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In this paper, we consider analytical techniques for predicting detailed performance charac-
teristics of a single shared memory parallel program for a particular input. Analytical models
for parallel programs have been successful at providing simple qualitative insights and bounds
on program scalability, but have been less successful in practice for providing detailed insights
and metrics for program performance (leaving these to measurement or simulation). We develop
a conceptually simple modeling technique called deterministic task graph analysis that provides
detailed performance prediction for shared-memory programs with arbitrary task graphs, a wide

variety of task scheduling policies, and significant communication and resource contention. Unlike
many previous models that are stochastic models, our model assumes deterministic task execution
times (while retaining the use of stochastic models for communication and resource contention).
This assumption is supported by a previous study of the influence of non-deterministic delays in
parallel programs.

We evaluate our model in three ways. First, an experimental evaluation shows that our analysis
technique is accurate and efficient for a variety of shared-memory programs, including programs
with large and/or complex task graphs, sophisticated task scheduling, highly non-uniform task
times, and significant communication and resource contention. The results also show that the
deterministic assumption is crucial to permit accurate and yet efficient analysis of these programs.
Second, we use three example programs to illustrate the predictive capabilities of the model. In
two cases, broad insights and detailed metrics from the model are used to suggest improvements
in load-balancing and the model quickly and accurately predicts the impact of these changes. In
the third case, the model provides novel insights into the impact of program design changes that
improve communication locality as well as load-balancing, via new (but general-purpose) metrics.
Finally, we present results from a comparison of our model and representative stochastic models,
and use these to characterize the conditions under which a deterministic model or stochastic
models would be appropriate.
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1. INTRODUCTION

This paper considers analytical techniques for evaluating the performance and de-
sign alternatives of a shared memory parallel program executing on a shared mem-
ory system either stand-alone or with a scheduler that minimizes interference from
other programs. The focus of this work is on techniques that can be used for a de-

tailed quantitative understanding of parallel performance issues, and for predicting
the impact of program design alternatives that could improve parallel performance.

An appropriate analytical model1 for detailed program performance prediction
can complement measurement and simulation techniques, and can be of significant
practical value for three reasons. First, it can provide an abstraction description of
program behavior that is useful for gaining insight into key program performance
issues. Second, it can provide a more efficient approach for exploring details of
program performance. Third, it can be used to predict the performance of a given
program on future systems or system configurations, and to predict the performance
impact of program design changes before implementing the changes in the code.

Analytical performance models for parallel programs have been widely used for
obtaining qualitative insights and bounds on scalability of various parallel algo-
rithms based on key parameters such as input and system size [Amdahl 1967;
Gustafson 1988; Culler et al. 1993; Alexandrov et al. 1995; Frank et al. 1997]. In
contrast, previous analytic models for more detailed analysis of parallel program
execution time [Dubois and Briggs 1982; Mohan 1984; Kruskal and Weiss 1985;
Thomasian and Bay 1986; Kapelnikov et al. 1989; Ammar et al. 1990; Mak and
Lundstrom 1990; Vrsalovic et al. 1988; Cvetanovic 1987; Tsuei and Vernon 1990;
Harzallah and Sevcik 1995; Xu et al. 1996; Jonkers et al. 1995] have been less
successful, and are also less well understood. In practice, these models either re-
quire a specialized model derivation for each new parallel program, or, as explained
in section 6, they are restricted to particular program synchronization structures,
task scheduling algorithms, or task execution time distributions that can be an-
alyzed. The restricted models either don’t apply or have unknown accuracy for
many parallel applications that one would like to be able to analyze. Thus, practi-
cal tools for detailed performance analysis of parallel programs are currently based
on measurement or simulation rather than on analytical modeling.

One of the key challenges in modeling a parallel program is how to represent vari-
ability in task execution times so as to permit tractable analysis of program perfor-
mance. Many previous models for detailed performance prediction are stochastic
models, i.e., using a stochastic representation of task execution times. This as-
sumption can make it quite challenging to estimate average synchronization costs,
except for programs with simple fork-join synchronization (i.e., alternating serial
and parallel phases) and relatively simple task scheduling. In Section 2.2, we use
results from a previous study of the impact of variability in shared memory pro-
grams to motivate a simpler approach based on using deterministic task execution
times in a detailed performance prediction model. (This approach has also been
used in a few previous and fairly accurate, but restricted, models [Vrsalovic et al.
1988; Cvetanovic 1987; Tsuei and Vernon 1990; Harzallah and Sevcik 1995; Xu

1Unless stated otherwise, we use the term “model” both for an abstract description of program be-
havior and for the solution technique used to compute performance metrics from that description.
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et al. 1996; Jonkers et al. 1995; van Gemund 2003]).

This paper develops and evaluates a conceptually simple and efficient model for
performance prediction of shared memory parallel programs, which is applicable
to a wider range of programs than previous detailed models in the literature. Our
model assumes deterministic task execution times (but permits stochastic tech-
niques for estimating average communication costs and resource contention). The
inputs to the model are: 1) a task graph that describes the sequential tasks and
synchronization behavior of an application (similar to that used by many previous
models); 2) a description of the task scheduling algorithm used within the program
to allocate tasks to threads, and 3) parameters describing the computation time,
communication rates, and shared resource usage behavior of each task. In contrast
to previous models, we use a solution technique based on a modified critical path
analysis of program execution time that incorporates both a precise analysis of task
scheduling and a mean value analysis of communication costs using a separate (usu-
ally stochastic) system model. This solution technique, which we call deterministic

task graph analysis, applies to parallel programs with arbitrary task graphs and a
wide range of static and dynamic task scheduling methods. As shown in section 5,
the proposed model provides detailed insights into the impact of process synchro-
nization and task scheduling on program performance. The model also predicts the
average communication costs (including contention) incurred by individual tasks
and their impact on overall execution time.

We experimentally evaluate the deterministic task graph model using realistic
parallel applications executing on realistic inputs. For the applications we have
examined, we find that the deterministic task graph model is very efficient to eval-
uate even for programs with large and complex task graphs. More importantly, it
is consistently accurate (with typical errors of less than 10% in predicting measured
execution time) because it accurately represents key details of task scheduling, the
order of task execution, non-uniform task execution times, and average communi-
cation costs including contention.

We use three of the programs to demonstrate the use of deterministic task graph
analysis for understanding performance bottlenecks and for predicting the impact of
hypothetical modifications to existing programs. In two cases, insights and specific
metrics from the model suggested improvements in load-balancing and the model
quickly and accurately predicted the improved performance for these changes, as
shown by subsequently modifying the code. In the third case, we developed further
general-purpose metrics to obtain insight into the impact of sophisticated program
design changes that improve communication locality as well as load-balancing. Be-
cause the key abstractions in the model are the task graph, scheduling algorithm,
and system architecture, the model is best suited for predicting the impact of
changes in these components, but not of changes that affect the numerical task
parameters. This limitation is discussed further in the Conclusions.

Finally, one of the contributions of this research has been to evaluate represen-
tative stochastic models from the literature on a set of realistic applications, to
understand the strengths and weaknesses of the stochastic models, and compare
them with the deterministic task graph model. To our knowledge, none of these
models have previously been evaluated using realistic applications. Section 6.3
uses these experimental results to classify programs into three categories, based on
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key characteristics that determine when existing stochastic or deterministic models
might be preferable.

Briefly, we find that stochastic models for programs with simple fork-join syn-
chronization (i.e., alternating serial and parallel phases), are simple, accurate, and
highly efficient, but are only accurate for restricted task scheduling or task time
distributions. In contrast, we find that for the other two classes of programs, which
include four of the five pograms studied in our work, existing stochastic models ap-
pear inaccurate or impractical. In particular, stochastic models that allow complex
synchronization and/or task scheduling algorithms proved expensive or impracti-
cal to solve for realistic programs. These models also showed poor or inconsistent
accuracy, primarily because they all assume exponential task times for enabling
tractable analytic solutions.

The rest of this paper is organized as follows. In Section 2, we discuss key terms
and concepts used in the paper and then motivate our modeling approach. In Sec-
tion 3, we describe the deterministic task graph model. In Section 4, we evaluate
the accuracy, efficiency and applicability of our model. In Section 5, we illustrate
how our model can be used for evaluating program design tradeoffs. In Section 6,
we first review previous analytical models, and then present an experimental com-
parison of representative previous models with our model. Section 7 presents a
summary of the strengths and limitations of the deterministic model and suggests
directions for future research.

2. PRELIMINARIES AND MOTIVATION FOR A DETERMINISTIC MODEL

To provide a framework for discussing parallel program performance models, Table I
defines our usage of a few key terms and concepts. Figure 1 illustrates some of these
terms using the task graphs for five shared-memory programs. These programs are
described in more detail in Section 4.

The task graph provides an abstract but precise representation of the parallelism
and synchronization in a program, for a particular input. Perhaps our most im-
portant goal in choosing these definitions is that, ideally and whenever possible
in practice, the task graph should be a representation of the inherent parallelism
in the program for a particular input, independent of the number of processes or

processors that execute the program. Therefore, we have defined the task graph to
be separate from the task scheduling function, and we have defined a task to be a
unit of work that is executed by a single process in any execution of the program
for a fixed input. For example, the tasks may be the iterations of a loop, and the
scheduling function would specify how the iterations are scheduled onto the pro-
cesses that execute the program. In some shared memory programs, per-process
initialization code would have to be represented as one task per process. These tasks
are often small enough to be ignored without significant loss of accuracy. Using
this simplification, the above property holds for all the task graphs in Figure 1.

The task scheduling function is important because shared-memory programs may
used sophisticated static or dynamic task scheduling algorithms to achieve good load
balance and locality. Common task scheduling algorithms include static allocation
of loop iterations in consecutive or round-robin order, dynamic allocation from a
single task queue, or more complex semi-static policies that balance dynamic load
balancing and locality, such as those described for the application LocusRoute in
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Table I. Definitions of Key Terms

Task A unit of work in a parallel program that is always executed by a single process in any
execution of the program, and such that any precedence relationship between a pair of tasks
only arises at task boundaries.

Task Graph A directed acyclic graph in which each vertex represents a task and each edge
represents a precedence between a pair of tasks. A task can begin execution only after all its
predecessor tasks, if any, complete execution.

Process A logical entity that executes tasks of a program. Also the entity that is scheduled onto
processors. In a multithreaded program, this corresponds to a single thread.

Task Scheduling Function For a given set of ready tasks and a given idle process, a function
that specifies which of the tasks will be executed next by that process.

Condensed Task Graph (For a program and a particular allocation of tasks to processes) A

directed acyclic graph in which each vertex denotes a collection of tasks executed by a single
process, and each edge denotes a precedence between a pair of vertices (i.e. all the tasks in
the vertex at the head of the edge must complete before any task in the vertex at the tail
can begin execution).

Fork-join Task Graph A task graph consisting of alternating sequential and parallel phases,
where each parallel phase consists of a set of independent tasks and ends in a full barrier
synchronization [Towsley et al. 1990].

Series-Parallel Task Graph A task graph that can be reduced to a single vertex by repeated
applications of series reduction or parallel reduction: Series reduction combines two vertices
V1 and V2 into a single vertex if V1 is the only parent of V2 and V2 is the only child of V1.
Parallel reduction combines 2 vertices V1 and V2 into a single vertex if V1 and V2 have exactly
the same parents, as well as exactly the same children [Hartleb and Mertsiotakis 1992].

Section 5.3.

The condensed task graph is a compact version of the task graph in which con-
secutive tasks executed by a single process between synchronization points are ag-
gregated into a single vertex. This can reduce task graph size greatly for some
programs, but it can only be used when the allocation of tasks to processes can
be precomputed (such as for static task scheduling algorithms). It can also exac-
erbate the errors due to the exponential task assumption [Adve 1993], as seen in
Section 6.2. Finally, fork-join and series-parallel task graphs are restricted classes
of task graphs with simplified synchronization structures (the fork-join class is a
subset of the series-parallel class). Many previous analytical models have been re-
stricted to one of these classes of graphs. Figures 1 (a)–(c) are fork-join graphs,
while (d)–(e) are general non-series-parallel graphs.

We believe the task graph and scheduling function together provide an appro-
priate level of abstraction for detailed quantitative analysis of parallel program
performance. It is a less detailed representation than the actual program, yet pro-
vides sufficient information for evaluating many important program performance
issues. Furthermore, most previous analytic models for detailed performance pre-
diction are based on graph models that can be viewed as equivalent to either the
task graph or the condensed task graph.
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Fig. 1. Task Graphs for Five Shared Memory Applications.

START and END denote dummy tasks marking the entry and exit for each graph.
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2.1 A Framework for Parallel Program Performance Prediction Models

Throughout this paper, unless stated otherwise, our discussions of previous models
focuses on models for detailed performance prediction and not on simpler paramet-
ric models, as motivated in the Introduction. Section 6 and [Adve 1993] discuss in
more detail how the goals of simpler models complement our work.

A number of models for parallel program performance prediction (including our
own) have been constructed as two-level hierarchical models and, in fact, all the
models we discuss can be cast into the same hierarchical framework. The higher-
level component in this hierarchy represents the task-level behavior of the program,
namely task scheduling, execution and termination, and process synchronization.
Assuming individual task execution times are known, this model component com-
putes the overall execution time of the program and perhaps other metrics as well.
The individual task times may be represented either as deterministic or stochas-
tic quantities. The key challenge in developing a good overall model usually lies
in predicting synchronization costs and task scheduling behavior, particularly for
programs with widely varying task times or non-fork-join task graphs.

Individual task execution times (or their statistics) are computed from the lower-
level model component. This component represents system-level effects and all
shared resources, e.g., communication costs, network contention, lock contention,
etc. This component can be an analytical model, typically a queueing network
model of the system, or can use direct measurement or simulation. The solution of
this model component must account for the effect of task precedences and schedul-
ing. For example, the most general previous stochastic models solve the queueing
network for each distinct combination of tasks in execution [Thomasian and Bay
1986; Kapelnikov et al. 1989], while some models uses additional parameters com-
puted from the higher-level model to account for this effect approximately [Mak
and Lundstrom 1990; Liang and Tripathi 2000].

2.2 Motivation for a Deterministic Model

We use the terms “deterministic model” and “stochastic model” respectively for
models that represent the total execution time for each task as a deterministic or a
stochastic quantity. The possible reasons for choosing one or the other are discussed
below. Note that stochastic task times should not be used to capture the behavior
of a program for different inputs, since the statistics of these task times affect
synchronization costs within a single execution. In this work, we focus on models
for predicting program performance for a particular input (as represented by a single
task graph). Scalability models such as Vrsalovic et al. [Vrsalovic et al. 1988] can
be used to study behavior across different inputs directly. Alternatively, behavior
across different inputs can be captured by constructing separate task graphs and
then solving the model separately for different inputs (which is not difficult for a
model that can be solved in tens of seconds or less).

A stochastic model represents a program (explicitly or implicitly) as a stochastic
process in which each state is some combination of tasks in execution. Average
synchronization costs in such a model represent the average across all possible se-
quences of task execution, and the number of possible sequences is extremely large.
Therefore, except for simple task graph structures where closed-form estimates of



8 · V. S. Adve and M. K. Vernon

synchronization cost are possible, computing average synchronization costs with
a stochastic model that assumes arbitrary distributions of task times can be ex-
tremely complex. Thus, all previous stochastic models we are aware of are either
restricted to simple task graph structures, or assume exponentially distributed task
times for analytical tractability. A quantitative evaluation of the accuracy and ef-
ficiency of some representative examples of such models showed that models in the
latter class are expensive to solve even for relatively small programs, and also have
poor or inconsistent accuracy due to the assumption of exponential task execution
times [Adve 1993]. These results and a comparison with our model are presented
in Section 6.

The potential complexity of stochastic models leads us to consider a deterministic

model, in which the higher level model component assumes deterministic task exe-
cution times. The key advantage of the deterministic assumption is that it implies
a unique execution sequence for the program, and the delay at each synchronization
point in the sequence can be calculated as simply the numerical maximum of the
execution times of the synchronizing processes.

A few previous analytical models assume deterministic task execution times [Vr-
salovic et al. 1988; Cvetanovic 1987; Tsuei and Vernon 1990; Harzallah and Sevcik
1995]. These models have each been shown to be both accurate and efficient for
several parallel programs to which they apply, and the deterministic assumption has
significantly simplified the analysis in the models. However, these previous models
too are only useful for programs with simple fork-join synchronization, as explained
in Section 6. The previous authors also did not provide any direct justification for
the deterministic assumption, which has some potential limitations.

There are two fundamental limitations of deterministic models. One limitation
is that to model a parallel program phase with unequal task execution times, a
deterministic model would require a detailed specification of individual task times,
whereas a stochastic model could use a simple set of statistical parameters such
as the mean and variance. Therefore, stochastic models would be preferable when
only simple statistics about task times are known. Estimating such statistics can be
difficult, however, for unstructured task graphs without clear parallel phases, e.g.,
Polyroots in Figure 1(d)). Furthermore, current stochastic models that permit
such statistics (a mean and variance) are restricted to fork-join programs with
limited types of task scheduling, as described in Section 6.

A second fundamental limitation of a deterministic model is that it cannot ac-
count for any possible variability in the execution times of individual tasks, which
could cause the model to underestimate synchronization costs. There are three
sources of such variability in individual task execution times. First, variability
can arise due to multiprogramming of the processors. The impact of this variabil-
ity must be estimated during the analysis (e.g., as resource contention within the
system-level model), and incorporated in the higher-level model. Such analysis is
outside the scope of our work, i.e., we focus on a program executing stand-alone or
with a scheduler that minimizes interference from other programs (e.g., one that
gives the program a dedicated partition of a multiprocessor system).

The two other sources of variability are the variability in the communication costs
of the tasks due to resource contention, and inherent variability in the computation
times of the tasks. Both of these have been cited as arguments for assuming non-
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deterministic task times [Kruskal and Weiss 1985; Dubois and Briggs 1982].
In a recent study, we used an analytical model combined with detailed program

measurements to study the impact of variable communication delays on task exe-
cution times in shared-memory parallel programs [Adve and Vernon 1993]. That
study showed that in shared-memory programs with coarse-grain or fine-grain tasks,
random delays due to communication and contention introduce negligible or very
small variance into the execution time of a process between synchronization points.
In other words, the principal effect of such random delays is to increase the mean
execution time of the process, while the variance in execution time remains es-
sentially unaffected. This holds for large-scale shared-memory systems as well as
smaller single-bus systems. Intuitively, this result holds because a large number
of communication delays (e.g., cache misses) occur in a typical interval between
synchronization points of a shared-memory parallel program. While the individual
delays may have significant variance and therefore fluctuate considerably around
their mean values, the fluctuations of a large number of such delays tend to cancel
each other out.

Second, some programs exhibit variability in the task computation times them-
selves, even for a fixed input. For example, programs with data races that signifi-
cantly affect the computation may exhibit such characteristics. A stochastic model
could represent variability in task computation times (as well as variability due to
communication delays) but computing model input parameters that capture these
sources of variability would be extremely hard. Even in such programs, a deter-
ministic model can provide results about one particular execution and thus can be
useful for program performance studies. In fact, the program LocusRoute exhibits
this behavior, and we study the accuracy and usefulness of our model for this pro-
gram is studied in Sections 4 and 5. In many such cases, however, we expect the
overall performance impact to be relatively small (as with LocusRoute).

Based on these arguments and experiments, we hypothesize that variability in
individual task execution times will produce relatively small errors in modeling
accuracy, and the potential simplicity of a deterministic model would make such an
assumption worthwhile. We represent each task execution time as a deterministic
quantity equal to the sum of the CPU requirement of the task and the mean total
overhead experienced by the task.

3. A DETERMINISTIC PERFORMANCE MODEL FOR PARALLEL PROGRAMS

In this section we propose a two-level hierarchical model in which the lower level
model component is a standard, possibly stochastic, system resource usage model,
but the higher level model component assumes deterministic task execution times.
Section 3.2 describes the higher-level (or task-level) component of our model. Sec-
tion 3.3 describes an example lower-level (or system-level) component for the Se-
quent Symmetry multiprocessor.

3.1 Inputs to the Model

The model inputs are defined in Table II. N and Parents(i) together define the
task graph. We assume without loss of generality that task 1 is the only task
with no predecessors. If more than one such task exists in the program, we can
add a dummy task with zero processing time as a predecessor to all such tasks.
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Table II. Inputs to the Deterministic Model

Parameter Explanation

N Number of tasks
Parents(i), 1 ≤ i ≤ N List of direct predecessors for each task i

(assume task 1 is the only task with no predecessors)
Ti, 1 ≤ i ≤ N Fixed mean CPU demand for each task i

Mi,j , 1 ≤ i ≤ N , 1 ≤ j ≤ Nres Nres resource usage parameters for each task i

Sched(L, p) Scheduling function: specifies which task from ready task

list L (if any) is executed next by idle process p

P Number of processors

The parameters Ti and {Mi,j : 1 ≤ j ≤ Nres} together characterize the resource
demands of each task, i. The parameter Ti represents the CPU demand of task
i. In practice, it can also include other components of the task execution time
that are fixed independent of the state of the program, if those components can be
estimated separately without using the system-level model, and if the CPU is not
relinquished by the task (e.g., I/O operations that do not relinquish the CPU). The
set of parameters {Mi,j : 1 ≤ j ≤ Nres} is the set of resource usage parameters
that are used by the lower-level model. The number and type of resource usage
parameters depend on the choice of system-level model used, and on the shared
resources to be modeled. Some possible examples of resource usage parameters
for a cache coherent shared memory system are a task’s cache miss rate and the
fraction of cache misses that cause write-backs for dirty cache lines.

In the table, we have represented the task scheduling algorithm in the form of a
scheduling function Sched(L, p) which, given a list of ready tasks, L, and an idle
process, p, specifies which task, if any, will be executed next by process p. For
example, for dynamic allocation from a single task queue, process p simply gets the
first task in L. This definition of a scheduling function is fairly general but is not
practical to use as an input representation in practice. Instead, our implementation
of the model defines a common scheduling framework that, although not universal,
is sufficient to describe a large class of static, semi-static and dynamic scheduling
policies used in shared-memory codes today [Adve 1993]. This is simply a user
convenience; the model and solution algorithm are not limited to these policies.

Henceforth, we assume that only one process per processor is used during the
execution of the program, as in many parallel scientific and engineering applications
today (using our definition of the term “process” in Section 2). In [Adve 1993], we
discuss simple extensions to model multiple processes per processor.

3.2 The High-Level Model of Task Execution

The high-level model component in deterministic task graph analysis essentially
performs three key functions:

(1) a simple graph traversal algorithm to enforce task precedences and to track the
execution state of individual tasks and processes;

(2) evaluating the scheduling function to model the impact of task allocation (in-
cluding task execution order) when there are fewer processors than the maxi-
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mum parallelism available in the task graph; and

(3) invoking a separate lower-level (i.e., system-level) model to compute the impact
of communication costs and resource contention.

Figure 2 presents the complete model solution algorithm, including the invocations
of the lower level system model. Before describing the complete model, we first
describe a basic but useful algorithm with no lower-level model, i.e., considering
only the task graph and scheduling, and ignoring other costs such as communication
and resource contention. The basic algorithm can be determined from the figure by
ignoring the first highlighted step which computes the values Di (defined below),
and by assuming Di ≡ 0, 1 ≤ i ≤ N in the other three highlighted steps.

The Basic Model Ignoring Resource Contention

Assume that the fixed CPU demand Ti completely captures the total execution time
of task i. Then, the lower-level system model is not needed. In section 4 we give two
examples of programs for which this basic model is sufficient to provide accurate
and detailed performance prediction on the Sequent Symmetry. In this case, for
a particular number of processors and a deterministic scheduling algorithm, the
program has a unique execution sequence, i.e. a unique sequence of times at which
particular tasks begin and complete execution. Furthermore, a simple algorithm
can be used to compute the sequence of task initiations and terminations as well
as the exact execution time of the program.

Let E denote the set of executing tasks, L the list of ready tasks, and ri the
remaining CPU requirement of task i. We initialize ri to Ti, E to contain task 1
and L to be empty. Essentially, the basic algorithm consists of repeating steps 2,
3, 4 and 5 at most N times (with Di ≡ 0):

2) Delete one or more tasks with the minimum remaining CPU demand from E .

3) Update remaining CPU demand ri of other tasks i ∈ E .

4) Find any newly ready tasks (viz., unfinished tasks whose predecessors have all
completed) and add them to L.

5) For each idle process p, apply the scheduling function to determine which ready
task, if any, should be scheduled on the process.

This basic algorithm, namely computing the unique execution sequence for a
program, provides the basis for deterministic task graph analysis. In the extreme
case of an unlimited number of processors, the algorithm simply computes the
critical path in the graph, which corresponds to how programmers reason about
program execution time. The existence of such a simple underlying model which is
exact under the stated assumptions is a key benefit of the deterministic approach.

Even though the basic model ignores important sources of (variable) overheads
such as resource contention, it can still be of practical use. Two example scenarios
where it can be useful are performance tuning of programs with negligible or small
communication and mutual exclusion overheads (e.g., Polyroots and DynProg in
Section 5.1), and approximate prediction of the impact of changes in parallel struc-
ture and scheduling for a program, ignoring such overheads.
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Key variables used in the algorithm

E Current set of executing tasks
L Set of ready tasks waiting to be scheduled
ri Remaining CPU requirement of task i

Di Total overhead incurred by task i, if task i completes before
other tasks in E

ctri Number of parents of task i that have not completed yet
Telapse Time until next task completion

Inputs All inputs listed in Table II

Algorithm

ri ← Ti, 1 ≤ i ≤ N /* Remaining cpu requirement for task i */
ctri ← #Parents of i, 1 ≤ i ≤ N

E ← { 1 } /* Initial set of executing tasks */
L← { } /* Initial set of ready tasks waiting to be scheduled */
Ttotal ← 0 /* Elapsed time since start of program */

Do until E empty { /* At most N times; exactly N if
no two tasks complete simultaneously */

1) Compute Di(E, {Mi,j}, {rj : j ∈ E}) ∀ i ∈ E using the lower-level system model

2) Telapse ← min{ri + Di : i ∈ E} /* Time till next task completion */

C ← {j ∈ E : rj + Dj = Telapse } /* Set of tasks that complete next */

E ← E − C

3) Ttotal ← Ttotal + Telapse

ri ← ri − Telapse ×
ri

ri+Di

, ∀i ∈ E

4) For each task x ∈ C
For each immediate successor c of task x

ctrc ← ctrc − 1
If ctrc = 0 /* I.e., if all parents of task c have completed */

L← L
⋃
{c} /* Add task c to list of ready tasks */

5) For each idle process p

j ← Sched(L, p)
if j > 0

L← L− {j}
E ← E

⋃
{j}

}

Total Program Execution Time = Ttotal

Fig. 2. Complete Algorithm for Deterministic Task Graph Analysis
(The basic model can be derived by setting Di ≡ 0 in the highlighted steps.)
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The Complete Model Including Overhead Costs

Many programs (including three of the applications we study in Section 4) make
significant use of shared resources such as the communication network or software
locks, and the model must account for the cost of this resource usage. Furthermore,
when resource contention is significant, these costs will depend on the number of
processors and/or the specific set of tasks that are executing concurrently, and
this dependence must be accounted for in the model. In deterministic task graph
analysis, the mean overheads are computed by a lower level (generally stochastic)
system model, and are represented as deterministic quantities that are added to the
fixed CPU demand in the higher level model. Thus, the task execution sequence
in the model is still unique. Therefore, other than computing and incorporating
the mean overhead costs, the same four steps outlined in section 3.2 can be used
to compute the overall execution time of the program. The four changes to the
algorithm to compute and incorporate the mean overhead costs are highlighted
with boxes in Figure 2.

In general, the mean communication overhead for each executing task must be
computed for each combination of tasks in execution, i.e., for each possible set E .
Step 1 in the figure invokes a system-level model to compute the mean communica-
tion overhead for all executing tasks in E . The overhead, Di(E , {Mi,j}, {ri : i ∈ E}),
represents the total overhead incurred by task i if the task had run to completion

while all other tasks in E were in execution. Unlike stochastic models, the number
of sets E in an evaluation of the deterministic model is at most N (because the set E
is fixed between task completion instants, and there are at most N such instants in
the unique execution sequence). The calculation of Di is described in Section 3.3.

Given Di, ∀i ∈ E , the total remaining execution time of each task i, assuming no
state changes, is simply ri + Di. The time until the next task completion instant,
Telapse, is the minimum remaining task execution time over all executing tasks.
This is the second modification to the basic algorithm.

Since the overheads can change in each new state, it is important to recompute
the remaining fixed CPU demand at each completion instant, for each task that
does not complete. We assume that the CPU demand for each task i diminishes
at a constant rate for each state of the program, so that the rate in the current
state is given by ri

ri+Di

. Then, for each such task i, an additional CPU time of
Telapse ×

ri

ri+Di

is completed in the interval Telapse. We subtract this product from
the previous value of ri. This is the final modification to the basic algorithm.

This equation, as well as the use of the input resource usage parameters for all
solutions of the lower level model, assumes that resource request rate and service
time parameters are fixed throughout the lifetime of a task. “One-time” overheads,
such as the delay to obtain a lock on a task queue and retrieve a task, are not
subject to this assumption. Such delays are computed only once for each task i,
in the state when task i is added to E , and the delays are included in ri. For our
experiments, we modeled such a lock as an M/M/1//K queue with K set to the
mean number of non-idle processes since the start of execution, and the arrival rate
set to the mean interval between task completions since the start of execution.

Finally, a desirable and potentially useful property of deterministic task graph
analysis is that it usually gives exactly the same results for the condensed task graph
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(Table I) as for the original task graph, in cases where a condensed graph can be
constructed. This is straightforward to see in the case of the basic model, and is
true for the complete model if the tasks that are condensed into a single node have
identical resource usage parameters. (This assumes that lock overheads, which are
incurred once per task, are either negligible or that lock contention is small so that
the total lock overhead can be estimated once at the beginning of each condensed
task.) Our experiments with statically scheduled programs have corroborated this
claim. This property could be useful because, when the condensed graph can be
computed, using it would make the model solution significantly more efficient for
programs with very large task graphs.

Solution Complexity of The Basic and Complete Models

The measured solution times for the basic and full model for several realistic pro-
grams are presented in Section 4. Here, we focus on their computational complexity.

For a graph with N nodes, E edges, and maximum parallelism Pmax, and with
specific assumptions about the scheduling function discussed below, the overall
complexity of the basic algorithm is O(NPmax + E). (Pmax is defined as the max-
imum number of active processors in any execution of the program for the input
corresponding to this task graph.) This follows from the following observations.
For steps 2 and 3 of the algorithm, the size of E is never greater than Pmax, and
for step 4, each edge in the graph needs to be examined exactly once in the overall
solution. The cost of step 5 depends on the cost of evaluating the scheduling func-
tion. In any case, at most NPmax evaluations of the function need to be made (or
N · max(P, Pmax), if values of P > Pmax were of interest), and at most N of these
will successfully find a task from L to schedule. For many common scheduling func-
tions, including the typical static and dynamic task scheduling schemes employed
in most of the applications considered in this paper, the cost of each evaluation is
O(1). More complex functions such as some semi-static scheduling schemes may
have a cost that is O(n) for a ready-list containing n tasks. Nevertheless, for many
such functions it can be detected in O(1) time that no ready task is available for a
particular free process p. Therefore, at most O(N) choices from the ready-list will
have a cost that is greater than O(1), and the cost of each will be O(Pmax). This
gives the same overall complexity, O(NPmax + E). This category includes all the
scheduling functions with cost greater than O(1) studied in this paper, namely those
in Section 6.3. In practice, we believe that the basic model should be extremely
efficient for any practical task scheduling method.

The extra solution complexity of the complete model is due to the cost of com-
puting Di, i ∈ E in the first highlighted step. In each iteration, this added cost
includes O(Pmax) for obtaining system-model inputs and outputs corresponding to
the tasks in E , plus the cost of solving the system-level model. The latter is usually
a queueing network model where each active process is represented as a customer.
Thus, if the solution cost is O(m) for a queueing network with m customers, the
added complexity due to the additional step will be O(Pmax) per iteration and the
complete model would have the same solution complexity as the basic model, i.e.,
O(NPmax + E) overall. For example, the required condition would be satisfied by
using the standard Approximate Mean Value Analysis technique (which has proved
highly successful for parallel system performance analysis [Vernon et al. 1988;
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Willick and Eager 1990; Adve and Vernon 1994]), and assuming that the number
of queueing centers and the number of iterations per MVA solution are small.

Nevertheless, a naive implementation of the system-level solution step can dom-
inate the overall solution time of the model. In particular, reducing the number
of times the system-level model must actually be solved is usually worthwhile.
In [Adve 1993], we discuss techniques to minimize model solution time in practice.
The most important one is memoization of the system-level model outputs to avoid
solving the system-level model multiple times with the same inputs (which could
happen very often otherwise).

3.3 An Example System-Level Model for the Sequent Symmetry

The appropriate choice of system-level model for a particular study depends on
the system under consideration, and on the required accuracy. Therefore, unlike
many previous authors [Thomasian and Bay 1986; Kapelnikov et al. 1989; Mak
and Lundstrom 1990; Harzallah and Sevcik 1995; Liang and Tripathi 2000], we
do not specify any particular queueing network model to be used at the system
level. In modeling applications on the Sequent Symmetry multiprocessor, we used
a system-specific queueing model for the bus and shared memory system (based
largely on a model presented in [Tsuei and Vernon 1992]) to calculate communica-
tion overhead costs fairly precisely. To validate our model, we compared the model
predictions to direct hardware measurements of remote request latencies for these
applications, and found that the model predicted mean response times within 10%
of the measured values in most cases, and within 18% in all cases tested. This
queueing network model is briefly described here.

The Sequent Symmetry bus uses an invalidation-based snooping cache protocol.
The possible types of remote communication requests on the bus are read (r),
read + write back (rwb) and invalidate (inv). For either type of read request, the
required cache line is supplied either by main memory or by a remote processor’s
cache. Thus, we use the following parameters (assumed to be the same for each
active processor) to characterize remote communication behavior on the Sequent:

λbus Mean request rate to bus per active processor
finv Fraction of requests that are of type invalidate
frwb Fraction of read requests that are of type read + write back
pcache Probability that a read request is served by a remote cache

The values of these four parameters are specified for each task i as the resource
usage inputs {Mi,j} to the system-level model.

Our system-level model (shown in Figure 3) is a closed single-chain queueing
network model with Pactive = |E| customers, the bus and the two memory modules
represented as queueing centers with deterministic service times, and the caches
and processors represented as infinite-server (delay) centers.2 We use a single-chain
model to avoid having Pactive classes of customers, in order to permit solutions
with complexity of O(|E|). Using a single-chain model requires common (average)

2In a single-chain network, all Pactive customers have identical visit ratios and service time statis-
tics. The processor and caches are single-class queues. The three types of bus requests and two
types of responses are modeled as separate customer classes at the bus queue, and read and write
memory requests use two separate customer classes at each memory queue [Lazowska et al. 1984].
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Fig. 3. Queueing network model for Sequent Symmetry multiprocessor system

values of λbus, finv, frwb and pcache for all the customers. We compute λbus as
the average of the values of all active tasks, i.e., λbus = Σi∈Eλbus(i)/Pactive, and
the other three as weighted averages, weighted by λbus(i). For example, finv =
Σi∈E(finv(i) × λbus(i))/λbus.

The equations for the response times and queue lengths at these queueing cen-
ters are described in [Tsuei and Vernon 1992]. The equations use heuristic approx-
imations to capture two protocol features, namely, that read responses must be
returned in the order that the original requests were issued on the bus, and that
read responses have non-preemptive priority over processor requests.

We make a key simplification in the model to capture a third key feature of the
bus protocol, viz., at most three read requests can be outstanding at any time
from all processors, with at most one per processor. Tsuei and Vernon used a
separate Markov chain to model the different combinations of requests that could
be outstanding, and solve the above queueing network model for each state to obtain
the state transition rates of the Markov Chain. Instead, we directly capture this
behavior in the queueing network model by using a flow-equivalent service center
(FESC) [Lazowska et al. 1984] to capture the average blocking times due to this
protocol feature, and we need to solve the queueing network only once. The FESC is
an additional delay center in the queueing network whose service time is a function
of the customer population (see Figure 3). For n ≥ 4, read requests visit the delay
center with probability pblock(n) before using the bus, and the mean delay time per
visit to the delay center is Rblock(n). The parameters pblock(n) and Rblock(n) of
the FESC are estimated by solving a separate M/M/3//n queue [Gross and Harris
1985] for 4 ≤ n ≤ Pactive, during the overall network solution. The mean service
time in this queue is set equal to the total mean residence time of a read request
from the time it is transmitted across the bus until the time the response is received
at the processor at customer population n − 1, ∀n ≥ 4. These residence times are
intermediate results of the Mean Value Analysis solution described below.

We used customized Mean Value Analysis to solve the queueing network, which
gives fairly accurate mean response times and other metrics (typical errors are less
than about 10–20%) even with the approximations above [Vernon et al. 1988;
Willick and Eager 1990; Adve and Vernon 1994]. Because we need the residence
times of read requests ∀n ≥ 3 (used as inputs to solve the FESC), we used the
exact MVA solution algorithm which is a recursion on the customer population n
from n = 1 up to n = Pactive, instead of more common iterative approximations
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such as Bard-Schweitzer [Lazowska et al. 1984]. The M/M/3//n queue is then
solved once at the start of each step of this recursion, using the residence time
computed in the previous step. This is fast but grows as O(n), introducing an
O(|E|2) term in the complexity of the overall queueing network solution with |E|
customers. This contribution was negligible for our target system since |E| < 20. A
more approximate queueing network could be used for large systems, to ensure an
O(|E|) solution, in order to preserve the O(NPmax + E) complexity of the overall
deterministic model.

The solution of the overall queueing network gives the average response time for
bus requests, R. Then, we calculate the delay for each executing task i ∈ E as
Di = ri ×λbus(i)×R. Thus, a single solution of the system-level queueing network
model yields Di for all i ∈ E .

3.4 Deriving and Specifying Model Inputs in Practice

The issues that arise in deriving the model inputs for a real program in practice
are discussed briefly below and described in more detail in [Adve 1993]. Manually
constructing a task graph and identifying the scheduling for a program is generally
quite straightforward with a basic understanding of the parallelism, synchronization
structure, and work scheduling in the program. This typically took a few hours to
a day for realistic, moderate-size programs not written by us, including the most
complex one, Polyroots. (Furthermore, this exercise itself can provide valuable
insights into parallel program structure and performance issues.) The task CPU
demands can usually be measured using software timers. Estimating resource usage
parameters like cache misses accurately can be more challenging, but they can be
estimated approximately using on-chip counters that are becoming available on
many general-purpose processors [Browne et al. 2000]. For the validations in this
paper, we directly measured the communication parameters using a hardware bus
monitor, in order to minimize this as a source of error and permit precise evaluation
of model accuracy.

Some research compilers also construct task graphs or equivalent information
automatically for different types of parallel programs, and such support could be
used both to extract task graphs and to automate the process of measuring the
numerical model input parameters [Browne et al. 1995; Adve and Sakellariou 2000].

The deterministic task graph model can also be used to predict the effect of
some program or system changes on program performance before implementing the

changes in the code, simply by modifying the task graph (for certain algorithmic
changes), task scheduling function, or the lower-level system model. We show three
examples of such studies in Section 6. Some program or system changes, however,
may affect the numerical task time and resource usage parameters. Estimating the
change in task CPU times approximately is often not difficult, but communication
parameters (e.g., cache misses) can be more challenging to predict. This limitation
(which is shared by previous detailed models for parallel program performance
prediction) is discussed further in the Conclusions.

4. EVALUATION OF THE DETERMINISTIC TASK GRAPH MODEL

In this section, we evaluate the efficiency and accuracy of the deterministic task
graph model for several realistic applications. For this study, we use five shared-
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memory programs on a Sequent Symmetry multiprocessor. The principal common
features of the applications are that all five are scientific and engineering applica-
tions written for shared-memory systems, they are written to spawn one process
per processor during execution, and they do not have significant I/O requirements.
All five were written by others, either as benchmarks or for real use. The task
graphs for the applications are shown in Figure 1 and the chief characteristics of
the applications relevant to this study are listed in Table III. These are discussed
in more detail along with the results for each application in Section 4.3.

Two of the applications that we study (DynProg and Polyroots) have negligible
communication costs and the basic deterministic model suffices for these programs,
except if lock contention were high for Polyroots. The other three applications
(MP3D, PSIM and LocusRoute) have significant communication overhead and we
compare the accuracy of the basic and full models for these programs.

4.1 Methodology Used in the Study

Our experiments were conducted on a 20-processor Sequent Symmetry S-81. We
manually wrote scripts to generate each of the task graphs for given input parame-
ters, based on an understanding of each program structure. The task CPU require-
ments were measured accurately using microsecond timers provided on the Sequent
Symmetry. To minimize bus contention during these measurements, they were
made while executing stand-alone on 1 processor. For the three applications that
have significant communication overhead, the mean communication costs on one
processor predicted by the system model were subtracted from the measured CPU
requirements so that these costs are not counted twice in the model predictions.
(This would not be required if actual CPU demands are estimated analytically
rather than measured, as described in Section 3.) The specific scheduling func-
tions used in each program are explained along with the results for the individual
programs.

In measuring the resource usage parameters (listed in Section 3.3), we assumed
the parameter values were identical for all the tasks in a given program phase. The
average values for each phase were measured directly in hardware to permit precise
model validations. A more difficult issue is how these parameter values vary when
the program is executed on different numbers of processors. For the validations on
a small system such as the Sequent (with only 20 processors), we assumed that the
behavior would stay approximately constant for 2 or more processors, and that the
behavior on 1 processor could be substantially different. We tested this assumption
for the mean communication rate in MP3D and PSIM, and found it to be approxi-
mately true for both programs.3 Alternatively, either separate measurements or a
separate analytical model would have to be used to derive the appropriate resource
usage parameters for different numbers of processors, as discussed in Section 3.4.

The accuracy of model predictions were tested by comparing against actual mea-
sured program execution times for each program, measured separately on different

3Specifically, we measured the mean bus inter-request time in a phase, for different numbers of
processors. For the dominant phase of MP3D, for example, the values we obtained on 1, 2, 4, 6, 8,
10, 12 and 16 processors were 539, 443, 404, 418, 415, 429, 447 and 452 bus cycles respectively.
Similarly, for the larger phase of PSIM, the values obtained on 1, 4, 8 and 16 processors were 79,
75, 72 and 78 respectively.
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Table III. Applications Evaluated using the Analytical Models

Name Description Task Graph Task Scheduling Perf. Losses

MP3D

(C; 1858

lines)

Particle simula-
tion in rarefied

fluid flow

Fork-join: five par-
allel loops per iter-

ation; one loop has
more than 90

Static allocation
of loop it-

erations in each
loop.

Cache misses;
Small load

imbalances

PSIM

(PCP;
2495
lines)

Multistage
inter-
connection net-
work simulation

Fork-join: two paral-
lel phases per itera-
tion (6 parallel loops
per phase with widely
differing granular-
ities); barrier at the

end of each phase

Static allocation
of loop iter-
ations; processes
“split” between
different parallel
loops

Cache misses;
load imbal-
ances due to
process
splitting

Locus

Route

(C; 7199
lines)

Wire routing in
VLSI stan-
dard cells (Com-
mercial quality)

Fork-join: two par-
allel phases; widely
varying task sizes per
phase

Dynamic alloca-
tion with single
FIFO task queue
in each phase

Cache misses;
load imbal-
ance due to
task skew

Poly-

roots

(C; 3396
lines)

Compute
roots of a poly-
nomial with ar-
bitrary precision
(integer) coeffs.

Non-series-parallel :
unstructured graph
with widely varying
task sizes

Dynamic alloca-
tion with single
FIFO task queue

Load imbal-
ances; limited
overall
parallelism

DynProg

(C; 2691
lines)

Aligning
2 gene sequences
via dynamic
programming

Non-series-parallel :
pipelined array of nu-
merous small but uni-
form tasks;

Static round-
robin allocation
of rows of tasks
to processes

Limited
parallelism at
start and end

numbers of processors. All measurements above were made when no other user
programs were actively using the system.

4.2 Solution Efficiency of the Model

For the five programs studied in this paper, for the larger of the two inputs listed
for each code in Figure 1, the task graphs ranged in size from 348 to 40963 tasks.
We used the basic deterministic model for two of the programs, DynProg and
Polyroots, and the full model for the other three programs. For many combi-
nations of programs and input sizes, the model solution is virtually instantaneous.
Overall, the two most expensive programs to analyze were PSIM and DynProg, where
the task graph with the larger input had 40963 and 32003 tasks respectively. For
the former, which is a fork-join program, the model could be solved in under 9 sec-
onds on a DECstation 5000/125, and required less than 2.6 megabytes of memory.
The latter case required the longest solution time (30 seconds) and the largest mem-
ory capacity (about 6 megabytes) of all the results presented in this paper. Even
though PSIM had the larger task graph, it was less expensive than DynProg because
its graphs are significantly simpler. In particular, the graphs of PSIM contain large
groups of tasks with similar behavior that can be manipulated more efficiently,
because of simple optimizations in the implementation [Adve 1993]. Overall, we
found that the deterministic task graph model is quite efficient for programs with
moderately large and complex task graphs.
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(a) Speedups for large input (T (1) = 9.9 sec) (b) Error in predicted execution time

Fig. 4. Predicted and measured performance of PSIM

4.3 Accuracy of the Model

Results for PSIM

PSIM is an interconnection network simulator from Lawrence Livermore Laboratory,
written in PCP, a parallel extension of C that supports efficient nested forking
within programs [Brooks III 1988]. It is a fork-join program with two parallel
phases per iteration, with each phase effectively ending in a barrier. Each parallel
phase consists of 6 parallel loops with no intervening barriers (Figure 1(b)). The
tasks correspond to individual loop iterations. The tasks of each loop are statically
allocated in cyclic order to the processors that execute the loop. Two of the six
loops are executed by all processors. Of the other four loops (two pairs), one pair
of loops is executed only by the even numbered processors while the other pair
is executed only by the odd numbered processors (unless, of course, only a single
processor is being used). This static scheduling policy can be concisely described
in our scheduling framework mentioned in Section 3.1. The work per task (loop
iteration) is much larger in some loops than in others.4 The processor-splitting
between loops is done in a way that ensures the load is well balanced when P is
even, but significant load imbalance occurs when P is odd.

We consider two input networks for PSIM, containing 1024 and 4096 processors
respectively. Figure 4 shows the percentage errors in predicted execution time for
the two input sizes from the basic and full models, and the measured and predicted
speedups for the larger input (including the predicted speedup ignoring communi-
cation overhead, using the basic model). The predicted speedups are relative to
the predicted execution time on P = 1. The caption shows the measured execution
time on P = 1 (denoted T (1)).

The full deterministic task graph model is consistently accurate for this pro-
gram, yielding execution time predictions within 4% of the actual measured values.
Thus, even the widely varying task times of PSIM are accurately represented (along

4In fact, for a particular input, we observed that the mean task times in the six parallel loops
of the second phase were 44, 677, 7, 473, 7 and 42 microseconds respectively, with very little
variation around the mean within each loop.
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(a) Speedups for large input (T (1) = 155 sec.) (b) Error in predicted execution time

Fig. 5. Predicted and measured performance of MP3D

with mean communication costs) by a set of deterministic values. Furthermore,
the model precisely tracks the variations in execution time between odd and even
numbers of processors, because the unusual, non-uniform, task scheduling method
used in the application is precisely and directly represented in the deterministic
model.

This application also has substantial communication overhead due to frequent
cache misses and bus contention. This is reflected in the higher errors for the ba-
sic model (Figure 4 (b)), which ignores communication overhead but is otherwise
identical to the full model. (In fact, we measured bus utilization to be 0.81 for the
larger input size on 16 processors.)5 The basic model is clearly insufficient for this
program. The full model is consistently accurate for this code, showing that it accu-
rately captures the communication costs including contention. Furthermore, despite
the communication and contention, ignoring the variance in communication delays
and task times again appears to have little impact on model accuracy. (Although
these results are obtained on a system with relatively low memory latencies, our
previous work has shown that even with much higher and more variable latencies,
we do not observe significant variability in execution time between synchronization
points in shared memory programs [Adve and Vernon 1993]. We therefore expect
the model to continue to be accurate on such systems as well.)

Results for MP3D

The next program, MP3D, is taken from the SPLASH suite of parallel applications
[Singh et al. 1992], from Stanford University. It simulates the motion of particles in
very low density fluids. The task graph for one iteration of this program is shown
in Figure 1(a). It is a fork-join task graph with five parallel phases (parallel loops).
In each parallel loop, chunks of 8 consecutive loop indices are always allocated as
a single unit and hence we can consider a chunk to be a single task (see Table I).

5The processors on the Sequent Symmetry are extremely slow relative to bus and memory speed,
so that the relative impact of the communication overhead (both latency and contention) is much
smaller than would be expected on systems with relatively faster processors. For example, the
entire round-trip latency for a read request from any processor to main memory is only 8 cycles,
of which the bus itself is occupied for only 3 cycles in all.
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There are small but significant variations in the task times in each parallel loop.
The tasks of each loop are statically allocated to the processes in cyclic order.

We consider two input sizes for MP3D: a small input size of 5000 particles, and a
somewhat more realistic input size of 20000 particles. Figure 5 shows the results,
and has the same organization as the figure for PSIM.

The results show that the deterministic task graph model is highly accurate for
MP3D, as well. This accuracy is possible because the variations among the task
times in each parallel loop are represented precisely by using a set of determin-
istic values, and the task scheduling is also represented precisely and directly in
the model. The figure also shows that the mean communication overhead costs
are small but measurable for this application, and are captured precisely by the
system-level model. Only the variance in the individual task times, which arises
in this program primarily due to communication delays, is ignored, and the results
indicate that ignoring this variance had little impact on the accuracy of the results.
Either the basic model or the full model could be useful for studying this program,
depending on the desired accuracy of the modeling study (but note the commu-
nication overheads are likely to be much higher on a system with relatively faster
processors).

The error in the model increases (becomes more negative) slowly with P because
some small serial portions of the program were ignored when constructing the task
graph. Such factors could be included for greater accuracy, but this may not be
necessary even on larger systems if proportionally larger input sizes are used.

Results for LocusRoute

LocusRoute, also a SPLASH application [Singh et al. 1992], is a commercial-quality
wire-router for VLSI standard cells. It is a fork-join program with two iterations,
each ending in a barrier (Figure 1(c)). The computation is organized as tasks
with one of three levels of task granularity, chosen by the user. We examine the
coarsest granularity, namely one task per wire, because finer levels of granularity
have poor performance on this system size. Modeling a finer level of granularity
would require a larger task graph but with otherwise the same structure, and would
not be significantly more difficult. The task CPU requirements vary widely within
each iteration. For example, for the input circuit bnrE.grin, most tasks require
less than 10 milliseconds of execution time while a few require 100 milliseconds or
more. Two scheduling methods that are orthogonal to the choice of task granu-
larity are also available in the program. For our validation experiments, we used
dynamic task scheduling from a single FIFO task queue. The other choice is a semi-
static scheduling method, and we study this and variants of it using our model in
Section 5.3.

The CPU requirements of the tasks in LocusRoute can vary slightly from one
execution to the next [Adve 1993] because the computation for each task depends
on the order of completion of previous tasks in the same iteration [Singh et al.
1992]. This can cause the overall execution time to vary significantly from run to
run, for the same input, an effect that can be magnified by dynamic task scheduling
with unequal tasks. Figure 6 (a) shows a histogram of the measured execution times
in 150 runs of LocusRoute on 16 processors, for the input circuit bnrE.grin. To
provide a complete picture of model accuracy for this program, we compare model
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(a) Histogram of execu-
tion times in different
runs

(b) Predicted and measured
speedups (T (1) = 6.75 sec)

(c) Error in predicted execution
times

Fig. 6. Predicted and measured performance of LocusRoute (Input circuit: bnrE.grin)

predictions against the range of measured execution times, i.e., the minimum and
maximum, as well as the mean.6

All speedup values are computed relative to the mean measured execution time
on 1 processor. The range and mean of the measured values in the following exper-
iments were obtained from 40 runs for each number of processors.

Figure 6 (b) compares the speedup predicted by the full deterministic model with
the range and the mean of the measured speedups. Figure 6 (c) shows the error in
the predicted execution times for both the basic and the full model, relative to the
mean measured execution times. The full deterministic task graph model is quite
accurate for this program compared to the mean measured values. The basic model
has significantly higher errors, showing that communication overhead is significant,
and in particular that it is important to use the full model for understanding the
performance of this program. An interesting feature of this program is that highly
non-uniform task times combine with the order of execution of tasks to introduce a
large load imbalance in the program. Specifically, in this input circuit, an unusually
large task appears towards the end of the queue in each iteration and thus a signifi-
cant part of each iteration is spent executing this task alone (this effect is discussed
further in Section 5). The accuracy of the full deterministic model demonstrates
that the model has successfully captured the impact of the order of execution of
tasks, in addition to the precise allocation of tasks to processes.

Figure 6 (b,c) also show that the error relative to either the mean or the most
distant measured value shows an increasing trend at higher values of P . Addi-
tional detailed measurements showed that the individual task CPU requirements
(excluding communication costs) on 16 processors were significantly higher than the
corresponding values measured on 1 processor, due to the non-deterministic nature
of the task CPU requirements. Since the 1-processor values are used as inputs to

6The individual task times were measured using only a single run of the application and used as
input to the model, i.e., the model predicts the performance for one possible realization of the
task times. This is more appropriate than averaging individual task times across multiple runs
since the variability of different tasks may be correlated.
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(a) Speedups for large input (T (1) = 398 sec.) (b) Error in predicted execution time

Fig. 7. Predicted and measured performance of Polyroots

the model, the predicted execution times for P = 16 are low. Similar measurements
also showed that this effect is much less significant on P = 2 and P = 8, matching
the observed trend in the model prediction errors. Overall, despite the variability
of task CPU times across runs, our model predictions appear sufficiently accurate
(both qualitatively and quantitatively) for exploring program performance issues.

Results for Polyroots

The remaining two programs, Polyroots and DynProg, have non-series-parallel task
graphs. Polyroots computes the roots of a polynomial with arbitrary-precision in-
teger coefficients [Narendran and Tiwari 1992]. The task graph of this program is
fixed for a particular input polynomial degree, and is shown in Figure 1(d) for a
polynomial of degree 20. The tasks of Polyroots have very widely varying execu-
tion times both within and across task groups (shown as boxes in the figure), with
the largest tasks at the leaves. The tasks are dynamically scheduled using a single
task queue, as in LocusRoute.

Figure 7 shows that the model is remarkably accurate for this program. The
percentage errors in the predicted execution times for the larger input are all less

than 1%! With the smaller input size, the errors are slightly higher because the
program has some small forking and communication overheads (which were ignored
in the model) and these are relatively more significant with the smaller input size
and greater parallelism. The measured speedup (shown in Figure 7 (a) for the
larger input) increases non-uniformly with P because of the changing allocation
of tasks that have widely varying task times. The predicted speedups accurately
track the measured speedups since the model precisely represents the allocation of
individual tasks to processors and the order of task execution.

The above experiments with Polyroots as well as LocusRoute ignored the over-
head for accessing the critical section (lock) protecting the shared task queue. It
is interesting to evaluate how accurately the full deterministic task graph model
represents contention for such a shared software resource since the number of lock
accesses between synchronization points may be relatively small (e.g., much smaller
than the number of communication delays), potentially introducing more signifi-
cant variance into process execution times. We inserted an artificial exponentially
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(a) Speedups for large input (T (1) = 11.7 sec.) (b) Error in predicted execution time

Fig. 8. Predicted and measured performance of DynProg

distributed delay into the lock holding times in Polyroots. We modeled the lock
as an M/M/1//K queue as described in Section 3.2. We compared the model pre-
dictions to the measured execution times for mean lock holding times of 1, 10 and
50 milliseconds. The data obtained (omitted for lack of space) show that despite
significant contention for the lock causing much higher total execution times, the
model errors are again small, and are higher than 5% only when lock holding times
are very large (10 milliseconds or more) and total processing time is small (the
smaller input).

Results for DynProg

DynProg, uses a pipelined dynamic programming algorithm for aligning two gene
sequences [Lewandowski et al. 1996]. The program has a pipelined task graph (Fig-
ure 1(e)) with O(G2) tasks for an input containing two gene sequences of size G
each. The tasks are quite uniform in computational costs, and are of much smaller
granularity than many of the tasks in Polyroots. All the tasks in a row of the main
task array within the graph are allocated to the same processor; rows are statically
allocated to processors in round-robin fashion. Our framework enables this schedul-
ing method to be specified simply by using a separate task queue per processor with
no switching of queues, and using a user-enumerated initial allocation of tasks to
each queue.

For DynProg, we again used two input sizes, namely G=100 and G=500. The
percentage errors in the predicted execution time for the two input sizes are shown
in Figure 8 (b) and the predicted and measured speedups for the larger input are
shown in Figure 8 (a). Even though the absolute execution times are about two
orders of magnitude smaller than Polyroots, the errors are still within the range of
1-3% in all cases. These results again indicate that the basic deterministic model is
extremely accurate for programs to which it applies. The results also demonstrate
that the model can be used for large and fairly complex task graphs.

5. EXAMPLE APPLICATIONS OF THE DETERMINISTIC TASK GRAPH MODEL

We claimed earlier that the deterministic task graph model can be useful for eval-
uating program design issues. In this section, we illustrate this point by evaluat-
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ing several such issues for Polyroots, PSIM and LocusRoute. For each of these
programs, insight obtained by applying the model led to one or more suggested
program design changes, each of which could be evaluated a priori (i.e., prior to
implementing the changes) using the model. For two of the programs, the per-
formance improvement predicted by the model is also shown to be accurate by
implementing the changes and measuring their performance.

5.1 Evaluating Design Choices for Polyroots

The speedup curves for Polyroots in Figure 7 (a) show that the speedup of this
program is substantially less than linear, is not smooth, and can be particularly poor
at some values of P . To aid in determining the source of the poor performance, we
examined detailed time-lines of the execution of tasks by each process, computed
from intermediate results of our model (Figure 7.2 in [Adve 1993]). This data
provided three basic insights: (1) early phases of the program have insufficient and
varying parallelism; this is inherent in the algorithm, (2) the final phase, a parallel
loop with Pmax tasks, requires more than half the total execution time with P = 24
(for example), and has significant load imbalance due to a few “leftover” tasks
when Pmax/P is not an integer; this accounts for the non-smooth speedup, and (3)
the two largest tasks in the phase (the last task executed by processes 18 and 23)
are among the last to begin execution, thus exacerbating the load-imbalance. This
discussion illustrates that our analytical model can provide detailed quantitative
insight into program behavior, comparable to what measurement or simulation tools
can provide, at much lower cost. This is a key goal of our work, as noted in the
Introduction.

Observations (2) and (3) above immediately suggest that one simple improvement
would be to place the largest task, which is trivial to identify, at the head of the task
queue. Furthermore, if all task processing times in the phase are somehow known,
better performance might be obtained by scheduling the tasks in decreasing order of
execution time, a heuristic called the LPT (Longest Processing Time) rule [Horowitz
and Sahni 1984]. Many programmers have enough insight into the task behavior
of their programs to implement an approximate version of this rule by using simple
estimates of the task times to order the tasks, particularly when there are wide
disparities in task times. For example, the LPT order can be approximated in
Polyroots using very little additional computation at the start of the final phase,
simply by sorting the intervals of the real line in order of decreasing length. We
call this the Approximate LPT order.

No general-purpose model can predict the performance of the Approximate LPT
order (before it is implemented in the program) because the estimation of the or-
der is algorithm-dependent. Instead, the model can predict the performance of the
“Ideal LPT” order that would result if the actual task times of the original program
were used to reorder the tasks (these are available assuming the model has already
been applied to identify performance problems in the original program). For our
model, we can specify the changes in order simply by reordering the task CPU
requirements in the model input. The predicted speedups with the two heuristics
(Largest Task First and Ideal LPT) are compared to the original program in Fig-
ure 9(a). The graph shows that merely moving the largest task to the head of the
queue would yield a small though useful improvement for P ≤ 16, but executing
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(a) Improvement predicted by the model (b) Measured improvement

Fig. 9. Program Polyroots: the effect of reordering tasks in final Phase
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Fig. 10. Improvement in speedup of PSIM without splitting processors between loops

the tasks in the Ideal LPT order would yield a more significant improvement in
speedup over a wide range of P .

The model results indicate that it could be worthwhile to implement the LPT
heuristic in the program, assuming the approximate order will come reasonably
close to Ideal LPT in performance. We implemented the change and measured
its performance. Figure 9(b) compares the measured speedups of this modified
program to those of the original program and to the predicted speedups for Ideal
LPT. (As an extra validation exercise, we also recorded the new order of tasks in
the modified program, allowing the model to predict the performance of Approx-
imate LPT ex post facto. The figure shows that these predictions are again very
accurate compared with measurements.) Most importantly, the measured results
show that the simple approximation to Ideal LPT was able to realize almost the
full improvement predicted for the ideal version.

To summarize, the model provided insight into a key performance bottleneck for
this program, predicted the potential performance impact of two possible modifi-
cations (using an idealized version of one of them), and correctly predicted that
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it would be worthwhile to attempt the more aggressive modification, namely, a
full reordering of tasks. These predictions were possible because of the accurate
representation of task scheduling and the accurate prediction of synchronization
costs.

5.2 Evaluating A Possible Change to PSIM

We next look at the program PSIM, focusing on the effect of the processor-splitting
scheduling method, which allocates different loops to even and odd numbered pro-
cessors in each phase. The results in Sections 4 and 5 showed that this scheduling
method produces measurable load-imbalance as well as non-smooth speedup behav-
ior. The deterministic task graph model can be used to predict the speedup that
would be obtained if, instead, the iterations of each loop are statically scheduled
across all processors, as in MP3D. The model predicts that this change would give
a 5-10% improvement in speedup as well as a smooth speedup curve, as shown in
Figure 10. We also implemented this change and measured its performance. The
figure shows that the model predictions were again very accurate, and the improved
program achieves essentially the improvement that was predicted. We also used the
model to examine dynamic scheduling of the loop iterations (ignoring scheduling
overhead). In this case the predicted further improvement was negligible, and we
did not implement this.

5.3 Evaluating Communication Locality and Load Balancing in LocusRoute

In some applications, the choice of task scheduling method introduces a trade-off
between data locality and load-balancing, and studying this trade-off analytically
is a challenging problem. In LocusRoute, for example, the principal communica-
tion arises when two or more processes route wires through overlapping regions of
the VLSI chip [Singh et al. 1992]. To reduce this communication, LocusRoute

provides a semi-static task scheduling option called geographic scheduling in which
the chip is divided into a number of regions of equal area and a separate task
queue is maintained for each region. Each process initially works on a separate
task queue to minimize communication, but is re-assigned to another queue when
its current queue becomes empty (choosing the one with the fewest number of other
processes). Thus, the need for dynamic load-balancing can compromise the locality
of communication.

The actual data locality in LocusRoute is complex and difficult to predict. To
gain some intuition about the trade-off between data locality and load balancing,
we use the model to compute the average number of active processes per active task

queue as a function of time during the predicted execution sequence for the program
tasks. This metric is not specific to LocusRoute, and this and other similar metrics
can be automatically generated for the scheduling framework used in the model.
For LocusRoute, this metric gives a qualitative view of data locality because a lower
value indicates that relatively fewer processes are sharing and updating shared data
for each chip region (similar interpretations should be possible for other codes that
assign tasks to queues based on locality).

Figure 11(a) plots this average as a function of time in an execution on 16 pro-
cessors, using 16 regions for geographic scheduling. We also use the model to plot
a hypothetical static version of geographic scheduling that has the same initial al-
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(a) Equal-Area Geographic Scheduling (b) Equal-Area vs. Equal-Work

Fig. 11. Mean number of processes per region during an execution of LocusRoute (P = 16)

location as the original, but in which a process does not switch task queues after
its own queue becomes empty. The pair of points on each curve mark the predicted
end of the first and second iterations of the program. The curve for the static
version is constant at 1, but each iteration lasts much longer because of the poorer
load-balance. In the actual (semi-static) geographic scheduling, however, the aver-
age changes as processes switch from empty to non-empty queues. The figure shows
that (1) the initial distribution of work among the 16 regions is highly unbalanced
since some processes switch regions very early, and (2) for a substantial portion
of each iteration the average number of active processes per active region is quite
large, which can cause significant interprocess communication. The key conclusion
is that an unbalanced initial division of work may significantly compromise data

locality.

We can achieve a more balanced initial division of work among the processors
by dividing the chip into rectangular regions of approximately equal work, using
the area of the smallest rectangle containing a wire as the measure of the work
required for the wire. By specifying the new initial allocation of tasks to queues,
the deterministic task graph model can again predict the evolution of the average
number of active processes per region. The results are shown in Figure 11(b). The
figure shows that the new “equal-work” geographic scheduling reduces the fraction
of time for which the average number of processes per queue is greater than one,
and also reduces the average number of processes per queue over substantial inter-
vals of the program, indicating that data locality should be significantly improved.
Although we do not know the precise impact on execution time, we conclude that
the heuristic has sufficient potential to justify its implementation.

Figure 11(b) also shows that in either geographic scheduling option, a single large
task is active at the end of each iteration, indicating that the LPT heuristic might
benefit this program as well. Using the model (and ignoring any effect on locality
for now), we find that this change has the potential to significantly improve speedup
for P > 10, as shown in Figure 12(a). Analyzing the precise impact of the LPT
order on locality is extremely difficult, but we can again use the model to compute
the processors-per-region metric, and this is shown in Figure 12(b). As would be
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(a) Predicted speedups (b) Processes per region during an execution

Fig. 12. Predicted impact of reordering tasks with balanced semi-static scheduling in LocusRoute

(P = 16)

expected with the LPT heuristic, we find a higher average number of processes
per queue towards the end of each iteration. The model shows, however, that for
only a small portion of the iterations, the average for the LPT queues is higher
than for the unsorted queues. We conclude from these results that the approximate
LPT ordering worsens locality but improves load balancing significantly, and the
potential improvements justify its implementation.

In the above experiments with LocusRoute, metrics computed by the determin-
istic task graph model provided insight into various task scheduling algorithms that
represent different trade-offs between load-balancing and data locality. While com-
munication parameters such as cache miss rates are difficult to obtain for scheduling
policies that have not been implemented, the model can be used to provide some
insight into the performance impact of program design choices that affect com-
munication costs as well as load balancing. The experiments with LocusRoute as
well as Polyroots also show that the model internally contains a great deal of
detailed performance information that can be used in innovative ways to identify
performance problems.

6. COMPARISON WITH RELATED WORK

The first author’s dissertation [Adve 1993] provided a qualitative characterization
of previous models and a quantitative evaluation of representative stochastic models
to understand the state of the art (focusing on detailed, quantitative models). Here,
we briefly contrast previous models with our model, and then compare the results
from our evaluation of representative models with the results for our model.

6.1 Overview of Previous Work

Some of the most successful analytical models for parallel programs are simple
parametric models that estimate program performance based on one or a few pa-
rameters describing the parallelism and communication in a program [Amdahl 1967;
Gustafson 1988; Hack 1989; Flatt 1984; Flatt and Kennedy 1989; Eager et al. 1989;
Vrsalovic et al. 1988; Cvetanovic 1987; Blumofe et al. 1995; Culler et al. 1993;
Alexandrov et al. 1995; Frank et al. 1997]. Such models are extremely useful for
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obtaining broad, qualitative insights and bounds on program performance, commu-
nication overheads, and scalability. However, such models generally would not be
able to predict more detailed aspects of performance such as the uneven speedup
of PSIM and Polyroots, the effect of task scheduling improvements such as those
studied in the last Section, or the impact of execution state on communication costs
and resource contention. [Adve 1993] presents experimental data comparing the in-
sights obtained from selected parameteric models and bounds with those obtained
from our model.

Our work is complementary to these simple but insightful models, and is aimed
at more detailed performance analysis and prediction, based on detailed program
information. For the rest of the discussion below, we focus on more detailed quan-
titative models that have goals similar to ours.

Models Applicable to Arbitrary Task Graphs

Thomasian and Bay [Thomasian and Bay 1986], Mohan [Mohan 1984], and Kapel-
nikov, Muntz and Ercegovac [Kapelnikov et al. 1989] have proposed similar two-
level, hierarchical models applicable to programs with arbitrary task graphs and
arbitrary task scheduling disciplines. The higher-level model in each case is a
Markov chain, and the different solution algorithms they use all have time and
space complexity that is exponential in the maximum parallelism of the program.
Nevertheless, these are the most detailed and general stochastic models available,
and we examine the expected accuracy of these models in Section 6.2.

Tsuei and Vernon [Tsuei and Vernon 1990] propose a model based on a parallelism
profile rather than a detailed task graph. In practice, this approach is only practical
to apply to fork-join programs with good load balance [Adve 1993], and in fact,
their model is shown to be accurate for three such programs. In contrast, the results
in Section 4 show that our model is consistently accurate for a much wider class of
programs.

Fahringer [Fahringer and Zima 1993; Fahringer 1993] describes a collection of
compiler-driven models for predicting components of program performance: com-
putation times, load-imbalance, message-passing costs, and per-node cache perfor-
mance. The models are designed for regular data-parallel programs and static loop
scheduling, because he uses integer polyhedrons to represent iteration counts and
communication volumes. Of the applications we have studied, only DynProg and
perhaps PSIM could be written in this form. For such programs, the major benefit
of his approach is that it is fully automatic. Mendes and Reed [Mendes and Reed
1998] use a data-parallel compiler to generate symbolic performance estimates for
regular data-parallel programs with specific communication patterns (constructed
by the compiler itself). Relative to our work, their approach approach has similar
benefits and limitations to that of Fahringer.

Two papers [Xu et al. 1996; Jonkers et al. 1995] have developed models similar
to ours, but both are much more restricted in modeling task scheduling. Xu et
al. describe a graph-based model and solution technique similar to ours (based in
part on our work [Adve 1993]). However, they only consider random allocation
of tasks to threads, and they directly measure communication costs for a few in-
put and system sizes and incur significant errors when extrapolating to a different
numbers of processors. Jonkers et al. describe a queueing network approach that
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is similar to our deterministic task graph model, but they do not explicitly model
the scheduling of tasks to processes, and only fairly restricted task scheduling can
be captured accurately in the resource demands of the processes. Their model is
only validated for a simple matrix-multiply loop. In contrast to both these models,
we can model much more realistic and complex task scheduling methods, and our
model is consistently accurate for a wide range of programs.

Schopf and Berman [Schopf 1997; Schopf and Berman 2001] describe a modeling
methodology (not a specific model) called structural modeling, where an applica-
tion is decomposed into a few components and a high-level structural equation is
developed to compose metrics from individual component models into an overall
model. To model applications on shared clusters with varying loads, they show how
stochastic component metrics can be represented using limited classes of stochastic
values (e.g., normally distributed values or intervals) [Schopf and Berman 2001].
Although their decompositions and structural equations are conceptually similar
to a task graph and its solution, they are constructed in an application-specific
manner for each individual application (they present specific structural equations
for several simple computational kernels such as SOR, LU, and a genetic program-
ming algorithm). In addition, their work does not specify whether or how they could
model complex applications or components, e.g., with arbitrary task graphs such as
Polyroots or sophisticated scheduling disciplines such as the ones in LocusRoute.

There are several compiler-driven tools for parallel program performance eval-
uation, in which the performance analysis is based either on simulation [Dika-
iakos et al. 1994; Dikaiakos 1994; Parashar et al. 1994] or measurement and
extrapolation [Balasundaram et al. 1991]. In general, these are all focused on
message-passing systems and static scheduling disciplines. There have also been
measurement-based tools that use statistical model fitting to construct performance
models, and these can conceivably handle arbitrary programs (e.g., [Brewer 1995;
Crovella et al. 1995]). Two drawbacks, however, are the high cost of the numer-
ous measurements required, and the lack of insight into the causes of performance
problems. Finally, there are alternative approaches based on computing bounds
for task graphs with known task time distributions [Hartleb and Mertsiotakis 1992;
Yazici-Pekergin and Vincent 1991]. These techniques only apply when P = Pmax

(such as in the condensed task graph under static scheduling), and their accuracy
is sensitive to the size of the graph and to the task graph structure.

Models for Series-Parallel Task Graphs

Mak and Lundstrom describe a polynomial-time solution technique for series-parallel
task graphs with exponential task execution times [Mak and Lundstrom 1990]. 7

Their solution heuristic ignores task scheduling and processor contention in the
task-level model. These must be accounted for in the queueing network model of
the system, but (like [Jonkers et al. 1995]) this is only possible in practice for
restricted task scheduling disciplines. They do not present validation results for
real programs. We discuss the efficiency and accuracy of this model in Section 6.2.

7Although task times with lower variance can be modeled by a phase-type distribution with a
sequence of exponential tasks, the results in Section 6.2 show that the ML model solution is too
expensive to permit such an approach.
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Recently, Liang and Tripathi [Liang and Tripathi 2000] have proposed a model
that generalizes the techniques of Mak and Lundstrom to analyze programs with a
much wider class of task graph structures based on arbitrary combinations of series,
parallel, parallel-OR, and branching subgraphs (e.g., they can model Polyroots
but not DynProg). Unlike most other models discussed in this paper, they also
represent multiple parallel programs in their system queueing network model. They
again assume exponential task time distributions for analytical tractability. Like
Mak and Lundstrom, they ignore task scheduling in their task-level model and
instead capture it by representing processors as queueing centers in their queueing
network, assuming product-form scheduling disciplines (e.g., processor sharing or
FIFO with single-class exponential service times). They validate their model only
against simulations of synthetic task graphs with exponential task times, and do
not present validation results for real programs. We have not studied the accuracy
of this model. For a single program with a series-parallel task graph, we expect
their accuracy to be similar to that of the Mak and Lundstrom model because they
use similar models of program and system for this case.

van Gemund [van Gemund 2003; van Gemund 1996] has developed a modeling
language (Pamela) and a tool that constructs symbolic performance estimates from
program descriptions in this language. When applicable, this tool produces closed
form models that could be fairly intuitive and very fast to evaluate. Because such a
language uses predefined language primitives that must be used to describe parallel
program structure, we believe such an approach is limited to well-structured pro-
gram kernels rather than arbitrary applications. The Pamela language is restricted
to series-parallel task graphs, and to simple static or work-conserving dynamic task
scheduling. The implementation of the tool uses very simplistic bounds for describ-
ing computing communication costs with resource contention. To our knowledge,
his tool has been applied to small algorithmic kernels (e.g., Gaussian Elimination,
parallel vector sort, and others) and to synthetic series-parallel task graphs, but
not complete applications [van Gemund 2003].

Finally, there have been a a few models restricted to specific non-fork-join task
graph structures such as divide-and-conquer task graphs [Madala and Sinclair 1991]
or pipelined task graphs [Lewandowski et al. 1996; Sundaram-Stukel and Vernon
1999]. For applications that match these structures, such models can be attrac-
tive because they are intuitive to develop and use, and (usually) also efficient and
accurate.

Models Restricted to Fork-Join Programs

There a number of previous models restricted to programs with fork-join task

graphs [Dubois and Briggs 1982; Heidelberger and Trivedi 1983; Towsley et al.
1990; Ammar et al. 1990; Kruskal and Weiss 1985; Vrsalovic et al. 1988; Cve-
tanovic 1987; Tsuei and Vernon 1990], Of these, perhaps the most important is
the seminal model of Kruskal and Weiss [Kruskal and Weiss 1985]. They derive a
simple, closed-form estimate for the total execution time of a single fork-join pro-
gram phase having N independent parallel tasks with i.i.d. task execution times
of mean µ and variance σ. They assume that tasks are allocated dynamically to
processors from a common queue in fixed size batches of K tasks (incurring a fixed
overhead of h time units). They validated the model for a number of hypothetical
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task time distributions. We evaluate the accuracy of this model for real programs
in Section 6.2.

More recently, Harzallah and Sevcik use a simple linear model of barrier syn-
chronization cost (as a function of P ) to analyze performance of fork-join shared
memory programs [Harzallah and Sevcik 1995]. They do not model task scheduling
explicitly. They analyze communication costs using a standard Mean Value Anal-
ysis framework and workload model [Willick and Eager 1990; Adve and Vernon
1994]. They also develop separate, algorithm-specific analyses to obtain communi-
cation parameters. Their MVA framework and their analytical parameter estimates
could be valuable to combine with our high-level model as well.

6.2 Quantitative Comparisons with Deterministic Task Graph Analysis

As mentioned earlier, we have evaluated several representative stochastic models for
the same applications used in Sections 4 and 5 [Adve 1993]. The papers describing
these models do not present evaluations using real programs. The primary goal of
our comparison was to bring out the key advantages and disadvantages of assuming
deterministic rather than stochastic task times.

We considered key stochastic models for fork-join [Kruskal and Weiss 1985],
series-parallel [Mak and Lundstrom 1990] and general task graphs [Thomasian and
Bay 1986; Mohan 1984; Kapelnikov et al. 1989]. The numerous complex heuris-
tics used in many of the stochastic models make it impractical to implement every
model of interest. Furthermore, the exponential time and space complexity of the
three Markov chain models for general task graphs make them impractical for the
programs we study (see Figure 1). Thus, we implemented three models for our
study: the Mak and Lundstrom model, and two versions of the Kruskal and Weiss
model, one using estimates of the actual variance of task execution times and an-
other assuming task times are exponentially distributed. We refer to these models
as ML, KWactual and KWexp respectively. Of our five programs, these models can
only be used for the three fork-join programs, viz., MP3D, PSIM and LocusRoute.

In addition, we can infer the accuracy of the Markov Chain models from the
results for ML and KWexp under the following two conditions [Adve 1993]. First,
ML would be equivalent to the Markov chain models (for series-parallel task graphs)
if we eliminate the scheduling imprecision in ML by applying it to the condensed
graph. Second, KWexp would be equivalent to the Markov chain models when the
two simplifying assumptions of Kruskal and Weiss are satisfied by the program,
specifically, (a) the task scheduling matches the assumptions of Kruskal and Weiss,
and (b) the tasks of a phase have approximately equal mean times and therefore
can be accurately represented by i.i.d. tasks.

The inputs for the stochastic models evaluated here were derived from the inputs
measured for the deterministic task graph model (described in Section 4.1). The
variance of communication time for the tasks cannot be measured easily, and was
instead estimated using a model described in [Adve and Vernon 1993; Adve 1993].

We begin by comparing the efficiency of the various models. Efficiency is not an
issue for the Kruskal and Weiss model, which has a simple closed-form solution.
In contrast, for the ML model, the model solution time and particularly memory
consumption proved prohibitively high [Adve 1993] for all except the smallest task
graphs. The only way we were able to apply this model was to use the condensed
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(a) MP3D (b) PSIM (c) LocusRoute

Fig. 13. Comparisons between our Deterministic model and previous stochastic models

task graph. (This is only practical for statically scheduled programs, and we could
apply the ML model only to Polyroots and MP3D, and not to LocusRoute.) Finally,
the models of Thomasian and Bay, Mohan, and Kapelnikov et al. each have much
higher space and time complexity than the ML model. Overall, we conclude that
in most cases, these four most general stochastic models can only be applied in
practice using the condensed graph as input.

The percentage errors in program execution time predicted by the models for
each of the three programs, for the larger, more realistic, input size, are shown in
Figure 13. The smaller input yielded qualitatively similar results in each case, but
with higher errors [Adve 1993].

The results for MP3D and PSIM show that the ML model has very large errors
when used with the condensed task graph. This follows because each process in this
model executes only one exponentially distributed “task” of the condensed graph
per phase. The high variance of the exponential distribution therefore predicts a
very high synchronization delay at the barrier following each phase. These results
show that using the condensed graph with exponential task models can lead to
unacceptable errors.

The KWactual model is consistently accurate for MP3D, somewhat less consistently
accurate for PSIM, and relatively inaccurate for LocusRoute. The accuracy in MP3D

and PSIM follows because the task time variance in the model can capture both, the
variance of individual task times, as well as the small variation in mean task times
across the tasks of each phase. The model also captures the static loop scheduling
in MP3D accurately. The errors in PSIM and LocusRoute both arise because the
scheduling assumptions in the model cannot capture systematic patterns of load-
imbalance due to task ordering. Thus, in PSIM, the model does not capture the
unequal amounts of work allocated to the even and odd numbered processors by
processor-splitting. In LocusRoute, the model does not capture the load-imbalance
due to an unusually large task that is executed close to the end of each phase.

The KWexp model significantly overestimates the execution time for MP3D. The
comparative accuracy of the KWactual model for the same program shows that
the error in KWexp is due to the exponential task assumption. In both MP3D and
PSIM, the errors for KWexp are much smaller than the corresponding errors seen
for ML because KWexp uses the original task graph, which has many more tasks
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than the condensed graph. This effect is even more apparent in PSIM, which has a
very large number of tasks per process per phase, and KWexp is almost identical
to KWactual for this program. Finally, for LocusRoute, KWexp estimates even
lower synchronization costs (and hence execution time) than KWactual because, in
LocusRoute, the actual variance of task times across the tasks in each phase is even
higher than exponential. Overall, the KWexp model shows that with the original
task graph, the exponential task assumption leads to inconsistent accuracy, at best.

Finally, if it were practical to use the three Markov Chain models with the full
task graph, they would have similar errors to KWexp for MP3D (because MP3D meets
the two conditions above for KWexp to be equivalent to the general models). The
detailed models would be more consistently accurate for PSIM and LocusRoute,
because they would represent the task scheduling accurately. To use these models in
practice, however, we would require more practical techniques to solve the Markov
chain models with the full task graph.

6.3 Summary: When are Stochastic or Deterministic Models Preferable?

The experimental results above showed that stochastic models were successful for
fork-join programs under certain scheduling assumptions (listed below). In contrast,
stochastic models for non-fork-join task graphs (such as [Mak and Lundstrom 1990;
Thomasian and Bay 1986; Mohan 1984; Kapelnikov et al. 1989]), which are all
based on exponentially distributed task times, are too inefficient to use even for
relatively small task graphs,8 and can yield large errors with the condensed task
graph. Furthermore, the polynomial-time ML model (as well as the more recent
model described in [Liang and Tripathi 2000]) can only capture product-form task
scheduling disciplines such as processor-sharing or FIFO, or static task scheduling
using the condensed task graph.

Based on these observations, we categorize parallel programs into three groups:

(FJSimple) Programs with a fork-join synchronization structure and task schedul-
ing disciplines where the performance is insensitive to the specific ordering
of tasks, e.g., with very uniform task times as in MP3D or approximations to
processor-sharing scheduling.

(FJComplex) Programs with fork-join task graph structures, but with task schedul-
ing disciplines that do not satisfy the criterion for FJSimple, e.g., as in
LocusRoute and PSIM.

(NonFJ) Programs with non-fork-join task graph structures such as Polyroots

and DynProg.

(Programs with some very specific non-fork-join task graph structures such as
divide-and-conquer or pipelined graphs can be included in the first two categories
when drawing the conclusions below, but not general series-parallel programs.)

For programs in category FJSimple, either our deterministic model or stochas-
tic models based on the mean and variance of i.i.d. task times [Kruskal and Weiss

8While sampling of possible executions could be used to reduce the solution cost, this would still
be relatively expensive because each sample would require roughly the same solution time as the
deterministic model.
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1985; Madala and Sinclair 1991; Ammar et al. 1990] are applicable. These stochas-
tic models may be preferable because of their simplicity and (often) closed-form
solutions. For the second category, these stochastic models are again applicable,
but our deterministic model is more consistently accurate because it models com-
plex task scheduling more precisely. For all other programs (i.e., the third cate-
gory), practical stochastic models that can be used for realistic program sizes and
task scheduling methods do not appear to exist, whereas our model again appears
consistently accurate.

7. CONCLUSIONS

In this paper, we have proposed and validated an analytical model for parallel
program performance prediction, and presented several examples to illustrate that
the model can be used to understand the impact of complex design changes and
improve the performance of real programs. The model we propose is applicable to
programs with arbitrary task graphs and a wide range of task scheduling methods.
Our validation experiments with five realistic shared-memory programs showed
that the model is both efficient and extremely accurate, even for programs with
relatively large and complex task graphs, sophisticated task scheduling methods,
highly variable task times, and significant resource contention. The errors in the
execution time estimates from the model are typically less than 5%.

Several further experiments also illustrated the usefulness of the model. In ex-
periments with two programs, insights from the model suggested design changes to
improve load-balancing and accurately predicted the performance impact of the de-
sign changes. In a third program, novel detailed metrics from the model were used
to explore the impact of design changes that improve communication locality as
well as load-balancing. Overall, we believe these results indicate that the determin-
istic model can be a useful tool for evaluating sophisticated parallel program design
choices analytically, using the task graph abstraction, the separate representation
of task scheduling, and values of task-level parameters.

Two key features of our approach make a general, accurate and efficient model
possible. First, the model is based on a powerful representation of the inherent
parallelism structure in a program, the task graph. Second, the model assumes
that task execution times are deterministic quantities, which permits an efficient
and straightforward solution based on critical path analysis, modified to account for
task scheduling precisely and to evaluate the average costs of communication and
resource contention at every step of the analysis. The model accurately represents
key details of task scheduling, the order of task execution, non-uniform task times,
and average communication costs. A quantitative comparison with representative
stochastic models showed the relative benefits of those models and our deterministic
model, and led us to categorize programs into three classes. For the simplest of the
three classes, namely, fork-join programs with restricted task scheduling disciplines,
simple stochastic models such as [Kruskal and Weiss 1985] were practical, efficient,
and required less detailed input information than the deterministic model. For the
other two classes of programs, which include four of the five programs in this study,
existing stochastic models appeared inaccurate or impractical.

There are some potentially significant limitations to the deterministic task graph
analysis approach. First, it provides detailed numerical predictions rather than
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simple, intuitive insights provided by simpler closed form models. In our experience
from this and other work [Adve et al. 2000], however, the process of constructing
a task graph and other input information for an application does lead to valuable
insights about the details of program structure and performance. Second, the model
requires a fairly detailed input program description whereas simpler information
suffices for some programs with simple task graphs and scheduling behavior where
simpler models may apply.

The third limitation of our model, shared by previous program models, is that
it does not provide the means to predict how model parameters vary for different
systems, task scheduling methods, or other program changes. Several techniques
(mostly compiler-driven) exist for deriving intrinsic parameters that can be used to
predict how computational costs [Sarkar 1989; Balasundaram et al. 1991; Fahringer
and Zima 1993; Wang 1994] and parallelism [Kumar 1988; Larus 1993; Parashar
et al. 1994] vary as a function of parameters such as problem size or number of pro-
cessors. It is much more challenging to predict how shared memory communication
parameters (e.g., cache miss rates) vary as a function of such changes or changes
to the task scheduling algorithm, and currently this must be done using a manual,
algorithmic analysis of each parallel program [Culler et al. 1993; Tsai and Agarwal
1993; Harzallah and Sevcik 1995]. To fully exploit the predictive capabilities of our
model, we would like to be able to predict how the communication parameters vary
by using some intrinsic description of communication behavior, i.e., a description
that is independent of system size or task scheduling (just as the task graph pro-
vides an intrinsic description of parallelism structure). This remains a difficult but
important challenge for future research.

The experiments and results in this paper also suggest some other possibilities
for future research. The model would be much more useful in practice if the process
of deriving model inputs can be partially or fully automated. Significant research
issues will arise in developing the compiler and operating system infrastructure re-
quired to derive the task graph and measure the requisite model parameters. (For
example, in recent work, we have developed compiler techniques to extract task
graphs automatically for compiler-parallelized message passing programs [Adve
and Sakellariou 2000], but extending these techniques to broader classes of pro-
grams requires further research.) If successful, however, such an integrated package
combining the complementary strengths of analytical studies and measurement or
simulation should yield a comprehensive and powerful tool for parallel program
performance evaluation and prediction.
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