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Abstract 
 

Material control schemes can be classified as push, pull, or hybrid strategies. This paper 
compares the performance of MRP (push) and kanban (pull) for a multi-stage, multi-
product manufacturing system. Using simulation experiments we analyze system 
performance under different product mixes and observe that in certain environments with 
advance demand information kanban-based pull strategies can lead to significant 
inefficiencies. In these environments MRP-type push strategies yield better performance 
in terms of inventories and service levels. We also study the impact of design parameters 
such as safety lead time and safety stock policies on system performance and observe that 
for low and medium values of system loads, safety lead time policies yield better system 
performance than safety stock policies. These insights can be helpful in designing 
efficient MRP-type push strategies in multi-product environments.  
 
Keywords: kanban, MRP, material control strategies, multi-product, multi-stage, pull, 
push. 
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1. Introduction 
 
Material planning and control strategies can be classified as push, pull, or hybrid 
strategies (Karmarkar, 1991). Material requirements planning (MRP) systems and kanban 
control systems are the most popular implementations of push and pull strategies 
respectively. The main distinction between push and pull strategies is based on how 
production orders are released to work stations in response to demands. In a push strategy 
production is initiated based on estimates of future demand. It is assumed that advance 
demand information is available, either in the form of actual orders, or forecasts, or a 
combination of both. Production orders are released into the shop floor by offsetting the 
due date of requirements by their corresponding planned production lead times (Orlicky 
1975). In contrast, in a pull strategy, production is initiated in response to current 
demand. Demands are satisfied from inventory and the removal of items from the output 
inventory buffers to satisfy demand triggers production upstream to replenish these 
inventories. Material control strategies that combine features of push and pull are referred 
to as hybrid strategies. Recently, several hybrid strategies such as CONWIP (Spearman et 
al., 1990) and POLCA (Suri, 1998) have been proposed.  
 

In the last decade there has been considerable interest in the analysis of material 
control strategies for manufacturing systems. The successful implementation of kanban 
systems as well as analytical studies done on single product systems have led to the belief 
that the performance of pull systems and its variations are generally superior (Spearman 
and Zazanis, 1992; Womack and Jones, 1996). The success of pull strategies at certain 
original equipment manufacturers (OEMs) have further led to the belief that 
implementing pull in all portions of the supply chain would be beneficial. However, our 
experience with some companies struggling to implement kanban systems leads us to 
believe that pull strategies are fundamentally handicapped for manufacturing facilities 
that produce a number of different products with distinct demands and/or processing 
requirements, as well as for facilities that make highly engineered products in small 
batches (perhaps even one of a kind) for their customers (Suri, 1998).  
 

We explain these ideas further using a typical supply chain scenario as an 
example. Consider a facility that manufactures a variety of transmissions for agricultural, 
marine, and military equipment. Figure 1 represents the schematic of such a facility. C1, 
…, CN could be assembly cells within this facility that are dedicated to assemble products 
for different market segments and S could be the common fabrication cell that supplies 
C1, …, CN with different components such as housings or other sub-assemblies required 
for final assembly. (S could also be an external supplier.) Due to the distinct nature of the 
market segments served by the final assembly cells (C1, …, CN) and the possible variety 
of products demanded, the customer demand patterns for the different products and the 
processing requirements for the different products at the manufacturing stations in 
fabrication cell S can be quite different. Although the demand patterns for the different 
products are quite different, assembly cells (C1, …, CN) often fix their assembly 
schedules several days in advance and share this information with the fabrication cell S. 
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The orders from the assembly cells therefore have fixed due dates or delivery dates. An 
important measure of performance of fabrication cell S then is its ability to meet these 
delivery dates for the different products and the corresponding inventory levels/costs.  
 

Kanban (pull) and MRP (push) are two possible choices of material control 
strategy that fabrication cell S might adopt to meet its objectives.  By considering the 
fundamental nature of push and pull strategies in the following paragraphs, we argue 
qualitatively that pull strategies need not perform better in these environments. In the 
remainder of the paper we provide quantitative results to support the qualitative 
arguments presented below.  
 
  C1  
 
 
 
 
 
 
 
 
 
 

CN 

C2 

 Common Fabrication Cell: S Dedicated Assembly 
Cells with Assembly 

Schedules 

 
 
 
Figure 1. Motivating manufacturing example. 
 
 

Since pull is essentially a replenishment strategy that was initially designed for 
manufacturing environments producing repetitive products with high demand volumes, it 
has some potential drawbacks for fabrication cell (or supplier S) operating in 
environment with multiple products. Pull requires that a minimum inventory of each 
product be maintained at the output of each workstation. When one unit (or container) of 
inventory is taken by the downstream workstation this would immediately signal the 
upstream workstation to begin work to replenish this quantity. If cell S is manufacturing a 
large number of product specifications with possibly distinct demands, this can lead to 
proliferation of work in progress (WIP) inventories at each stage of the process (see the 
example in Suri, 2000). Particularly, certain product environments could lead to 
situations where the time between demands for some products is greater than the average 
their flow times. In these situations, the pull strategy could lead to inventory 
replenishments well in advance of their requirements, resulting in excess WIP 
inventories. Ignoring this possibility and implementing pull material control strategies in 
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such an environment could lead to inefficient system performance. Pull strategies also 
exercise rigid controls on production schedules by enforcing takt times and level 
scheduling (Womack and Jones, 1996). These involve optimizing or standardizing tasks 
and freezing production schedules.  However, at fabrication cell S, where the products 
could be possibly highly customized or demands highly variable, setting takt times could 
be impractical. Frequent revision of takt times could be required for fabrication cell S to 
respond to the varied requirements of its customers efficiently. Hence, pull might not be 
the best material control strategy for such environments.  
 

In a push strategy, the production triggers are based on the release times of jobs at 
each station in the system. These release times are determined by backward scheduling 
the due dates of orders from the assembly cells using the planned production lead times at 
each station (Vollmann et al., 1991). To account for the difference between the planned 
lead time and the actual flow time of an order, push strategies often incorporate safety 
stocks or safety lead times. Incorporating safety lead times involves inflating the lead 
time estimates, while incorporating safety stocks involves increasing the target inventory 
levels in the system. Although safety stocks and safety lead times are intended to improve 
performance it has been shown that due to the uncertainties in customer demands and 
errors in estimates of planned lead times, push strategies may result in excessive 
inventories (Hopp and Spearman, 1996). On the other hand, in an environment such as 
the one described for fabrication cell S, the cell might have reliable information about its 
customer demands and average lead times for its products. Furthermore, several 
manufacturers today routinely track and monitor flow times at their facilities (Ericksen 
and Suri, 2001). In view of this available information, facility S might benefit from 
adopting a push material control strategy that explicitly considers future requirements 
while triggering production releases. Ignoring the available information on future 
requirements and adopting a pure pull strategy that merely replenishes consumed 
inventories might prove detrimental, especially if the number or diversity of the products 
manufactured in cell S is quite high. 
 

Recently a few researchers have provided qualitative arguments similar to the 
above. For example, see Hopp and Spearman (1996) and Suri (2000). However, there is a 
lack of quantitative studies that analyze the performance of material control strategies in 
manufacturing environments with multiple products and diverse product mixes. 
Therefore, the goal of this paper is to conduct quantitative comparisons of the 
performance of push and pull strategies by modeling fabrication cell S as a multi-stage 
manufacturing system producing multiple diverse products. We use simulation for the 
comparisons, since exact analytical models of multiple products in a general 
manufacturing setting operating under push and pull are not available. The simulation 
studies performed as part of this research are an initial step towards getting quantitative 
insights on the performance of push and pull in multi-product environments. In fact, the 
simulation models needed for the comparisons become computationally prohibitive for 
systems manufacturing a large number of products. However, under abstract but 
equitable assumptions that are necessary to make these computations manageable we 
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construct simulation models that yield insights that can be generalized and applied to a 
wide range of real systems. Using these simulation models we compare the performance 
of MRP (push) and kanban (pull) systems for different loads and product mixes.  
 

Our key observation is that in multi-product environments the performance of 
kanban (pull) deteriorates significantly. We consider several product mixes in which the 
products could differ in terms of their demand rates and/or service requirements. For a 
moderate number of products with homogeneous demand rates and service requirements 
and even more so for heterogeneous demand rates, we observe that push strategy 
outperforms pull in terms of service levels and average inventories. This is different from 
the performance of push and pull in environments with low product variety (Spearman 
and Zazanis, 1992; Buzacott and Shanthikumar, 1993; Hopp and Spearman, 1996). These 
performance results have important implications for companies increasing their number 
of product offerings to their customers as part of their corporate strategy. It might be 
more efficient for them to adopt push strategies in portions of the manufacturing facilities 
where reasonably accurate information about future requirements and production lead 
times are available. Our simulation studies also provide important insights into the design 
of pull and push systems. In particular, we observe that system performance under the 
pull strategy is very sensitive to design parameters such as the allocation of kanbans. 
Improper allocation of kanbans can result in low service levels and high inventories. On 
the contrary, our studies show that system performance under the push strategy is more 
robust to the choice of design parameters such as safety lead times and safety stocks. Our 
experiments also include an evaluation of whether safety lead times or safety stocks are 
preferable in these environments.  
 

The comparison of push and pull strategies conducted in this research primarily 
focuses on the flow control aspect of MRP and kanban strategies. Several other studies 
have focused on other aspects of MRP and kanban control and their variations. For 
instance, Suri and de Treville (1986) demonstrate that although the rigid control of pull is 
susceptible to disruptions in production, such disruptions provide opportunities to 
identify bottlenecks and improve system performance. In contrast, MRP-type push 
strategies in the presence of imperfect demand information can lead to dysfunctional 
behavior (Suri, 1998). We will not consider these behavioral aspects of pull or push in 
this research. Further, we recognize that a comprehensive comparison of push and pull 
strategies would require considering manufacturing systems with different topologies 
(assembly systems, job shops etc.), exploring the influence of factors such as forecast 
inaccuracies, errors in MRP lead times, and analyzing the performance of the different 
variants of pull strategies proposed in the literature (Liberopoulos and Dallery, 2000). We 
consider these as important areas for extending the current research.  Consistent in spirit 
with other modeling efforts including Karmarkar (1987), Buzacott et al. (1992), and more 
recently Karaesmen et al. (2002), our aim here is to design a simulation model simple 
enough to capture the basic impact of push and pull strategies on the dynamics of the 
manufacturing system.  
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The remainder of the paper is organized as follows. Section 2 provides a review 
of the relevant literature. Section 3 provides the system description and discusses the 
setup of the simulation experiments. Section 4 discusses the insights obtained from 
simulation on the performance of push and pull in multi-product systems with a 
homogeneous product mix. Section 5 provides insights from similar comparisons for 
multi-product systems with heterogeneous product mixes. Section 6 compares alternative 
designs for push strategies in multi-product environments. In particular the performance 
of push strategies operating under several safety stock and safety lead time policies are 
compared. Section 7 provides the conclusions. 
 
2. Literature review  
 
In this section we review the relevant literature on push and pull strategies. The review is 
structured as follows. We first review the literature that discusses the key modeling issues 
in push and pull systems. Next we review the literature on performance comparisons of 
push and pull systems.  
 
2.1. Push systems 
 
Considerable research has focused on the performance of MRP (push) strategies (see 
Orlicky, 1975; Vollmann et al., 1991; Buzacott and Shanthikumar, 1993; and the 
references therein). From these efforts we can conclude that there are three main issues in 
modeling push systems: (1) estimating release lead times for MRP, (2) modeling future 
requirements for the different products, and (3) determining the safety lead times and/or 
safety stocks required to guarantee the required service levels for the different products. 
Regarding the first issue, Buzacott and Shanthikumar (1994) and Karaesmen et al. (2002) 
analyze single product systems operating under MRP (push) policies under various 
scenarios. Both these studies assume that accurate estimates of lead times are available. 
With respect to determining future customer requirements, Buzacott and Shanthikumar 
(1994) consider two situations (a) future demands over the lead times are known exactly, 
and (b) only the mean demand rate is known, while Karaesmen et al. (2002) only 
consider the former environment where future requirements over the lead times are 
known exactly.  For the comparisons of multi-product systems in this paper, we also 
focus on the first environment and assume that accurate estimates of release lead times 
are available. As noted in the previous section, there are many practical situations where 
these assumptions hold. Comparisons in other situations are left for future research.   
 

Regarding safety stock and safety lead times, Lambrecht et al., (1984), Buzacott 
et al. (1992), and Buzacott and Shanthikumar (1994) report several key results for single 
product systems. First, they report that the service delay experienced by a customer order 
decreases by increasing the safety stock at any stage. Second, if there is a limit on the 
total safety stock, then service delays are minimized by having all the safety stock at the 
final stage. Third, customer service delays can be reduced by inflating the values of the 
planned lead times at each station. Finally, for the case wherein complete information 
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about future customer demands is available, safety lead times are always preferable to 
safety stocks. Since to our knowledge, it has not been shown that these insights also hold 
for multi-product manufacturing systems, our simulation experiments consider several 
settings for safety stocks and safety lead times, rather than safety lead times alone.  
 
2.2. Pull systems 
 
Pull (kanban) strategies have been the subject of numerous studies by researchers (see 
Uzsoy and Martin-Vega, 1990; Berkley, 1992; Liberopoulos and Dallery, 1997; and the 
references therein). These works review the different deterministic, stochastic, and 
simulation models used for the analysis of kanban and generalized pull systems. From 
these efforts we can conclude that the main issues in modeling kanban systems are (a) 
determining the number of kanbans for each product and (b) their allocation among the 
different stages of the manufacturing system. However it appears that determining the 
optimal allocation of kanbans at the different stages is not easy. Tayur (1992), Muckstadt 
and Tayur (1995), and Gstettner and Kuhn (1996) study the impact of kanban allocation 
patterns on system performance and report optimal allocations for serial production 
systems manufacturing a single product. Similar studies for multi-product systems are not 
available. In addition, Buzacott and Shanthikumar (1993) qualitatively argue that the 
allocation of kanbans for one product could impact the performance of other products 
sharing the same production resource. Consequently, in our simulation experiments we 
consider a wide range of kanban allocations for the different products. 
 
2.3. Comparison of push and pull systems 
 
Spearman and Zazanis (1992) compare the performance of pull and push strategies using 
simple queueing models and show that for serial lines manufacturing a single product 
pull strategy always results in less congestion and WIP. Buzacott (1989) and Buzacottt 
and Shanthikumar (1993) conduct similar studies and report that, for systems operating 
under kanban strategies the service delay experienced by a customer order decreases with 
increase in the total number of kanbans in the system and for a system operating under 
the push strategy forecast inaccuracies could result in significant deterioration of system 
performance. Analytical studies that compare the performance of push and pull for multi-
product systems are limited, because analytical models that explicitly model multiple 
products in a general manufacturing setting operating under push and pull are hard to 
solve exactly. Zhou et al. (2000) use simulation to compare the performance of push, 
pull, and hybrid push-pull strategies for manufacturing systems with multiple products. 
They observe that in certain environments hybrid push-pull strategies outperform both 
push and pull strategies. Our research also uses simulation to compare the performance of 
material control strategies in multi-product environments, but we examine the impact of 
product mix diversity on system performance, and restrict our focus to only push and pull 
strategies.  
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3. System description and setup of simulation experiments 
 
In this section we provide additional details regarding the system being analyzed. First, 
we describe the system structure, and discuss the assumptions regarding customer 
demands and service requirements for the different products. Subsequently, we describe 
how the operation of push and pull strategies are modeled in the simulation experiments. 
We conclude this section with a discussion of the experimental design and the measures 
that are computed in the simulations. 
    
3.1. System description  
 
To conduct quantitative comparisons of the performance of push and pull strategies at a 
manufacturing cell (or supplier) S supplying diverse products to multiple assembly cells 
within an OEM facility, we model cell S as a serial production line with three stages 
(j=1,2,3) manufacturing 8 different products. See Figure 2.   
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Figure 2. System description. 
 
 

For simplicity we assume that each stage consists of a single machine and its 
input and output buffers. We consider a three stage line to keep the number of machine 
parameters that need to be varied in our simulations manageable while still capturing the 
effects of initial stage, intermediate stage, and final stage processing times on the 
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performance of the control strategies. We assume that machine 1 always has a sufficient 
supply of the raw materials required for the different products. The output product of one 
machine becomes the input product to the subsequent machine and at the output of the 
last machine there is a finished goods inventory buffer that stores final products before 
they are delivered to the respective assembly cells C1, …, CN. In real systems, the number 
of different products being manufactured by cell S could be very large. The purpose of 
modeling multiple products for our simulation experiments is to analyze the impact of 
product diversity on the performance of material control strategies at cell S. Choosing a 
small number such as 2 products would be inadequate for a meaningful study while a 
large number of products would significantly increase the computational burden. Our 
preliminary experiments indicated that modeling a serial production line with 8 different 
products keeps the computations reasonable and yet provides the key insights.  
  

The production activity at a machine typically consists of tasks such as 
fabrication, finishing operations, inspection, rework, or test. These operations could be 
manual or automated. To model the shape of the service time distribution observed in 
previous studies (Knott and Sury, 1987), we assume that the processing time for product 
i, i=1, …, 8 at machine j, j = 1, 2, 3 has a shifted beta distribution with mean Sij. Recall 
that a random variable X, with a shifted beta distribution, has a density function 

( )βα ,,xf  given by  
 

( )βα ,,xf ( )
( ) ( )

( ) 1

11

,
1

++

−−

−
−−

= βα

βα

βα ab
xbax

B
, ,bxa ≤≤ 0,0 >> βα    (1) 

 
where a and b define the domain of X, and ( )βα ,B  is the beta function defined by shape 
parameters α  and β  (Canavos, 1984). The expressions for mean, variance and 
coefficient of variation (CV) of these distributions are given in the Appendix. We assume 
that the setup time for each product is included in its processing time at each machine and 
that cell S follows a lot-for-lot policy (Vollmann et al., 1991).  
 

To model the demand process, we assume that based on the information about 
final customer demands, assembly cells C1, …, CN develop their own production plan and 
place specific orders for different products with cell S. Usually each such order has a 
specific due date (or delivery date) to the assembly cell. As mentioned in Section 1, there 
are many situations where cell S might have such information regarding the orders. Let 
tn,i represent the time when the nth order for product i is due to be delivered to assembly. 
For modeling purposes, we assume that the time between the due dates of successive 
requests for product i (i.e. tn,i - tn-1,i) is exponentially distributed with mean 1/Di, i=1, …, 
8.  This would imply that the demand for product i occurs at a rate of Di. We assume beta 
distributed service times and exponentially distributed times between assembly requests 
in order to model the variability observed in real systems.  
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In the above setting, depending upon whether cell S operates under a push or pull 
strategy, production would be triggered differently at the various workstations to satisfy 
the assembly requirements. Next, we give details of how these strategies are modeled in 
our simulations. 
 
3.2. Simulation of pull strategy  
 
When the multi-stage manufacturing line at cell S operates under a pull strategy, there are 
a fixed number of kanbans associated with each product in each stage. These kanbans 
circulate within a loop (see Figure 3), transmitting information regarding inventory 
consumption at the downstream stage and triggering production for inventory 
replenishment.  
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Figure 3. System operating under the pull strategy. 
 
 

More precisely, the system operates as follows. Initially, the output buffer at 
machine j, j = 1,2,3 has inventory of each product i, i=1,…, 8. Each unit in the output 
buffer has attached to it a product specific kanban card. Since there are Kij kanban cards 
for product i at machine j, the initial inventory of product i at machine j equals Kij. In the 
pull strategy, production is triggered when a customer request is satisfied by removing a 
product from inventory in the finished goods buffer at machine 3. (Orders not satisfied on 
the due date are backlogged until they are met.) When a product is removed from finished 
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goods inventory at machine 3 to satisfy an order requirement, the kanban card attached to 
the product is released, triggering production of the corresponding product at machine 3. 
For production, machine 3 withdraws the corresponding inventory from the output buffer 
of machine 2, which in turn releases a card triggering production at machine 2 and so on 
back to machine 1. In this manner information about inventory consumption at the end of 
the line is transmitted to the rest of the line via the product-specific kanban cards.  
 

As stated in Section 2, the major issue in designing a pull kanban system is 
determining the number of kanbans for each product at each stage of the manufacturing 
system. Since each product is attached to a kanban card, the number of kanban cards also 
bound the inventory at each machine in the line. Changing the number of kanban cards 
for each product at each machine not only impacts the rate of transmission of the 
production triggers and the average inventory at each machine, but also impacts the 
service levels. In the simulation experiments, we consider a wide range of kanban 
allocations for each product as discussed in Section 3.4.  
 
3.3. Simulation of push strategy  
 
To model the push strategy we associate with each product manufactured at cell S a 
parameter Li. The parameter Li called the release lead time for product i, is used to 
determine the timing of the material release into the manufacturing system. We assume 
that when the assembly cells place orders for product i with cell S they do so at least Li 
time units before the due date. This assumption is justified if the downstream assembly 
cells fix their assembly schedules sufficiently in advance.  
 

We simulate the push system as follows. Let tn,i denote the due date of the nth 
order for product i at assembly. In the push strategy, for each such order, the 
corresponding raw material is released for production at stage 1 exactly Li units of time in 
advance. (See Figure 4.) Upon release, the order is processed in turn at machines 1, 2, 
and 3, respectively. If processing is completed at machine 3 in advance of the due date, 
the product waits in the output buffer of machine 3. If on the due date, the order 
requirement for a given product can be satisfied from inventory at the output buffer of 
machine 3, the product is removed from the output buffer and the order is satisfied 
immediately. However because of congestion delays experienced at the different 
machines, the completion time of production at machine 3 might not be in advance of the 
due date of the order. In such a situation, on the due date the order is satisfied from safety 
stock in the finished goods buffer, if any. When the product is eventually completed at 
machine 3, it is used to replenish the safety stock consumed. Orders not satisfied on the 
due date are backlogged until they are met.  
 

As mentioned in section 2, the major issues in designing a push strategy include 
estimating release lead times Li, and determining the safety lead times and/or safety 
stocks required to guarantee the required service levels for the different products. 
Regarding the release lead times, we assume that for a given demand scenario, the 
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planning system obtains an accurate estimate of Fi, the average flow time of product i. 
(Although in practice such estimates are themselves subject to error, we do not wish to 
complicate our experimental design space with this additional factor.) For our 
experiments the estimate of Fi is obtained from initial simulation runs for each scenario. 
When safety lead times are used, the release lead time Li for each product is set higher 
than its expected product flow time Fi by an amount known as the safety lead-time. 
Safety stock for a given product is the inventory target in the output buffer when there is 
no unmet demand and no lots delayed in the manufacturing process beyond the actual 
flow time (Buzacott and Shanthikumar, 1994). 
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Figure 4. System operating under the push strategy. 
 
 

We are not aware of any literature to date that shows when safety lead time would 
be preferable to safety stock in multi-stage multi-product manufacturing systems. To gain 
insight into this question, we study the safety stock and safety lead time policies 
independently. Specifically, we run two sets of simulation experiments for the push 
strategy. One set uses only safety stocks and the other uses only safety lead times. For the 
experiments with safety stocks, the release lead time Li is set equal to Fi. Next, the total 
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amount of safety stock ( ) for product i is set to a fixed percentage of the average 
demand over its flow time F

S
iS

i, and this percentage is varied over different experiments. In 
addition, we assume all the safety stock is located at the output buffer of the last machine. 
This implies that for the safety stock policy, the initial inventory at the buffers following 
machines 1 and 2 is zero while the initial final inventory at the output buffer of machine 3 
is the specified safety stock, . For the experiments with safety lead times, the total 
amount of safety lead time ( ) for a product i is set to a percentage of its average flow 
time, F

S
iS

L
iS

i, and this percentage is varied over different experiments. Additionally, all the 
safety lead time for the product is added to its average flow time so as to advance the 
release of raw materials to the first machine by that amount. Therefore, for the safety 
lead-time policy, the initial inventory at all the buffers is zero and the release lead time Li 
is set equal to Fi + . The specific percentages for safety lead times and safety stocks 
used in our simulation experiments are given in Section 3.4. For convenience the main 
parameters of our simulation experiments are summarized in Table 1. 

L
iS

 
Table 1. List of main parameters used in simulation experiments. 
 

Parameter Definition 

Di Mean arrival rate of requirements for product i 

Sij Mean processing time for product i at machine j 

tn,i Due date of nth order for product i at assembly 

Li Release lead time for product i  

Fi Average flow time for product i 
L
iS  Safety lead time for product i 

S
iS  Safety stock for product i 

Kij The number of kanban cards of product i at machine j 

 
 
3.4. Design of the simulation experiments 
 
Since the performance of push and pull strategies vary for different values of safety stock 
and safety lead times and for different settings of kanban cards, we run simulation 
experiments for a wide range of parameter settings for each strategy. A more 
comprehensive approach would be to run simulation experiments to determine the 
optimal values of safety stock, safety lead times, and allocation of kanban cards. 
However, this entails excessive computational burden. Instead, we choose a wide range 
and suitably fine grained set of parameter values that significantly reduces the 

 



 15

computational burden, captures the near optimal points in the design space, and also 
reveals the sensitivity of system performance to sub-optimal parameter settings. For the 
push system, we run experiments with safety lead times for each product being set at 0, 
20%, 40%, 60%, 80%, 100%, and 200% of the average flow time, and with safety stocks 
for each product being set at 0, 20%, 40%, 60%, 80%, 100%, and 200% of the average 
demand over the flow time.  
 

For the pull system, we consider several kanban allocations for each product. A 
particular allocation of kanbans for product i  consists of a triple (Ki1, Ki2, Ki3). For the 
pull system simulations, we run experiments with kanban allocations for each product 
ranging across the following set of triples:  
 

A = {(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2),  
          (2,2,2), (2,2,4), (2,4,2), (2,4,4), (4,2,2), (4,2,4), (4,4,2), (4,4,4),  
          (2,2,2), (2,2,8), (2,8,2), (2,8,8), (8,2,2), (8,2,8), (8,8,2), (8,8,8)}  

 
Our main interest is in comparing the trade-offs between the service levels, 

average backorder delays, and average total system inventory for the two strategies for 
optimal and sub-optimal settings of safety lead times, safety stocks, and/or kanban 
allocations. Service level is defined as the proportion of requirements that are met on the 
due date. In computing the average backorder delay we include the observations where 
the customer requirements are met with no delay. In computing the inventory in the 
system at any time instant, we assume that any part that has been released for processing 
at the first station but has not yet been shipped to the customer counts towards inventory 
of the system at that time. Note that by this definition, any initial inventory present in the 
buffers at the start of the simulation also counts towards inventory in the system. In 
addition to computing service levels, average backorder delays, and average inventories, 
we also compute the average flow times for each product. The flow time is defined as the 
time from when a product is released to the input queue of machine 1 until the time it 
finishes processing at machine 3. These flow times provide a perspective for the average 
backorder delays experienced by customer demands. We compare the magnitude of the 
average backorder delay to the average flow time of the product.  
 

For each simulation experiment the service level, average backorder delay, and 
average inventory levels are plotted on a three-dimensional figure and the points on the 
efficient frontier are used for comparison of push and pull strategies. For the simulation 
experiments of the push strategy we observe that the range of safety stock and safety lead 
times considered allows us to determine the efficient frontier for the demand settings 
considered in the experiments. Similarly for the simulation experiments of the pull 
strategy we observed that the set A of kanban allocations allows us to determine the 
efficient frontier for all parameter settings considered in the experiments. Therefore, we 
decided not to consider any additional kanban allocations or levels of safety stocks and 
safety lead times.  
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 The simulation study is carried out using the PROMODEL discrete event 
simulation tool (www.promodel.com). For each parameter setting, the simulation results 
are the average of six independent runs each of which represent the production of 66,000 
customer orders. In each run, the statistics corresponding to the initial 6,000 orders were 
discarded to account for transient start-up effects. For each experiment, the inventory at 
each machine was considered for computing the average inventory in the system. For 
each experiment, the 95% confidence intervals were found to be within 3% of the mean 
values. This range is small as compared to the variation in performance along the 
efficiency frontier for the different push and pull system settings. The confidence 
intervals are omitted in the figures to improve readability. 
 
4. Multi-product systems with homogeneous product mix 
 
The first set of simulation experiments compare the impact of multiple products on the 
performance of push and pull strategies in a homogeneous environment as now 
explained. The values of Sij and Di are chosen assuming that the cell manufactures 
homogeneous products and is well balanced. Such a setting would be considered the ideal 
for pull strategy and one might expect it to perform the best. For the simulation 
experiments of both push and pull we set the mean processing times 
 

Sij  = 1, for all i and j.         (2) 
 

The service times have a shifted beta distribution with density function given by 
equation (1) with ,75.0=α  ,5.1=β  5.0=a , and 2=b . These values ensure that the 
service time distribution has an L-shape with mean 1 and CV = 0.39. The choice of shape 
of service time distribution and the value of CV is supported by studies reported in Knott 
and Sury (1987). Also, setting 5.0=a  and 2=b  ensures that the values of the service 
times are bounded above and below the mean by a factor of 2. 
 

To set the mean demand rates, Di, some discussion is required. Note that the 
performance measures we are primarily interested in are the tradeoff between service 
level and the average inventory in the system. This tradeoff obviously depends on the 
system load, i.e., throughput of the system. Therefore we explore this tradeoff at different 
values of system throughput. Since the throughput is governed by the mean arrival rates 
of demands, we conduct simulation experiments for different demand rates and observe 
the service levels and the corresponding average inventory in the system. Specifically, we 

set  equal to 0.5, 0.725, and 0.95, corresponding to low, medium, and high 

levels of system load respectively. This would correspond to throughput values of 0.5, 
0.725, and 0.95, respectively. Further, since we assume for this first set of experiments 
that the line manufactures homogeneous products and is well balanced, we also assume 
that all products have identical demands. Therefore: 

∑
=

=
8

1i
iDD
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8
DDi = , i        (3) 8,...,1=

 
Since all stations have a mean processing time Sij = 1, for all i and j, equation (3) implies 
that when 0.5, 0.725, and 0.95, each of the three machines has a utilization of 50%, 
72.5%, and 95%, respectively. Consequently, there is no unique bottleneck in the system. 
Note that the maximum total throughput of the system is one product per unit time. Since 
the average demands and service times for all the products are identical in this setting we 
refer to this as the homogeneous product mix case (see equations (2) and (3)). The 
simulation experiments are carried out for the different settings of safety stock and safety 
lead-times (for the push strategy) and kanban allocations (for the pull strategy) discussed 
in Section 3.4. Next we discuss the results and insights obtained from these experiments. 

=D

 
4.1. Results and insights  
 
In Figure 5 we plot the average total inventory versus (1) service level and (2) the 
average backorder delay of a customer order. Figures 5(a) and 5(b) correspond to the case 
when D=0.5, Figures 5(c) and 5(d) correspond to D=0.725, while Figures 5(e) and 5(f) 
correspond to D=0.95. The graphs in Figure 5 also report the average flow times in each 
case. For certain kanban allocations, average backorder delays were greater than 50% of 
the average flow times. These are clearly inefficient kanban allocations and an efficient 
design of a pull strategy would not operate with such kanban allocations. To focus on the 
more relevant points of the design space, we omit displaying these points from the graphs 
comparing performance of push and pull strategies. From the graphs several observations 
can be made. 
 

• Most importantly we observe that, contrary to the popular belief about pull, in this 
case, the total inventory required to meet any customer service level is higher in 
the pull strategy than in the push strategy for most observations on the efficient 
frontier. 

• At low and medium values of system load, high service levels and reasonably 
small backorder delays are achievable for both push and pull strategies. As seen 
from the graphs, the average backorder delay rarely exceeds 25% of the average 
flow times. However, because the pull strategy is a replenishment strategy, a 
minimum inventory needs to be stored for the strategy to operate. Figures 5(a)-(d) 
indicate that at low to medium loads, this minimum inventory can be significantly 
higher than the inventory in a push strategy.  

• When the system load is high (D=0.95), we observe from Figure 5(f) that for 
certain kanban allocations, low service levels and high backorder delays are 
observed despite having large inventories. Therefore, while operating under a pull 
strategy, it is important to choose the kanban allocation that guarantees the 
required service levels. However determining the optimal kanban allocation for 
each product is not an easy task. Furthermore, as can be seen from figure 5(f), a 
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kanban allocation that guarantees a high service level might also result in high 
inventories.  

• From Figure 5, we also observe that while certain kanban allocations yield highly 
inefficient system performance, the results of push strategies for different safety 
lead time and safety stock policies lie close to the efficient frontier. This indicates 
that in the cases considered here, push systems provide more robust performance 
than pull. We find this insight particularly interesting because in the single 
product case Hopp and Spearman (1996) have noted that pull is a more robust 
control system than push. Our study shows that in certain situations, this 
conclusion is reversed for the case of multiple products. 

 
Although Figure 5 allows us to compare the tradeoff between inventory, service 

level, and the average delay in meeting customer orders, it is not clear from the figure 
how service level relates to the delay experienced by a particular order. Specifically, are 
there certain designs of push or pull systems wherein the service levels are high, but the 
average backorder delay is also high? To answer this question, in Figure 6 we plot the 
service level, the average backorder delay, and the total inventory on a three-dimensional 
figure. To put the average backorder delay experienced by a customer in perspective, the 
figure also provides the average flow time for the products. Note that the lower left hand 
corner in these graphs represents the efficient region of the system design space.  
 

As before, we observe that for low and medium values of system loads (D=0.5 or 
0.725; Figures 6a, 6b), both push and pull strategies yield high customer service levels 
with low backorder delays. However, for the pull strategy, the average system inventory 
is higher than that with the push strategy. In addition we observe that at higher system 
loads (D=0.95, Figure 6(c)), kanban allocations that result in poor service levels also 
result in large backorder delays. Furthermore, we observe that although certain kanban 
allocations might guarantee high service levels, the corresponding backorder delays could 
be significantly different for each of those allocations. 
 

One of the reasons push yields less inventory than pull in a multi-product system 
is the following. Pull strategies require kanbans and hence inventory for every product at 
every stage of manufacturing. Correspondingly, there is a minimum average work in 
process inventory for each product in the system irrespective of the order patterns. We 
call this the resident WIP. A system operating under pull has no option but to carry the 
resident WIP for each product. In contrast, in the push strategy, the minimum WIP level 
is zero. When the MRP release is based on firm customer orders and accurate estimates 
of average flow times, any raw material released into the system is likely to be used to 
satisfy customer demand relatively soon after manufacturing is complete. Thus, the 
system operating under the push strategy can be leaner, i.e., have less wasteful inventory, 
than that operating under a pull strategy. Consider the results in Figure 5.  At 72.5% load, 
the average time between customer orders for each product is 8/0.725, or 11.1 units of 
time, which is larger than the average time to manufacture the product (i.e. 5.8 units of 
time).  This leads to excess inventory even for small numbers of kanbans. For higher 
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values of system load (e.g. 0.95), the average time between customer orders is lower than 
the average flow time, but even in this situation the push strategy releases new raw 
material in a manner that is better timed with respect to the order due date, and thus 
performs better than the pull system. For any given system, the increased product variety 
can cause the average time between unit demands for the different products to be 
significantly greater than the average production flow times, in which case the pull 
strategy will initiate inventory replenishments well in advance of their requirements, 
resulting in excess WIP inventories. Buzacott and Shanthikumar (1993) use analytical 
models of single product systems to conduct similar comparisons of push and pull and 
obtain similar qualitative insights. They observe that in the presence of reliable 
information about demands in advance, push systems would have less inventory than pull 
for the same throughput requirements. Our simulation results indicate that this difference 
can be even more significant in certain multi-product systems due to resident WIP for 
each product.  
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Figure 5.Comparison of push and pull for multi- product system with homogeneous product mix. 
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Figure 6. Performance tradeoffs with push and pull for multi-product systems with homogeneous product mix. 
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The impact of resident WIP observed from our simulation experiments also 
illustrates an important issue to be kept in mind while using analytical approaches based 
on product aggregation for the performance comparison of push and pull systems in 
multi-product environments.  Although the manufacturing system with homogeneous 
product mix analyzed above appears to be amenable for such an analysis using product 
aggregation, it should be noted that if the approach does not incorporate the impact of 
product specific kanban control at each stage, the resulting analytical models might 
significantly underestimate the impact of resident WIP in multi-stage systems operating 
under pull strategies. Further the performance of pull strategies can be very sensitive to 
the kanban allocation patterns for the different products. These detailed insights cannot 
be ascertained from aggregate models. 
 
5. Multi-product systems with heterogeneous product mix  
 
In this section, we further examine the insights obtained in the previous section by 
comparing the performance of push and pull in multi-product environments with 
heterogeneous product mixes. In the previous section we assumed that the line 
manufactures products that are similar in terms of the rates for order arrivals and service 
times required at each machine. However, in practical systems, this is seldom the case. 
Product heterogeneity results if the products manufactured by department S for assembly 
departments C1, …, CN differ in terms of the arrival rate of customer orders, processing 
times at the different machines, or both. In the next set of experiments we investigate the 
performance of push and pull strategies in such situations. 
  

For simplicity, in our simulation experiments we assume that the 8 products are 
divided into 2 groups, namely, Type 1 (i= 1, …, 4) and Type 2 (j =5, …, 8) such that, 
 

,1λ=iD  for i           4,...,1=
 

2λ=iD , for           8,...,5=i
 

,1τ=ijS  for i  and for all j      4,...,1=  

 
2τ=ijS , for  and for all j        8,...,5=i

 
As before, we still assume that service times have a shifted beta distribution with 

parameters 75.0=α , 5.1=β , and coefficient of variation (CV) equal to 0.39, and 
:  ∑=

i
iDD

        ( ) D=+ 214 λλ .          (4) 
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Additionally, for the sake of comparison with our simulation experiments in the 
previous section, we set the overal average service time at each machine to be equal to 1. 
That is,  

 
( ) 14 2211 =

+
D

τλτλ .         (5) 

 
In our experiments, we set D=0.5, 0.725, and 0.95, corresponding to low, medium and 
high levels of system load, respectively.  
 

Equations (4) and (5) ensure that although the product mix is heterogeneous, the 
total load on the system remains the same as in the case of homogeneous system. 
Additionally, equation (5) also ensures that no new bottlenecks are introduced by product 
heterogeneity into the system. We do this so as not to confound the insights from our 
experiments with the impact of production bottlenecks. 
 

We define two parameters, the processing time factor, kP, and the demand factor, 
kD, according to 
 

2

1

τ
τ

=Pk  and 
2

1

λ
λ

=Dk  .     (6) 

 
Using equations (4), (5), and (6), we can express λ1, λ2, 1τ , and 2τ  in terms of kP, kD, and 
D, i.e.,  
 
 

)1(41
D
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=λ , 
)1(
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+
=λ , 

DP
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+
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)1(
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kk
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+
+

=
1
1

2τ .  

 
Note that kP and kD are the relative ratios of the mean processing times and demands of 
the two groups of products. By setting different values for kP and kD, we can capture a 
wide range of product mixes. In addition, if for a given product mix we have kPkD=1, the 
utilization of each machine by each product is the same.  
 

To study the impact of heterogeneous product mix, we choose values of kP=1/5, 
1, and 5 and kD=1/5, 1, and 5. Note that after taking symmetry into account there are only 
four distinct scenarios out of the nine possible combinations of these parameter values, 
namely where (kP, kD) equal (1/5,1), (1/5, 5), (1,5), and (5, 5), respectively. The other 
four cases are symmetric versions of these cases. For example, the cases (1, 1/5) and (1, 
5) yield identical results since in both the cases the service rate for all the products are 
identical while the demand rate for one set of products is five times that of the other. 
Similarly, in the cases (1/5, 1/5) and (5, 5) the demand and the service rate for one set of 
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products is five times the corresponding value of the other. Finally, note that, our initial 
system with homogeneous product mix corresponds to the ninth case (1, 1).  
 

The selected values of kP and kD are designed to reflect the kinds of heterogeneous 
product mixes that occur in practice. For example, the case (1, 5) corresponds to the 
situation where the demand for one set of products is low while the demands for the other 
set of products is high. This might correspond to the situation where some products have 
a higher sales volume than others. Similarly the case when (kP, kD) equals (5,1) could 
correspond to the situation when the orders from certain assembly departments are more 
complex (require intricate machining, special tolerances) than those from the others. The 
other situations wherein (kP, kD) equal  (1/5, 5) or (5, 5) could be combinations of the 
above possibilities. We could consider other combinations of values of kP and kD, but we 
restrict our experiments to these specific values for simplicity and to obtain the most 
important initial insights. 
 
5.1. Results and insights  
 
Figures 7 to 10 contain three-dimensional plots of service levels, average backorder 
delays, and average inventory levels obtained for system configurations with various 
heterogeneous product mixes and different system loads. The figures indicate that for 
heterogeneous product mixes, push strategies again guarantee better performance with 
less inventory than pull strategies. Several additional insights are also obtained. These are 
described below. 
 

• From Figures 7, 8, and 10 we see that the dominance of push over pull is quite 
significant for all values of system load. These figures correspond to the cases 
where (kP, kD) equal (1, 5), (5, 5), and (1/5, 5), respectively. This implies that pull 
strategies are handicapped for product mixes with heterogeneous demands. In 
Figure 9, the product mix has homogeneous demands but heterogeneous mean 
processing times at each machine, and push is more effective than pull at low to 
moderate loads while having equal performance with less sensitivity to sub-
optimal parameter values at high load. 

 
• From Figures 9 and 10 we observe that higher average delays experienced by 

customers than for the corresponding system configurations in Figures 7 and 8. 
These correspond to the cases where (kP, kD) equal (1/5, 1), (1/5, 5), respectively. 
For (1/5, 1), when the manufacturing lines work on products with significantly 
different mean processing time, the average flow times are higher even though the 
load on each machine is still the same. This effect becomes even more 
pronounced when the demands are heterogeneous, as for (1/5, 5). 
Correspondingly, the average backorder delays experienced also get higher. In 
these situations a push strategy yields better service levels with lower average 
inventory than a pull strategy. Merely stocking inventory via additional kanbans is 
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not the best way to meet service level requirements: incorporating a look-ahead 
feature yields significantly improved system performance. 

 
The results from our simulation experiments agree qualitatively with the insights 

on the performance of push and pull strategies for multi-stage manufacturing systems in 
Buzacott and Shanthikumar (1993). Although their comparisons are restricted to single 
product systems some qualitative comparisons can be made on aggregate performance 
measures. Buzacott and Shanthikumar (1993) show that in multi-stage systems 
manufacturing a single product, if reliable information on demand and lead times are 
available, push systems have less inventory than pull systems. Our simulation results 
show that the difference in inventory levels required under push and pull is significantly 
greater in multi-product systems. Further, the results in Figures 7-10 indicate that overall 
service levels could deteriorate significantly under pull if kanban allocations are not 
chosen carefully.  
 

Buzacott and Shanthikumar (1993) also make observations on the impact of 
variability in the form of product mix diversity on flow times for the different products in 
a job shop. They show that in general product mix diversity results in an increase in the 
flow times of the different products. In our experiments too we observe that heterogeneity 
in product mix due to different processing times and demands for products increase the 
average flow time in the system which necessitates additional inventory in the system to 
meet the required throughput, regardless of whether the line operates under push or pull 
strategies. However, our studies show that in these environments, achieving reasonable 
service levels requires excessive amounts of inventory if the line operates under a pull 
strategy. This is because a pull strategy fails to incorporate valuable information on future 
demands when triggering production. 
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6. On the use of safety stock versus safety lead times  
 
In this section we use the results from our simulation experiments, to evaluate whether 
safety lead times or safety stock policies yield better system performance in multi-
product push systems. In Section 2 we noted that, to our knowledge, there are no results 
in the literature that address this question.  
 

Figure 11 compares the performance of the push strategy under both policies for 
the homogeneous product mix case (kP=1, kD=1) and Figure 12 compares the 
performance of the push system under both policies for one of the heterogeneous product 
mixes, specifically the system with kP=1/5 and kD=5. In both of these figures, we plot the 
average total inventory in the system against service level and average backorder delay. 
We observe that for low and medium values of system loads, i.e., D=0.5 and 0.725, the 
safety lead time policy provides better system performance than the safety stock policy. 
At high system loads the performance of the safety lead-time and safety stock policies are 
comparable.  Furthermore, we observed similar insights for all product mixes considered 
in our study.  
 

One possible explanation for this behavior is as follows. Introducing safety lead 
times or safety stock policies in the push strategy are both attempts to increase customer 
service levels by increasing the availability of finished goods at the last buffer. However 
their impact is significantly different only when the system load and average flow times 
are moderate. Although push systems with safety lead times release inventory into the 
system earlier than necessary, it is always against a future order due date. In the safety 
stock policy there is no such guarantee for the additional stock and therefore, the safety 
stock policy could result in inventories that are held for significant periods before they 
are used to satisfy orders. Based on these observations we conjecture that even in the case 
of multi-product systems, that have accurate information about average flow times and 
order due dates, the safety lead time policy is preferable to the safety stock policy.  
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 (c) D=0.725 (d) D=0.725 
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(e) D=0.95 (f) D=0.95 
Figure 11. Safety stock versus safety lead time for multiple products with kP=1, kD=1. 
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Figure 12. Safety stock versus safety lead-time for multiple products with . 
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7. Summary and conclusions 
 
Manufacturing environments have undergone considerable changes in recent years and 
therefore it is important to understand the performance of material control strategies in 
different environments. In this paper we have compared the performance of MRP (push) 
and kanban (pull) strategies in a manufacturing setting where a fabrication cell S supplies 
different products to several assembly cells. Those comparisons assume that the assembly 
cells fix their assembly schedules in advance and share this information with their 
supplier cell S. For different system loads and product mixes, we compared the average 
total inventory at cell S to guarantee certain service levels under push and pull systems. 
We find that for this environment push outperforms pull in terms of service levels and 
average inventories. Further, in the pull strategy, if the kanban allocations are not set 
carefully, despite having high inventories the system could result in large average 
backorder delays and poor service levels.  
 

The inferior performance of pull strategies in these environments has important 
implications not only for manufacturing planners but also for supply chain managers. 
That is, the manufacturing system considered in our study can also be viewed in the 
context of a supply chain. From a supply chain perspective, assembly facilities could 
correspond to different OEMs and facility S could be their common supplier. For 
example, S may be a contract supplier that manufactures and supplies particular 
components (fenders, hoods) to different assembly facilities in the auto industry. The 
successful implementation of pull systems for manufacturing systems with low product 
variety and stable demands has led to the belief that implementing pull strategies in all 
areas of the manufacturing system or across all partners in the supply chain would be 
mutually beneficial. However as our results have shown, pull strategies can perform 
poorly in certain multi-product environments. Manufacturing departments or suppliers 
that provide multiple products to assembly lines that share their assembly schedules can 
achieve better system performance by adopting a push strategy that explicitly considers 
future requirements when triggering production releases. Ignoring the available 
information on future requirements and adopting a pure pull strategy that merely 
replenishes consumed inventories may prove detrimental. 
 

Using the results of our simulation experiments we also compared the 
performance of a push strategy operating under safety stock and safety lead time policies. 
Our experiments indicate that, as in the case of single product systems, when reliable 
information about future requirements is available, a push strategy operating with safety 
lead times yields better system performance than one operating with safety stocks.  
 

Reliable information about future demands and flow times is not always available 
in practice. However, the results for such environments are useful because there are 
several practical situations where reliable information about future demands and average 
flow times are available. Recent studies that demonstrate the positive impact of sharing 
information about future requirements have motivated assembly departments to share 
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schedules with departments supplying their components. Information sharing is also 
becoming popular among partners in a supply chain (Karaesmen et al., 2002). 
Furthermore, the increasing pressure to reduce lead times and stay competitive has forced 
many manufacturers to measure and monitor flow times for their products. In some cases 
flow times have become key metrics in evaluating supplier performance (Ericksen and 
Suri, 2001). Nevertheless, it would be interesting to study the performance of push and 
pull strategies when estimates of future demands and flow times are inaccurate and 
compare them against the insights presented in this paper. 
 

There are several interesting directions for future research. The performance 
comparison of push and pull should be investigated under situations where reliable 
estimates of average flow times are not available, or when only partial information about 
future orders is available, or when planned lead times are larger than the horizon over 
which accurate information about demand is available. It would also be interesting to 
investigate which kanban allocations yield robust system performance in multi-product 
environments. In our experiments, we assumed that there is no dominant bottleneck so as 
not to confound the initial insights obtained. Testing the robustness of the performance of 
push and pull in the presence of bottlenecks is another area for further research. In this 
research our comparisons focused only on pure push (MRP-type) and pure pull (kanban-
based) strategies. As mentioned before, several variations of push and pull strategies have 
been proposed (Liberopoulos and Dallery, 2000). In addition, hybrid strategies that 
combine different features of push and pull have also been proposed in the literature. The 
CONWIP system proposed in Spearman et al. (1990) and the POLCA system proposed in 
Suri (1998) are examples of such strategies. More recently, several researchers have 
proposed material control strategies that integrate advance demand information with pull 
control (Karaesmen et al., 2003). The qualitative arguments provided in favor of these 
strategies as well as the success of recent practical implementations of some of these 
strategies indicate that the performance of such strategies needs to be studied in greater 
detail. While simulation studies that address the different issues mentioned above would 
be useful, creating simulation models and designing experiments to test the impact of 
different parameters might become very complicated. On the other hand, queueing 
models have reasonable computational requirements and can be very useful in providing 
prescriptive insights. Developing analytical queueing models that analyze performance of 
push, pull, and hybrid strategies would also prove useful in understanding how different 
strategies perform under different settings.   
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Appendix 
 
A random variable Y with a standard beta distribution has a density function ),,( βαyf  
given by: 

 

( ) ( ) ( ) 11 1
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1),,( −− −= βα
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B
yf , 0 ,1≤≤ y 0,0 >> βα      

 
where ( )βα ,B  is the beta function defined by the shape parameters α  and β . For 1<α  
and 1≥β , ),,( βαyf  is L shaped while for 1≥α  and 1<β  ),,( βαyf  is J shaped. For 
further details refer to Canavos (1984). The mean ( )YE , variance ( )YVar , and coefficient 
of variation CV (Y) of the random variable y are given by: 
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If X is a random variable with a shifted beta distribution, having a density function f(x), 
on the domain [a, b], then 
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Note: X can be obtained from the standard beta random variable Y by the transformation 
X = a + (b - a)Y. 
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