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Table 1.3. Analysis of impact of K1 and K2 on system performance for Coxian inputs
(λ1 = 0.83, λ2 = 1.25)

c2

1 c2

2 K1 K2 K1 + K2 L̄C
1 L̄C

2 λC

D

0.5 0.5 2 2 4 0.13 1.06 0.81
4 4 8 0.05 2.80 0.83
4 6 10 0.01 4.75 0.83
6 4 10 0.05 2.79 0.83
2 10 12 0.00 8.74 0.83
6 6 12 0.01 4.75 0.83
10 2 12 0.27 1.01 0.83
4 10 14 0.00 8.74 0.83
8 6 14 0.01 4.75 0.83
10 4 14 0.06 2.79 0.83
6 10 16 0.00 8.74 0.83
8 8 16 0.00 6.74 0.83
10 6 16 0.01 4.75 0.83

0.5 4 2 2 4 0.36 1.09 0.72
4 4 8 0.47 2.40 0.78
4 6 10 0.32 3.94 0.80
6 4 10 0.70 2.32 0.80
2 10 12 0.07 7.44 0.81
6 6 12 0.48 3.85 0.81
10 2 12 1.54 0.90 0.81
4 10 14 0.15 7.32 0.82
8 6 14 0.62 3.78 0.82
10 4 14 1.06 2.22 0.82

4 1 2 2 4 0.41 1.01 0.72
4 4 8 0.58 2.16 0.79
4 6 10 0.39 3.60 0.80
6 4 10 0.86 2.08 0.80
2 10 12 0.08 7.01 0.81
6 6 12 0.59 3.52 0.81
10 2 12 1.89 0.82 0.81
4 10 14 0.18 6.89 0.82
8 6 14 0.75 3.46 0.82
10 4 14 1.29 2.00 0.82

4 4 2 2 4 0.47 1.07 0.67
4 4 8 0.73 2.22 0.74
4 6 10 0.56 3.59 0.76
6 4 10 1.10 2.13 0.76
2 10 12 0.16 6.78 0.78
6 6 12 0.86 3.48 0.78
10 2 12 2.25 0.86 0.78
4 10 14 0.35 6.60 0.79
8 6 14 1.15 3.39 0.79
10 4 14 1.77 2.01 0.79
6 10 16 0.55 6.46 0.80
8 8 16 0.91 4.83 0.80
10 6 16 1.41 3.32 0.80
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Table 1.4. Analysis of impact of K1 and K2 on system performance for Coxian inputs
(λ1 = λ2 = 1)

c2

1 c2

2 K1 K2 K1 + K2 L̄C
1 L̄C

2 λC

D

0.5 0.5 2 2 4 0.51 0.51 0.87
4 4 8 0.99 0.99 0.93
4 6 10 0.79 1.79 0.95
6 4 10 1.79 0.79 0.95
2 10 12 0.16 4.16 0.96
6 6 12 1.49 1.49 0.96
10 2 12 4.16 0.16 0.96
4 10 14 0.56 3.56 0.96
8 6 14 2.27 1.27 0.96
10 4 14 3.56 0.56 0.96
6 10 16 1.11 3.11 0.97
8 8 16 1.98 1.98 0.97
10 6 16 3.11 1.11 0.97

0.5 4 2 2 4 0.64 0.73 0.74
4 4 8 1.17 1.43 0.82
4 6 10 1.01 2.33 0.85
6 4 10 1.92 1.24 0.85
2 10 12 0.33 4.69 0.87
6 6 12 1.69 2.05 0.87
10 2 12 4.02 0.38 0.87
4 10 14 0.79 4.19 0.88
8 6 14 2.43 1.83 0.88
10 4 14 3.58 0.97 0.88

4 1 2 2 4 0.73 0.67 0.73
4 4 8 1.42 1.22 0.81
4 6 10 1.23 1.98 0.84
6 4 10 2.31 1.05 0.84
2 10 12 0.39 4.09 0.85
6 6 12 2.04 1.75 0.85
10 2 12 4.64 0.35 0.85
4 10 14 0.98 3.65 0.87
8 6 14 2.89 1.56 0.87
10 4 14 4.16 0.83 0.87

4 4 2 2 4 0.76 0.76 0.68
4 4 8 1.42 1.42 0.76
4 6 10 1.26 2.26 0.79
6 4 10 2.26 1.26 0.79
2 10 12 0.45 4.45 0.81
6 6 12 2.03 2.03 0.81
10 2 12 4.45 0.45 0.81
4 10 14 1.04 4.04 0.83
8 6 14 2.85 1.85 0.83
10 4 14 4.04 1.04 0.83
6 10 16 1.71 3.71 0.84
8 8 16 2.62 2.62 0.84
10 6 16 3.71 1.71 0.84
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Figure 1.3. Impact of unequal input rates and variabilities on L̄C
1

are quite different from those when c2
i = 1, for i = 1, 2. This implies that

the variabilities in the input processes do have a significant impact on
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the performance measures at the fork/join station. For example Figure
1.2 shows that depending on the input variables significantly different
Ki values might be needed to achieve a desired throughput. In other
words, there is a substantial impact of variability parameters on system
design values. Therefore it is important to incorporate the impact of
second moments of inter-arrival time distributions while developing ap-
proximations for the performance measures at a fork/join station with
more general inputs.

4. General Form of the Two-Moment
Approximations

In this section we use the insights gained from the exact analysis
presented in the previous section to develop two-moment approxima-
tions of fork/join station performance for the case of general inputs. We
note that there is a set of probability distributions consistent with every
choice of two moments and correspondingly there is a set of possible per-
formance measures associated with any parameter 6-tuple (λ1, c

2
1, K1, λ2,

c2
2, K2). The performance measures (mean queue lengths and through-

put) derived using the two-moment approximations are therefore re-
garded as representative of this set. In this section, we develop a general
form for these approximations. In subsequent sections we derive the fi-
nal expressions for the approximations.

The analysis for the case of exponential inputs helps to elucidate
the impact of mean arrival rates on the performance measures of the
fork/join station. To obtain quantitative insights into the impact of the
SCVs of the inter-arrival times, we study the relative differences of these
measures for the Coxian and exponential cases. Thus, we define:

dλD
=

λC
D − λE

D

λE
D

(1.6)

dL̄i
=

L̄C
i − L̄E

i

L̄E
i

for i = 1, 2. (1.7)

We compute dλD
, dL̄1

and dL̄2
for the parameter settings listed in Ta-

ble 1.2. For a given value of ρ, K1 and K2, λE
D, L̄E

1 , and L̄E
2 are uniquely

defined while the values of λC
D, L̄C

1 , and L̄C
2 , depend additionally on the

particular values of c2
1 and c2

2. The aim of computing dλD
, dL̄1

and dL̄2
is

to gain insight on the impact of c2
1 and c2

2. Figures 1.4, 1.5, and 1.6 plot
the above quantities against c2 − 1. Figure 1.4 illustrates the variation
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of dλD
with c2 − 1 for ρ = 1 and different values of K1 and K2. Figure

1.5 illustrates the variation of dλD
with c2 − 1 for ρ = 0.66 and different

values of K1 and K2. From these graphs we infer that dλD
varies roughly

linearly with c2 − 1, with additional variation depending on ρ, K1 and
K2. Figure 1.6 illustrates the variation of dL̄2

with c2 − 1 for ρ = 0.66,
and different values of K1 and K2. From these graphs and symmetry we
infer that dL̄1

and dL̄2
vary roughly linearly with c2 − 1, with additional

variation depending on ρ, K1 and K2. Although not illustrated here,
we analyzed the behavior for several other values of ρ and found similar
trends.

Based on these observations we propose that suitable candidates for
the approximation functions would be the following:

λD = λE
D

[

1 + (c2 − 1)wλD

]

(1.8)

L̄i = L̄E
i

[

1 + (c2 − 1)wL̄i

]

for i = 1, 2. (1.9)

where wλD
, wL̄1

, and wL̄2
are functions of (λ1, K1, λ2, K2).

�
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Figure 1.4. Variation of dλD
with c2

− 1 when arrival rates are equal
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Note that, when c2
1 = c2

2 = 1, the approximation functions above yield
λD = λE

D, L̄1 = L̄E
1 and L̄2 = L̄E

2 . This implies that the approximations
are exact for exponential arrivals. The approximation functions need to
satisfy all the properties of λC

D, L̄C
1 and L̄C

2 , stated in Section 3.2. Using
the insights obtained from the study for Coxian inputs we identify the
general form of wλD

, wL̄1
, and wL̄2

. This is discussed in the following
sections.

4.1. General Form of wλD

In particular, wλD
needs to satisfy the following properties:

1 wλD
(λ1, K1, λ2, K2) must be a single valued function of λ1, λ2, K1,

and K2.

2 We require that wλD
(λ1, K1, λ2, K2) = wλD

(λ2, K2, λ1, K1) due to
symmetry.

3 wλD
(λ1, K1, λ2, K2) < 0. This is because when c2 < 1, λC

D > λE
D

and when c2 > 1, λC
D < λE

D.

4 wλD
(λ1, K1, λ2, K2) → 0 for ρ → ∞ and ρ → 0. This is because

λD → λE
D when ρ → 0 and when ρ → ∞.

5 We require that wλD
(λ1, K1, λ2, K2) = wλD

(λ1, K2, λ2, K1). This
is evident from the results of Section 3.2.

6 Since λD ≤ min(λ1, λ2) we require λE
D(1+wλD

(c2−1)) ≤ min(λ1, λ2),
implying

wλD
≤
[

min(λ1,λ2)

λE

D

− 1
] [

1
c2−1

]

.

A candidate function wλD
(λ1, K1, λ2, K2) that satisfies properties 1 through

5 above is:

wλD
(λ1, K1, λ2, K2) = −a

′

ρa
′′

[

1 − ρ

1 − ρ2a
′′
+1

]

(1.10)

where a
′

and a
′′

are positive functions of K1 + K2. Now, we need to de-
termine a

′

and a
′′

such that wλD
(λ1, K1, λ2, K2) also satisfies property

6. We will use the following proposition.

Proposition 1.1 For the range of parameters, 0.5 ≤ c2
i ≤ 4, 1

3 ≤ λ1

λ2
≤

3, and Ki ≤ 20,i=1,2:
if a

′′

= K1 + K2, and 0 ≤ a
′ ≤ 2, then λD ≤ min(λ1, λ2).
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Proof. See Appendix. 2

Since properties 1-6 are satisfied from equations 1.1, 1.8 and Propo-
sition 1.1, we suggest the following candidate expression for throughput
from a fork/join station characterized by the 6-tuple (λ1, c

2
1, K1, λ2, c

2
2, K2):

if ρ 6= 1,

λD = λ1

[

1 − ρK1+K2

1 − ρK1+K2+1

] [

1 − a
′

(c2 − 1)

(

(1 − ρ)ρK1+K2

1 − ρ2(K1+K2)+1

)]

(1.11)

Taking limits as ρ → ∞, we obtain the expression when ρ = 1. Hence,
if ρ = 1,

λD = λ1

[

K1 + K2

K1 + K2 + 1

] [

1 − a
′

(c2 − 1)

(

1

2(K1 + K2) + 1

)]

(1.12)

A suitable value of a
′

will be determined from simulation results in Sec-
tion 5.

4.2. General Form of wL̄1
and wL̄2

To derive the two-moment approximations for mean queue lengths L̄1

and L̄2 we note that wL̄i
, i = 1, 2 must satisfy the following properties:

1 wL̄i
, i = 1, 2 is a single valued function of (λ1, K1, λ2, K2).

2 wL̄i
(λ1, K1, λ2, K2) → 0 when ρ → ∞ and when ρ → 0, since

L̄C
i → L̄E

i when ρ → ∞ and when ρ → 0, for i = 1, 2.

3 By symmetry wL̄1
(λ1, K1, λ2, K2) = wL̄2

(λ2, K2, λ1, K1).

4
[

wL̄1
(λ1, K1, λ2, K2)

]

×
[

wL̄2
(λ1, K1, λ2, K2)

]

≤ 0, since for a given

value of λ1, K1, λ2, K2 and c2 −1, wL̄1
(λ1, K1, λ2, K2) and wL̄2

(λ1,
K1, λ2, K2) have to be of opposite sign.

5 For ρ ≤ 1, wL̄1
(λ1, K1, λ2, K2) ≥ 0, and for ρ ≥ 1, wL̄1

(λ1, K1, λ2, K2)
≤ 0. This is because as seen from the results of Section 3.2 when
(ρ − 1)(c2 − 1) ≤ 0, then L̄C

1 ≥ L̄E
1 , and when (ρ − 1)(c2 − 1) ≥ 0,

then L̄C
1 ≤ L̄E

1 .

Similarly, for ρ ≤ 1, wL̄2
(λ1, K1, λ2, K2) ≤ 0, and for ρ ≥ 1,

wL̄2
(λ1, K1, λ2, K2) ≥ 0. This is because when (ρ− 1)(c2 − 1) ≤ 0,
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then L̄C
2 ≤ L̄E

2 , and when (ρ − 1)(c2 − 1) ≥ 0, then L̄C
2 ≤ L̄E

2 .

6 Since L̄i ≤ Ki, L̄E
i

[

1 + (c2 − 1)wL̄i

]

≤ Ki, implying

wL̄i
≤
[

Ki

L̄E
i

− 1

]

[

1
c2−1

]

, for i = 1, 2.

Candidate functions wL̄i
(λ1, K1, λ2, K2), i = 1, 2 that satisfy proper-

ties 1 through 5 above are:

wL̄1
(λ1, K1, λ2, K2) =

[

1 − ρb
′

1

1 + ρb
′

1

][

ρb
′′

1

1 + ρ2b
′′

1

]

(1.13)

and

wL̄2
(λ1, K1, λ2, K2) = −

[

1 − ρb
′

2

1 + ρb
′

2

][

ρb
′′

2

1 + ρ2b
′′

2

]

(1.14)

where b
′

1, b
′′

1 and b
′

2, b
′′

2 are positive functions of K1 + K2. Using these
functions, the updated expressions for mean queue lengths from a fork/join
station characterized by the parameter 6-tuple (λ1, c

2
1, K1, λ2, c

2
2, K2) are:

if ρ 6= 1,

L̄1 =

[(

ρK2+1

1 − ρ

)(

1 − ρK1

1 − ρK1+K2+1

)

−
(

K1ρ
K1+K2+1

1 − ρK1+K2+1

)]

×
[

1 +

(

1 − ρb
′

1

1 + ρb
′

1

)(

ρb
′′

1

1 + ρ2b
′′

1

)

(c2 − 1)

]

(1.15)

L̄2 =

[(

K2

1 − ρK1+K2+1

)

−
(

ρ

1 − ρ

)(

1 − ρK2

1 − ρK1+K2+1

)]

×
[

1 −
(

1 − ρb
′

2

1 + ρb
′

2

)(

ρb
′′

2

1 + ρ2b
′′

2

)

(c2 − 1)

]

(1.16)

Taking limits as ρ → ∞, we obtain the expression when ρ = 1. We have:
if ρ = 1,

L̄i =
Ki(Ki + 1)

2(K1 + K2 + 1)
for i = 1, 2. (1.17)

Now we need to determine b
′

1, b
′′

1 and b
′

2, b
′′

2 such that wL̄i
(λ1, K1, λ2, K2),
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for i = 1, 2 satisfy property 6. These will be determined using the sim-
ulation results presented next.

5. Detailed Approximations and their Accuracy

In this section we use simulations to determine the best values of the
constants in the approximations. The constants to be determined are
the value of a

′

in equations 1.11 and 1.12 and the values of b
′

1, b
′′

1 and

b
′

2, b
′′

2 in equations 1.15 and 1.16. After determining these constants, we
report the percentage difference in the estimates given by the approx-
imations compared with the simulation estimates for a wide range of
system parameters. In the simulation experiments, we use distributions
of the inter-arrival times to the fork/join station that are different than
the 2-phase Coxian distributions. We now describe these simulation ex-
periments.

5.1. Simulation Experiments used for
Determining the Approximations

The distributions and ranges of parameter values used in the sim-
ulation experiments are summarized in Tables 1.5 and 1.6. As seen
from Table 1.5, we evaluate the approximations with inter-arrival times
that have 2-stage Erlang, Shifted exponential, Lognormal and Hyper-
exponential distributions. We consider two sets of validation experi-
ments. In the ‘EH’ set of experiments, the inter-arrival times to the two
buffers have either a 2-stage Erlang or a Hyper-exponential distribution.
Specifically, inter-arrival times with SCV equal to 0.5 are generated us-
ing the 2-stage Erlang distribution while inter-arrival times with SCV
equal to 1 or 4 are generated using the Hyper-exponential distribution.
In the ‘SL’ experiment, the inter-arrival times to the two buffers have
either a Shifted exponential or a Lognormal distribution. Specifically,
inter-arrival times with SCV equal to 0.5 are generated using the Shifted
exponential distribution while the inter-arrival times with SCV equal to
1 or 4 are generated using the Lognormal distribution. In each set of ex-
periments, the other parameters take on all the values listed in Table 1.6.

The Shifted exponential distribution has a density function given by

f(x) = µ exp[−µ(x − d)], x ≥ d. (1.18)

For Hyper-exponential distribution, we assume the balanced mean Hyper-
exponential distribution. Such a distribution has the density function
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Table 1.5. Distributions settings chosen in validation experiments

Input combination Inter-arrival time distributions

EH 2-Stage Erlang for c2

i = 0.5,
Hyper-exponential for c2

i = 1, 4, i = 1, 2

SL Shifted Exponential for c2

i = 0.5,
Lognormal for c2

i = 1, 4, i = 1, 2

Table 1.6. Parameter values in validation experiments

Parameter Values

(λ1, λ2) (0.3, 1.0), (0.83, 1.25), (1.0,1.0)

K1 2, 6, 10

K2 2, 6, 10

c2

1 0.5, 1.0, 4.0

c2

2 0.5, 1.0, 4.0

f(x) = pµ1 exp(−µ1x) + (1 − p)µ2 exp(−µ2x), x ≥ 0, (1.19)

with the balanced mean constraint p/(µ1) = (1 − p)/(µ2). The con-
straint implies that the three parameters are uniquely determined from
the mean and SCV of the distribution. The Lognormal distribution has
the density function

f(x) =
(

xσ
√

2π
)

−1
exp

[

−(ln x − µ)2/2σ2
]

, x ≥ 0. (1.20)

The Lognormal distribution has a fatter tail than the Hyper-exponential
distribution and the mode of the Lognormal distribution is greater than
zero.

Others such as Whitt [31] and Albin [1], have also used all the above
distributions to develop and validate two-moment approximations.

The simulation experiments for the validation study were conducted
using PROMODEL [22]. We considered 50,000 departures and 5 repli-
cations for each run. In addition, for each run a warm up period corre-
sponding to 10,000 departures was chosen. From each run, throughput
and mean queue lengths were recorded and 95% confidence intervals



24

were computed for each performance measure of interest obtained from
simulation. These were all found to be within 1 percent of the estimates
for the mean values. Let λEH

D and L̄EH
i , i = 1, 2 be the estimates of

throughput and mean queue lengths obtained using the combination of
the 2-stage Erlang and Hyper-exponential distributions. Let λSL

D and
L̄SL

i , i = 1, 2 be the simulation estimates of throughput and mean queue
lengths obtained using the combination of the Shifted exponential and
Lognormal distributions. These values were compared against values
from the estimates λD and L̄i, i = 1, 2 obtained using the two-moment
approximations derived in equations 1.11, 1.12, 1.15, 1.16, and 1.17 re-
spectively.

5.2. Approximation for Throughput and its
Accuracy

For a given set of input parameters, (λ1, c
2
1, K1, λ2, c

2
2, K2), let ε(λEH

D )
and ε(λSL

D ) be the absolute percentage difference in the estimate of
throughput given by the two-moment approximation and simulation.
That is, ε(λEH

D ) and ε(λSL
D ) are given by:

ε(λEH
D ) =

∣

∣λD − λEH
D

∣

∣

λEH
D

× 100 and ε(λSL
D ) =

∣

∣λD − λSL
D

∣

∣

λSL
D

× 100

Note that this percentage difference depends on the choice of a
′

in the
approximation. For each value of a

′

in the range [0,2] in increments of
0.5, we compute the percentage difference and then select the value of
a

′

that provides best overall accuracy when both the average and maxi-
mum percentage difference is considered. Table 1.7 provides the average
and maximum percentage difference for the different values of a

′

and ρ
= 1, 0.67, and 0.3. We note that the performance of the approximations
deteriorates as a

′

deviates from 0.5. In fact the deterioration in per-
formance is more significant when the input processes to the fork/join
station have equal rates. Additional experiments for a

′

values of 0.4 and
0.6 indicated no significant improvement in the approximations.

We select the value of a
′

= 0.5 for our approximation. With this
choice, the final expression for the two-moment approximations for through-
put is as follows:

If ρ 6= 1,
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Table 1.7. Maximum (Average) value of ε(λEH

D ) and ε(λSL

D ) for different a
′

For EH Experiments

λ1 λ2 a
′

= 0 a
′

= 0.5 a
′

= 1.0 a
′

= 1.5 a
′

= 2.0

1 1 20.5(8.3) 10.9(5.7) 19.7(4.1) 39.8(3.9) 59.9(5.6)

0.83 1.25 17.07(3.9) 11.2(3.4) 9.4(3.0) 18.5(3.1) 30.4(3.3)

0.3 1 5.8(0.6) 4.9(0.6) 4.1(0.6) 3.7(0.5) 3.2(0.5)

For SL Experiments

λ1 λ2 a
′

= 0 a
′

= 0.5 a
′

= 1.0 a
′

= 1.5 a
′

= 2.0

1 1 13.9(4.7) 5.7(2.3) 24.3(1.9) 43.2(4.0) 62.1(6.3)

0.83 1.25 11.5(2.0) 6.0(1.4) 11.1(1.5) 22.4(1.7) 33.7(1.9)

0.3 1 4.4(0.3) 3.5(0.3) 2.6(0.3) 1.7(0.2) 1.9(0.2)

λD = λ1

[

1 − ρK1+K2

1 − ρK1+K2+1

] [

1 − 0.5(c2 − 1)

(

(1 − ρ)ρK1+K2

1 − ρ2(K1+K2)+1

)]

(1.21)

If ρ = 1,

λD = λ1

[

K1 + K2

K1 + K2 + 1

] [

1 − 0.5(c2 − 1)

(

1

2(K1 + K2) + 1

)]

(1.22)

To judge the accuracy of these expressions, in Figure 1.7 the percent-
age differences ε(λEH

D ) and ε(λSL
D ) are plotted on a three-dimensional

figure against c2 and K1 +K2 respectively. In these figures, the parame-
ters c2

1, c2
2, K1 and K2 take values listed in Table 1.6. The values of λEH

D

and λSL
D are estimated using simulation, the value of λD is computed us-

ing the two-moment approximations given by equations 1.21 and 1.22.
Figure 1.7 allows us to identify the impact of these parameters on the
percentage difference. Figure 1.7(a) presents the results for the case
ρ = 1, while Figure 1.7(b) presents results for the case ρ = 0.67, and
Figure 1.7(c) presents results for the case ρ = 0.3.

From these figures we observe that the approximations yield fairly
accurate estimates for moderately high values of c2 and K1 + K2. In
addition, the approximation performs better when the input rates are
significantly different. Table 1.8 provides additional details on the per-
formance of the approximation. First, we observe that the average dif-
ference between the estimates given by the proposed approximation and
simulation is under 6% and that the maximum difference in the approx-
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parameters



Two-Moment Approximations for Fork/Join Stations 27

imation is less than 12%. Second, we observe that for over 96% of the
cases considered in the validation experiment, the percentage difference
in estimates of throughput is less than 10%.

Table 1.8. Performance of approximation for λD for ‘EH’ and ‘SL’ inputs

For EH Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(λEH

D ) ≤ 5% ε(λEH

D ) ≤ 10% ε(λEH

D ) ε(λEH

D )

1 1 39.5 96.3 5.7 10.9

0.8 1.25 72.8 97.5 3.4 11.2

0.3 1 100.0 100.0 0.6 4.9

For SL Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(λSL

D ) ≤ 5% ε(λSL

D ) ≤ 10% ε(λSL

D ) ε(λSL

D )

1 1 93.8 100.0 2.3 5.7

0.8 1.25 95.1 100.0 1.4 6.0

0.3 1 100.0 100.0 0.3 3.5

5.3. Approximations for Average Queue Length
and their Accuracy

Let ε(L̄EH
i ) and ε(L̄SL

i ), i = 1, 2 be the absolute percent differences
in the estimates of average queue lengths, between the two-moment ap-
proximations and those obtained from the simulation experiments. That
is, ε(L̄EH

i ) and ε(L̄SL
i ), i = 1, 2 are given by:

ε(L̄EH
i ) =

∣

∣L̄i − L̄EH
i

∣

∣

Ki

× 100, i = 1, 2, and

ε(L̄SL
i ) =

∣

∣L̄i − L̄SL
i

∣

∣

Ki

× 100, i = 1, 2.

The percentage differences computed depend on the choice of b
′

1, b
′′

1

and b
′

2, b
′′

2 used in the approximations. Properties 1 through 6 in Section

4.2 imply that b
′

1 = b
′

2, and b
′′

1 = b
′′

2 . For b
′

i, i = 1, 2 we choose values
in the range [0,2] in increments of 0.5. Further for simplicity, we choose
values of b

′′

i , i = 1, 2 in the range [0,4] and restrict our choice to integer
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Table 1.9. Maximum (Average) value of ε(L̄EH
2 ) and ε(L̄SL

2 ) for different b
′

2 and b
′′

2

For EH Experiments

λ1 λ2 b
′

2 = 0.5, b
′

2 = 1.0, b
′

2 = 1.0, b
′

2 = 2.0, b
′

2 = 2.0,

b
′′

2 = 1.0 b
′′

2 = 2.0 b
′′

2 = 4.0 b
′′

2 = 2.0 b
′′

2 = 4.0

0.8 1.25 12.8 (5.2) 14.2 (4.6) 13.8 (5.4) 24.8 (6.4) 14.1 (4.6)

0.3 1 17.9 (5.9) 8.9 (2.9) 5.6 (2.3) 16.2 (5.4) 4.9 (2.1)

For SL Experiments

λ1 λ2 b
′

2 = 0.5, b
′

2 = 1.0, b
′

2 = 1.0, b
′

2 = 2.0, b
′

2 = 2.0,

b
′′

2 = 1.0 b
′′

2 = 2.0 b
′′

2 = 4.0 b
′′

2 = 2.0 b
′′

2 = 4.0

0.8 1.25 8.8 (3.0) 13.1 (3.5) 8.9 (3.2) 24.4 (7.3) 12.9 (3.5)

0.3 1 20.2 (6.5) 10.9 (3.6) 3.1 (1.1) 18.5 (5.9) 3.0 (0.9)

values. For each pair of values for b
′

i, b
′′

i , i = 1, 2 we first check whether
wL̄1

, and wL̄2
satisfy properties 1 through 6 identified in Section 4.2 and

if so, we also compute the percentage differences ε(L̄EH
i ) and ε(L̄SL

i ) for
i = 1, 2. Using these values for the percentage differences, we determine
the values of b

′

1, b
′′

1 and b
′

2, b
′′

2 to be used in the final approximation.
This course grained search for good rather than optimal values for

the approximation parameters is consistent with other efforts to develop
two-moment approximations such as those reported in Albin [1] and Al-
bin [2], and achieves a reasonable balance between efficiency in deriving
the parameters and accuracy of the final approximations. More robust
techniques could be employed if greater accuracy is desirable. Table 1.9
provides the maximum and average percentage difference, ε(L̄EH

2 ) and

ε(L̄SL
2 ) for the choices of b

′

2 and b
′′

2 that gave reasonably good perfor-
mance. In these tables, we focus on the queue length at buffer B2 since
this buffer has more significant queues when ρ < 1. Among the feasible
set of values, we observe that setting b

′

1 = b
′

2 = 1, and b
′′

1 = b
′′

2 = 4, gives
high accuracy.

Therefore our final expressions for the mean queue lengths from a
fork/join station are:
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If ρ 6= 1,

L̄1 =

[(

ρK2+1

1 − ρ

)(

1 − ρK1

1 − ρK1+K2+1

)

−
(

K1ρ
K1+K2+1

1 − ρK1+K2+1

)]

×
[

1 +

(

1 − ρ

1 + ρ

)(

ρ4

1 + ρ8

)

(c2 − 1)

]

(1.23)

L̄2 =

[(

K2

1 − ρK1+K2+1

)

−
(

ρ

1 − ρ

)(

1 − ρK2

1 − ρK1+K2+1

)]

×
[

1 +

(

1 − ρ

1 + ρ

)(

ρ4

1 + ρ8

)

(c2 − 1)

]

(1.24)

If ρ = 1,

L̄i =
Ki(Ki + 1)

2(K1 + K2 + 1)
for i = 1, 2. (1.25)

Figures 1.8 and 1.9 plot the percentage differences ε(L̄EH
i ) and ε(L̄SL

i ),
for i = 1, 2 computed using the two-moment approximations given by
equations 1.23, 1.24 and 1.25 against c2 and K1 + K2. Figure 1.8 com-
pares ε(L̄EH

1 ) and ε(L̄SL
1 ), while Figure 1.9 compares ε(L̄EH

2 ) and ε(L̄SL
2 )

for different values of ρ.

From these figures we observe that like the approximations for the
throughput, the approximations for mean queue lengths yield quite ac-
curate estimates (i.e. under 15% error) over the entire ranges of c2 and
K1 + K2 considered. The approximation performs better when c2 < 1
or the input rates are significantly different. Additional details are pre-
sented in Tables 1.10 and 1.11. First, we observe that the average dif-
ference between the estimates given by the proposed approximation and
simulation is under 7% and that the maximum difference in the approx-
imation is roughly 15%. Second, we observe that for around 90% of
the cases considered in the validation experiments, the percentage dif-
ference in the estimates of the more significant queue L̄2 is less than 10%.

6. A Numerical Example

We present a numerical example to demonstrate the usefulness of the
proposed approximations. Consider an application where the fork/join
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Figure 1.8. Accuracy of approximations for mean queue length (L̄1) at buffer B1 for
different system parameters
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Figure 1.9. Accuracy of approximations for mean queue length (L̄2) at buffer B2 for
different system parameters
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Table 1.10. Performance of approximation for L̄1 for ‘EH’ and ‘SL’ inputs

For EH Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(L̄EH
1 ) ≤ 5% ε(L̄EH

1 ) ≤ 10% ε(L̄EH
1 ) ε(L̄EH

1 )

1 1 61.7 96.3 4.3 13.3

0.8 1.25 39.5 76.5 6.3 15.2

0.3 1 96.3 100.0 1.0 6.6

For SL Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(L̄SL
1 ) ≤ 5% ε(L̄SL

1 ) ≤ 10% ε(L̄SL
1 ) ε(L̄SL

1 )

1 1 79.0 100.0 2.8 8.8

0.8 1.25 76.5 98.8 3.4 10.7

0.3 1 100.0 100.0 0.5 4.0

Table 1.11. Performance of approximation for L̄2 for ‘EH’ and ‘SL’ inputs

For EH Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(L̄EH
2 ) ≤ 5% ε(L̄EH

2 ) ≤ 10% ε(L̄EH
2 ) ε(L̄EH

2 )

1 1 61.7 96.3 4.3 13.3

0.8 1.25 46.9 88.9 5.4 13.8

0.3 1 97.5 100.0 2.3 5.6

For SL Experiments

λ1 λ2 Percentage of observations for which Average Maximum

ε(L̄SL
2 ) ≤ 5% ε(L̄SL

2 ) ≤ 10% ε(L̄SL
2 ) ε(L̄SL

2 )

1 1 79.0 100.0 2.8 8.9

0.8 1.25 84.0 100.0 3.2 8.9

0.3 1 100.0 100.0 1.1 3.1

station models the synchronization constraint in a closed loop fabrica-
tion/assembly system. Let sub-networks SN1 and SN2 supply compo-
nents to the synchronization station and let K1 and K2 be the number of
fixed AGVs circulating in these sub-networks. Then, depending upon the
congestion and the random delays in the sub-networks SN1 and SN2, the
supply of components to the synchronization station could have different
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variability. Consider the specific situation where the input processes to
the two buffers have inter-arrival times with a Lognormal distribution
having mean equal to 1 and SCV equal 2.3.

In such a situation, a typical managerial decision is to choose the
appropriate number of AGVs, K1, K2 in these sub-networks such that
they adequately buffer against the variability to obtain a target through-
put. Since an exact solution for this system is not available, the tradeoff
between the number of AGVs and system throughput can be obtained
either using simulation or using the two-moment approximations pro-
posed here. Figure 1.10 shows the results as computed using simulation
and two-moment approximations. On the same graph we also plot this
curve for exponentially distributed inter-arrival times.

�

0

2

4

6

8

10

12

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Target�Throughput

K
1=

K
2

Simulation�(SL) Exponential Two-Moment�Approximation

K
1=

K
2�

Figure 1.10. Numerical example illustrating use of two-moment approximations

We make several observations from this graph. First, the through-
put increases monotonically with K1 and K2. Second, the value of K1

(= K2) required to obtain a target throughput significantly increases
with variability. Consider the number of AGVs required to obtain a
target throughput of 0.88. The simulation results indicate that we need
K1 = K2 = 7 AGVs to achieve a target throughput of 0.88. However,
the curve obtained assuming exponential inputs would suggest that the
required number of AGVs is 4. For closed loop fabrication/assembly
systems, this difference would imply significant investment in AGVs to
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buffer against variability of input processes. Ignoring the impact of vari-
ability in the input processes would result in significantly lower through-
put than anticipated otherwise. This implies that analyzing fork/join
stations for inputs more general than the Poisson process has important
practical implications. Third, we note that the two-moment approxima-
tions yield values of K1 = K2 = 8 that are very close to that obtained
from the simulation model. In the real system, setting the number of
AGVs to 4 would have resulted in throughput much lower than the tar-
get throughput. In the presence of high variability, the two-moment
approximations on the other hand appear to provide reasonable (and in
this case slightly conservative) estimates for making decisions on system
design.

Using the two-moment approximations has at least two key advan-
tages over simulation. First, it is computationally far more efficient.
Second, the simulation models require the detailed inter-arrival time
distributions. In many practical situations, such detailed information is
not available. In contrast, the two-moment approximations requires only
a basic measure of variability, namely the SCV to obtain the required
system design insights.

7. Conclusions and Extensions

In this chapter, we have proposed approximations for the throughput
and mean queue lengths at the input buffers of a fork/join station with
general arrivals from a finite population. For the test cases presented
here, we observed that the maximum difference in the estimates provided
by the approximations, compared with simulation was 12% for station
throughput and 15% for mean queue lengths. These approximations for
the fork/join station finds direct applications in the performance analy-
sis of several manufacturing and computer systems.

Although these approximations can be used to analyze a fork/join
station in isolation, a principal application of these approximations is
in developing parametric methods for analysis of larger closed queuing
networks with fork/join stations. In such applications, we also need two-
moment approximations for the variability parameter of the departure
process, ĉ2

D. Whitt [31, 33, 34, 36] reports several issues that need to
be addressed when determining the variability parameter in the context
of simple queues. He observes that the squared coefficient of variation
(c2

D) of the inter-departure times is a good estimate of the variability
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parameter ĉ2
D only if the successive inter-departure times are not corre-

lated. Our preliminary simulation experiments show that this is not true
for the departure process from a fork/join station with inputs from fi-
nite populations. Consequently, in addition to determining the squared
coefficient of variation of the inter-departure times from the fork/join
station, we also need to analyze the impact of correlations on the dif-
ferent performance measures. Based on the insights obtained from this
analysis, suitable two-moment approximations for the variability param-
eter need to be derived. In Krishnamurthy et al. [14] we address these
issues and develop the necessary two-moment approximations.

The approximations developed in this research are for fork/join sta-
tions with two inputs. However, in queuing models of many manufactur-
ing and computer applications, we need to model the synchronization
of more than than two arrival processes. The analysis presented here
can be used to analyze such synchronization constraints in many ways.
One possible approach would be to model the fork/join station with N
arrival processes as a series arrangement of N -1 fork/join stations, each
with two arrival processes. In this arrangement the two arrival processes
at a typical fork/join station would be (i) one of the N original arrival
processes and (ii) the departure process from the preceding fork/join sta-
tion. Then by successive application of the approximations developed
here, approximations for performance measures of a fork/join station
with inputs from several merging processes could be derived. Testing
the accuracy of this approach is part of our ongoing research.

The two-moment approximations proposed in this chapter are key
building blocks in the effort to develop parametric decomposition meth-
ods to analyze queuing networks with fork/join stations. As an example
of the application of these building blocks, Krishnamurthy [13] analyzes
single and multi-stage kanban systems. Using the approximations pro-
posed here, the queuing networks are analyzed by solving a system of
non-linear equations in the set of unknown parameters. The prelimi-
nary results reported therein indicate that using these approximations
as a building block results in reasonably accurate estimates of network
performance. Based on these results, we conjecture that the approxima-
tions proposed here will be useful in analyzing queuing networks models
of several other systems.
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8. Appendix

Proof of Proposition 1.1. For simplicity of notation let K = K1+K2.
Since ρ = λ1/λ2, we have:

λD = λ1

[

1 − ρK

1 − ρK+1

]

[

1 − a
′

(c2 − 1)

(

(1 − ρ)ρa
′′

1 − ρ2a
′′+1

)]

(1.26)

Let:

f(a
′

, a
′′

) = λ1

[

1 − ρK

1 − ρK+1

]

[

1 − a
′

(c2 − 1)

(

(1 − ρ)ρa
′′

1 − ρ2a
′′+1

)]

−min(λ1, λ2)

(1.27)
Then:

f(a
′

, K) = λ1

[

1 − ρK

1 − ρK+1

] [

1 − a
′

(c2 − 1)

(

(1 − ρ)ρK

1 − ρ2K+1

)]

− min(λ1, λ2)

(1.28)

Case 1 (ρ < 1):

f(a
′

, K)

= λ1

[

1 − ρK

1 − ρK+1

] [

1 − a
′

(c2 − 1)

(

(1 − ρ)ρK

1 − ρ2K+1

)]

− λ1

[

1 − a
′

(c2 − 1)

(

(1 − ρ)ρK

1 − ρ2K+1

)

− 1 − ρK+1

1 − ρK

]

= −λ1ρ
K(1 − ρ)

[

1 − ρK

1 − ρK+1

]

[

1

1 − ρK
+

(

a
′

(c2 − 1)

1 − ρ2K+1

)]

It is obvious from the above that for c2 ≥ 1, f(a
′

, K) ≤ 0.
Simplifying further, for c2 ≤ 1 we have:

f(a
′

, K)

=
−λ1ρ

K(1 − ρ)

1 − ρ2K+1

[

1 − ρK

1 − ρK+1

]

[

1 +
ρK
∑K

0 ρi

∑K−1
0 ρi

− a
′

(1 − c2)

]

From the above it is obvious that f(a
′

, K) ≤ 0 for a
′ ≤ 1

1−c2
, i.e. a

′ ≤ 2.
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Case 2 (ρ > 1):

f(a
′

, K)

= λ1

[

ρK − 1

ρK+1 − 1

] [

1 − a
′

(c2 − 1)

(

(ρ − 1)ρK

ρ2K+1 − 1

)]

−λ2

[

1 − a
′

(c2 − 1)

(

(ρ − 1)ρK

ρ2K+1 − 1

)

− ρK+1 − 1

ρ(ρK − 1)

]

= λ1

[

ρK − 1

ρK+1 − 1

] [

(ρ − 1)

ρ(ρK − 1)
− a

′

(c2 − 1)

(

(ρ − 1)ρK

ρ2K+1 − 1

)]

= −λ1(ρ − 1)

[

ρK − 1

ρK+1 − 1

]

[

1

ρ(ρK − 1)
+

(

a
′

(c2 − 1)ρK

ρ2K+1 − 1

)]

It is obvious from the above that for c2 ≥ 1, f(a
′

, K) ≤ 0
Simplifying further, for c2 ≤ 1 we have:

f(a
′

, K)

= −λ1

[

ρK − 1

ρK+1 − 1

] [

ρK(ρ − 1)

ρ2K+1 − 1

]

×
[

1 +
ρK+1 − 1

ρ2K+1 − ρK+1
− a

′

(1 − c2)

]

Hence it is obvious that f(a
′

, K) ≤ 0 for a
′ ≤ 1

1−c2
, i.e. a

′ ≤ 2. 2
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