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Abstract 
 
Fork/join stations model synchronization constraints in queuing network models of many manufacturing and 
computer systems. We consider a fork/join station with two input buffers and general inputs from finite populations 
and derive approximate expressions for throughput and mean queue lengths at the input buffers. We assume that the 
arrivals to the fork/join stations are renewal, but our approximations only use information about the first two 
moments of the inter-renewal distributions. Therefore the approximations can be used to predict performance for a 
variety of systems. We verify the accuracy of these approximations against simulation and report sample results.  
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1. Introduction 
Fork/join stations are used to model synchronization constraints between entities in a queuing network. The 
fork/join station of interest in this paper consists of a server with zero service times and two input buffers. As soon 
as there is one entity in each buffer, an entity from each of the buffers is removed and joined together. The joined 
entity exits the fork/join station instantaneously. Subsequent to its departure, the joined entity forks back into the 
component entities, which then get routed to other parts of the network. Fork/join stations find many applications in 
queuing models of manufacturing and computer systems. In queuing models of assembly systems, the assembly 
operation is typically modeled using a fork/join station [2][4][8]. Fork/join stations are also used model the 
synchronization constraints in models of kanban control strategies [1]. They are also used to model parallel 
processing, database concurrency control in computer systems analysis [3]. 
 
As a starting point for understanding the behavior of queuing networks with fork/join stations, several researchers 
have analyzed such stations in isolation.  For the sake of analytical tractability, a majority of the previous research 
efforts assume that the fork/join stations have Poisson inputs [2][4][9][10]. Although these results are useful, in 
many of the applications cited above the input processes are not Poisson. Most studies that assume arrival processes 
other than Poisson such as those reported in [11], assume infinite populations for each arrival process. However, if 
the fork/join station is part of a closed queuing network, then once the queue length of an input buffer equals the size 
of the population that can arrive to the buffer, the arrival process shuts down. The analysis of fork/join stations with 
general arrival processes from finite populations can become very complex even when the inter-arrival times are 
independent and have a Coxian distribution [6]. Thus approximations for the performance of the fork/join stations in 
particular and the network in general can be highly useful.  
 
In this paper, we derive approximate expressions for throughput and mean queue lengths at the input buffers of a 
fork/join station with general inputs from finite populations. The approximations are based on the assumption that 
the arrivals to the fork/join stations are renewal, but they only use the first two moments of the inter-renewal 
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distributions and can therefore be used to predict performance for a wide variety of systems. In the literature such 
approximations are often referred to as two-moment approximations [12]. In addition to providing performance 
estimates for a fork/join station in isolation, the approximations can also be used as building blocks in parametric 
decomposition approaches for solving larger queuing networks. The outline of this paper is as follows. Section 2 
describes the fork/join station under consideration and an overview of our approach. We derive the general form for 
the approximations in Section 3 and in Section 4 we derive the detailed form of the approximations and test their 
accuracy against simulation. Section 5 provides the concluding remarks. 
 

2. System Description and Approach 
We describe our model of the fork/join station next. As 
shown in the Figure 1 the fork/join station has two input 
buffers, B1 and B2. SNi denotes the rest of the queuing 
network for entities that arrive to buffer Bi, i=1,2. If an 
entity arriving in buffer B1 (B2) finds buffer B2 (B1) empty, 
it waits for the corresponding entity to arrive in input 
buffer B2 (B1). As soon as there is at least one entity in 
each queue, one entity is removed from each buffer. The 
removed entities join together, and immediately depart 
from the fork/join station. As a result the contents of both 
input buffers reduce by one. Subsequent to departure from 
the fork/join station, the joined entity forks back into two 
entities that are routed back to SN1 and SN2 respectively. In 
SN1 and SN2 these entities are subjected to random delays 
before they revisit the fork/join station. There is a finite 
population of size Ki for each entity i. Consequently, the 
number of entities in input buffer Bi and queuing network SNi always sum up to Ki, i=1,2. Additionally, the arrival 
process to buffer Bi shuts down when there are Ki units in buffer Bi. 
 
Since the sub-networks SN1 and SN2 from which entities arrive to input buffers can have different configurations 
resulting in arbitrary delays, the arrival processes to the fork/join stations can have arbitrary characteristics. 
However, analysis of fork/join stations for general arrival processes can be quite complicated. To simplify our 
analysis, and in keeping with other two-moment approximation methods, we will assume that the arrival processes 
are independent renewal processes and that the inter-arrival times to the input buffers are independent and 

identically distributed (i.i.d) having means 1/1 λ , 2/1 λ , and squared coefficients of variation (SCVs) 2
1c , 2

2c , 

respectively. Since we assume that the arrival process to buffer B1 (B2) shuts down once it has K1 (K2) units, the 
arrival processes are renewal between shut downs. With these assumptions, our model of this fork/join station is 

completely characterized by the parameter 6-tuple ( 1λ , 2
1c , K1, 2λ , 2

2c , K2). For a fork/join station characterized 

thus, we obtain approximations for the throughput, Dλ , and the mean queue length of each buffer, iL , i=1,2. In 

developing the approximations, we assume that the ratio of input rates 21 λλρ =  lies in the interval [0.3,3.0]. 

This is justified for most practical situations, since in a high performance system one would not normally expect the 
arrivals rates at one input buffer of a synchronization station to be more than three times that of the other. We also 

assume that both 2
1c  and 2

2c  lie in the interval [0.5,4.0]. These values capture the typical SCVs observed in actual 

manufacturing systems [5]. 
 

To develop these approximations we first study the impact of the mean of the inter-arrival times ( 1/1 λ , 2/1 λ ) and 

population size (K1, K2) on the performance of the fork/join station using the exact expressions reported in [9] and 
[10]. Although these expressions are exact only for the case of exponentially distributed inter-arrival times, the 
insights about the impact of arrival rates help us understand behavior for more general arrival processes. However, 

to study the impact of second moments of the arrival distributions (in particular 2
1c , and 2

2c ) on the performance of 

the fork/join station, a model assuming Poisson inputs is inadequate. In [6] we analyze a fork/join station where the 
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Figure 1. Fork/Join station  



 3

inter-arrival times have a 2-phase Coxian distribution. This permits analysis for input processes with a wide range of 
means (0,∞) and SCVs [0.5, ∞). Using the results of this analysis we study the impact of both means and SCVs on 
the performance measures. Using insights from all the above cases, we develop two-moment approximations for a 

fork/join station characterized by the 6-tuple ( 1λ , 2
1c , K1, 2λ , 2

2c , K2). 

 

3. General Form of Approximations 
In this section we use the insights from the exact analysis presented in [9], [10], and [6] to develop the general form 

of the two-moment approximations for the throughput, Dλ , and the mean queue length of each buffer, iL , i=1,2. 

For the sake of clarity, we modify the notation and use a superscript “E”  when the performance measures are based 
on the discussions presented in [9], [10] assuming exponential inputs and a superscript “C”  when the station 
performance measures are based on the discussions presented in [6] assuming Coxian inputs. First we consider the 
case with exponential inputs. Assuming without loss of generality that 1<ρ , Takahashi et al. [10] derive the 

following expressions for the throughput, E
Dλ , and the mean queue lengths, E

iL , i=1,2 at the fork/join station: 
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Note that the above expressions are for the case where 1≠ρ . The corresponding expressions for 1=ρ  are 

obtained by taking the limits as 1→ρ . Using these expressions we study the impact of the mean rates of the input 

processes on the performance of the fork/join station.  
 
To study the impact of higher moments of the arrival distributions on the performance of the fork/join station, we 
consider the case where the inter-arrival times to the input buffers have 2-Phase Coxian distributions with mean, 

iλ/1  and SCV, 2
ic , for i=1,2, respectively. Using the additional constraint of balanced means, we derive unique 2-

phase Coxian distributions to characterize the inter-arrival times at each input buffer. Then based on the exact 
analysis presented in [6] we study the impact of the SCVs of the input processes on station performance measures. 
Since the closed form expressions for mean queue length and throughput are substantially more complicated than 
those obtained for exponential inputs we obtain the required insights from the numerical results obtained from the 

exact computations. To obtain these insights we compute the throughput C
Dλ , and mean queue length C

iL , i=1,2 for 

over 900 input parameter settings with ρ  in the interval [0.3,3.0], 2
ic  in the interval [0.5,4.0], and Ki, in the interval 

[2,20]. These numerical results provide the following insights: (i) For any value of SCV, the upper bound of the 

throughput, C
Dλ  from the fork/join station is min ( 21,λλ ). This throughput is achieved as K1 or K2 tends to infinity. 

(ii) For given values of 2
1c , 2

2c , and K1+K2, the value of C
Dλ  is insensitive to the choice of K1, and K2. (iii) 

Substantial queues are observed at the buffers of the input processes with higher rates of arrivals, i.e., CC LL 21 >>  

when 1λ > 2λ . (iv) When input rates are equal, i.e. 1=ρ , C
Dλ  is quite sensitive to 2

1c and 2
2c . (v) When 1>ρ  or 

1<ρ , the station performance measures become increasingly less sensitive to the SCVs and are more primarily 

dependent on ρ . (vi) Let 2c  denote )(5.0 2
2

2
1 cc + . Then, we observe that for a given ρ  and 2c , C

Dλ > E
Dλ  if 
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2c <1, and C
Dλ < E

Dλ  if 2c >1. Additionally, when ( ρ -1) ( 2c -1)<0, then CL1 > EL1  and CL2 < EL2 while ( ρ -1)( 2c -

1)>0, then CL1 < EL1  and CL2 > EL2 .  

 
To obtain quantitative insights into the impact of the SCVs of the inter-arrival times, we study the relative 
differences of these measures for the Coxian and exponential cases. Thus, we define: 
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We compute 
D

dλ , and 
iL

d , i=1,2 and plot their values against 2c -1 for the parameter settings considered in the 

numerical study for Coxian inputs. The details are listed in [7]. From these graphs we infer that 
D

dλ , and 
iL

d , 

i=1,2, vary roughly linearly with 2c -1, with additional (variation depending on ρ , K1 or K2).  

 
Based on these observations we propose the following functions as candidates for the approximations:  
 

Dλ = E
Dλ ( )( )

D
wc λ11 2 −+  and iL = E

iL ( )( )
iL

wc 11 2 −+  i=1,2    (5) 

 

Note that when 2
1c = 2

2c =1, the approximation functions above yield Dλ = E
Dλ , iL = E

iL , i=1,2. This implies that 

the approximations are exact for exponential arrivals. Next, based on the insights from the study for Coxian inputs 

we identify the general form of 
D

wλ  and 
iL

w , i=1,2. 

 

In particular, 
D

wλ needs to satisfy the following properties: 

1. ( )2211 ,,, KKw
D

λλλ  must be a single valued function of ,,, 211 λλ K  and 2K . 

2. We require that ( )2211 ,,, KKw
D

λλλ  = ( )1122 ,,, KKw
D

λλλ  due to symmetry. 

3. ( ) 0,,, 2211 <KKw
D

λλλ  This is because C
Dλ > E

Dλ  if 2c <1, and C
Dλ < E

Dλ  if 2c >1. 

4. ( ) 0,,, 2211 →KKw
D

λλλ   for ∞→ρ  and 0→ρ  since Dλ E
Dλ→  when ∞→ρ  or 0→ρ . 

5. We require that ( )2211 ,,, KKw
D

λλλ  = ( )1221 ,,, KKw
D

λλλ .  

6. Since ≤Dλ  min ( 21,λλ ) we require E
Dλ ( )( )

D
wc λ11 2 −+ ≤  min ( 21,λλ ). 

Candidate functions ( )2211 ,,, KKw
D

λλλ  that satisfies properties 1 through 5 above are:  

( )2211 ,,, KKw
D

λλλ = -a0 )1( ρ− ��
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where a0 is a positive constant or a positive function of K1+K2. Further if 20 0 ≤≤ a , then property 6 is also 

satisfied. (For proof see [7]).  
 

Next we note that 
iL

w  must satisfy the following properties: 

1. 
iL

w , i=1,2 must be a single valued function of ,,, 211 λλ K  and 2K  

2. 0→
iL

w   when ∞→ρ  and 0→ρ , since C
iL E

iL→  when ∞→ρ  and 0→ρ , for i=1,2. 

3.  By symmetry ( )2211 ,,,
1

KKwL λλ = ( )1122 ,,,
2

KKwL λλ . 
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4. ( )×2211 ,,,
1

KKwL λλ ( ) 0,,, 11222
≤KKwL λλ , since for given values of ,,, 211 λλ K 2K and 2c -1, 

( )2211 ,,,
1

KKwL λλ and ( ) 0,,, 11222
≤KKwL λλ have to be of opposite sign. 

5. For 1≤ρ , ( ) 0,,, 22111
≥KKwL λλ  and ( ) 0,,, 22112

≤KKwL λλ  while for 1≥ρ , 

( ) 0,,, 22111
≤KKwL λλ  and ( ) 0,,, 22112

≥KKwL λλ . This is because when ( ρ -1) ( 2c -1)<0, then 

CL1 > EL1  and CL2 < EL2 while ( ρ -1)( 2c -1)>0, then CL1 < EL1  and CL2 > EL2  

6. Since ii KL ≤ , we require E
iL ( )( )

iL
wc 11 2 −+ iK≤  i=1,2. 

Candidate functions 
iL

w , i=1,2 that satisfy properties 1 through 5 above are: 
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where b1, b2  and d1, d2 are constants or positive functions of K1+K2. The value of these constants that ensures 

iL
w satisfies property 6 in addition is determined using results from the simulation experiments described below. 

4.  Detailed Form of Approximations and their Accuracy 
In this section we determine the detailed form of the approximations and test their accuracy. To determine the 
detailed form of the approximations we only need to determine the best values of the constants a0 in equation (6), b1, 
b2 and d1, d2 in equations (7). We use simulations to determine the best values of these constants. In the simulation 
experiments, we evaluate the approximations for inter-arrival times that have 2-stage Erlang, Shifted exponential, 

Lognormal and Hyper-exponential distributions. In these experiments, ( )21,λλ take values of (1,1), (0.3, 1) and 

(0.8, 1.25) respectively, while iK , i=1,2 take several values in the range [2,10] and 2
ic , i=1,2 take values in the 

range [0.5, 4.0]. From these experiments we observe that setting a0 = 0.5 in our approximation for Dλ  and setting d1 

= b1 = 1, and d2 = b2 = 4, in our approximations for iL , i=1,2 gives the best performance. For additional details see 

[7]. With this choice, the final expressions for the two-moment approximations for throughput, Dλ , and the mean 

queue length of each buffer, iL , i=1,2 are as follows: 
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Equations 8 to 10 are for the case where 1≠ρ . The corresponding equations for 1=ρ  are obtained by taking the 

limits as 1→ρ .   Finally, we test the performance of the approximations by computing the percentage difference in 

the estimates given by the approximations and estimates from simulation.  Sample results are provided in Table 1. In 

this table, SL
Dλ  and SL

iL  i=1,2 correspond to performance measures from simulation experiments, while the 

performance measures determined by the approximations are given by Dλ , and iL , i=1,2 respectively. In these 

experiments inter-arrival times with SCV of 0.5 were assumed to have a shifted exponential distribution while inter-
arrival times with SCV of 1.0 and 4.0 were assumed to have a lognormal distribution.  
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Table 1. Percentage difference between approximations and simulation  

(Sample results from over 240 test cases) 

( ) 100
|| ×−= SL

D

SL
DDSL

D λ
λλλε  ( ) 100

||

1

11
1 ×−=

K

LL
L

SL
SLε  ( ) 100

||

2

22
2 ×−=

K

LL
L

SL
SLε  

1λ  2λ  

Maximum Average Maximum Average Maximum Average 
1.0 1.0 5.7 2.3 8.8 2.8 8.9 2.8 
0.8 1.3 6.0 1.4 10.7 3.4 8.9 3.2 
0.3 1.0 3.5 0.3 4.0 0.5 3.1 1.1 
 

5. Conclusions and Extensions 
In this paper, we have proposed approximations for the throughput and mean queue lengths at the input buffers of a 
fork/join station with general arrivals from a finite population. From the sample results reported we observe that the 
maximum difference in the estimates provided by the approximations, compared with simulation was 6% for station 
throughput and 11% for mean queue lengths. Although these approximations have been developed for a fork/join 
station in isolation, a principal application is in developing parametric methods for analysis of larger closed queuing 
networks with fork/join stations. In such applications, we also need two-moment approximations for the variability 

parameter of the departure process, 2ˆDc . Studies such as [13] reports several issues that need to be addressed when 

determining the variability parameter in the context of simple queues. We are currently working on addressing these 
issues in the context of fork/join stations and deriving the necessary two-moment approximations. Using these 
approximations as building blocks we intend to develop new methods to analyze closed queuing network models of 
single and multi-stage kanban systems.  
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