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Abstract

One of the design parameters in closed queueing networks is Np, the number of customers of
class p. It has been assumed that Np must be an integer. However, integer choices will usually
not achieve the target throughput for each class simultaneously. We use Mean Value Analysis
with the Schweitzer-Bard approximation and nonlinear programming to determine the value of Np

needed to achieve the production targets exactly, although the values of Np may be fractional. We
interpret these values to represent the average number of customers of each class in the network.
We implement a control rule to achieve these averages and verify our approach through simulation.
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1 Introduction

Closed queueing networks are used for modelling and predicting performance in many applications.
A few examples of such applications are job shops, automated manufacturing facilities such as flexible
manufacturing systems, computer systems performance modelling and material control strategies [9,
6]. These models are popular in diverse fields because they work well in many practical situations
[5, 7]. Traditionally, the customer population for different classes of customers in closed queueing
networks has been assumed to be an integer. We find that such an assumption is not always suitable
because for some systems exact throughput targets for all classes cannot be achieved simultaneously
using integer customer populations. For such systems, we introduce the concept of “fractional number
of customers”. We provide a control rule to achieve the fractional customer populations and provide
a mixed-integer nonlinear optimization model based on Mean Value Analysis with the Schweitzer-
Bard approximation to estimate the (fractional) number of customers to meet the throughput targets
exactly. The paper is structured as follows. We describe the analytical model in section 2, followed by
the motivation for fractional customer populations in section 3. In section 4 we present the nonlinear
optimization model. Results from experimental validation are presented in section 5.

2 Multiple Class Mean Value Analysis

The original Mean Value Analysis (MVA) algorithm [3] involves an iterative procedure to calculate
the performance measures of a queueing network. The computational effort for the MVA technique
increases exponentially with the number of customer classes. We describe an approximation proposed
by Schweitzer [4] and extensively tested by Bard [1] which significantly reduces the MVA computational
effort for multi-class systems. We refer to the Schweitzer-Bard approximation for Mean Value Analysis
as SB-MVA. We describe SB-MVA for closed queueing networks using the variables defined in Table
1. (For a complete description of MVA and SB-MVA we refer the reader to Kant [2].) In Table 1,
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~N ≡ {N1, N2, . . . , NP } represents the population vector of the closed queueing network where P is
the total number of customer classes.

Table 1: Mean Value Analysis Variables
Variable Description
M Number of stations in the closed queueing network
Tm,p Mean processing time for customer of class p at station m
Rm,p( ~N) Mean response time for customer of class p at station m with ~N customers in

the network
Qm,p( ~N) Mean queue length for customer of class p at station m with ~N customers in

the network
Xp( ~N) Throughput of customer class p in the network with ~N customers

The SB-MVA algorithm states that the response time for a customer of class p arriving at a station
m is given by

Rm,p( ~N) = Tm,p +
(

Np − 1
Np

)
Tm,pQm,p( ~N) +

∑

r 6=p

Qm,r( ~N)Tm,r m = 1, 2, . . . , M, p = 1, 2, . . . , P.

(1)
Applying Little’s Law for class p customers in the closed queueing network gives

Xp( ~N) =
Np∑M

m=1 Rm,p( ~N)
p = 1, 2, . . . , P. (2)

Applying Little’s Law at station m for class p gives

Qm,p( ~N) = Xp( ~N)Rm,p( ~N) m = 1, 2, . . . , M, p = 1, 2, . . . , P. (3)

Substituting the value of Xp( ~N) from equation (2) into equation (3) we get

Qm,p( ~N) =
NpRm,p( ~N)∑M
m=1 Rm,p( ~N)

(4)

Further substituting the value of Rm,p( ~N) from equation (1) gives

Qm,p( ~N) =
Np

(
Tm,p +

(
Np − 1

Np

)
Tm,pQm,p( ~N) +

∑
r 6=p Qm,r( ~N)Tm,r

)

∑M
k=1

(
Tk,p +

(
Np − 1

Np

)
Tk,pQk,p( ~N) +

∑
r 6=p Qk,r( ~N)Tk,r

) m = 1, 2, . . . ,M
p = 1, 2, . . . , P

(5)

Equation (5) states a system of MP nonlinear equations in the unknowns Qm,p( ~N). For given ~N and
Tm,p (∀m, p) these equations can be solved to get the values of Qm,p( ~N). From these values of queue
lengths, the values of the response times and the throughput can be calculated using equations (1)
and (2). In the next section, we present the motivation for this research.

3 Motivation for Fractional Number of Customers

Consider a three station closed queueing network with two customer classes. We assume that both
customer classes visit all three stations. Each customer has three operation steps and after complet-
ing an operation at a station, for its next step it can choose either of the three stations with equal
probability. Here we assume that the network is balanced and the processing times for both classes at
each station are exponentially distributed with a mean of one. The customer population for the two
classes is specified by (N1, N2). The throughput of this network for different integer values of customer
populations can be calculated using SB-MVA, and values of the throughput for a few combinations
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Table 2: Throughput Observed using Integer Number of Customers in the Network
(N1,N2) Class 1 Throughput Class 2 Throughput

1,1 0.250 0.250
1,2 0.200 0.400
2,2 0.333 0.333
2,3 0.286 0.429
3,3 0.375 0.375

of (N1, N2) are shown in Table 2.

From Table 2, it can be seen that if the target throughput desired is (0.27, 0.31) none of the settings
will be able to achieve it. The reason for this is the use of integer customer counts. This difficulty
becomes more pronounced when the number of customer classes in the network increases [10].

However, from the system of equations in (5), we can see that there is no requirement in the equations
that Np be integer. Thus, suppose that by using fractional values of Np, we can obtain a solution
to equations (5) such that exact throughput targets can be obtained, such as the (0.27, 0.31) target
above. The question then arises, can we obtain a physical realization for such “fractional customers”.
We propose here that we can indeed get such a realization by varying the number of customers be-
tween two neighboring integer values so that the time average of these numbers equals the fractional
value. We then need to verify that such an approach does indeed achieve (reasonably) the target
throughputs. Following is the description of the control rule to set the fractional number of customers
wherein we vary the number of customers between two neighboring integer values.

Normally in a closed queueing network when a customer completes all operation steps and leaves, a
new customer is immediately introduced into the network. Instead of doing this we use the following
algorithm. Let xky denote the greatest integer less than or equal to k and pkq denote the smallest
integer greater than or equal to k. To achieve the fractional value Np, we vary the number of customers
for the customer class between NL

p and NU
p where NL

p = xNpy and NU
p = pNpq using Algorithm 1.

Algorithm 1 (Setting fractional number of customers).

Step 1: Initialize simulation with actual number of customers in the network np = NL
p customers.

Step 2: When a customer completes all processing steps and leaves calculate
N̄p = the (time) average number of customers for that class
If N̄p < Np then

if np = NL
p introduce 2 customers so that np = NU

p

if np = NU
p introduce 1 customer and maintain np = NU

p

If N̄p > Np then
if np = NU

p then do not introduce the customer so that np = NL
p

if np = NL
p introduce 1 customer and maintain np = NL

p

If N̄p = Np then introduce 1 customer and maintain same np

Repeat Step 2 until simulation replication terminating condition.

To verify this approach we will use the target throughputs from our previous example, (0.27, 0.31).
It turns out that the (fractional) number of customers which will achieve this target is (1,28, 1.48).
(We will explain later in this paper how we obtained this number.) Next, we utilize a simulation
model using Arena R© (www.arenasimulation.com). The fractional number of customers are modelled
using the control rule described in Algorithm 1. We then compare the throughput predictions from
SB-MVA with the throughputs obtained from simulation. Here, we use a warm up period of 20,000
orders and run for 80,000 orders during which statistics are recorded. 10 replications are performed.
Although the 95% confidence intervals are not shown they were less than 1% of the observed mean.
Table 3 compares the SB-MVA predictions with throughputs from simulation for our example and
three additional settings.
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Table 3: Comparison of SB-MVA Predictions with Throughputs from Simulation
Populations Class 1 Class 2

SB-MVA Simulation SB-MVA Simulation
(N1, N2) Throughput Throughput % Error Throughput Throughput % Error

(1.28, 1.48) 0.27 0.2643 2.15 0.31 0.3054 1.51
(3.00, 2.69) 0.39 0.3902 -0.05 0.35 0.3471 0.83
(2.63, 5.90) 0.25 0.2484 0.63 0.56 0.5601 -0.02
(17.50, 5.50) 0.70 0.6996 0.05 0.20 0.2096 -4.83

From Table 3 we see that for the balanced system with exponential processing times, SB-MVA pro-
vides reasonable estimates of throughputs even with fractional customers. We have performed several
other experiments with unbalanced systems of different sizes and configurations with similar results
[10].

NOTE: To achieve a target throughput, Np can potentially be less than one. Equation (1) cannot be
used where the number of customers is less than one. Hence, we develop an extension to SB-MVA
to accommodate the situation when Np < 1. For further details (proof and validation) see Shinde
and Suri [11]. The SB-MVA extension developed there is as follows. In the extension, equation (1) is
replaced with

Rm,p( ~N) =

{
Tm,p +

∑
r 6=p Qm,r( ~N)Tm,r

Tm,p + (Np − 1
Np

)Qm,p( ~N)Tm,p +
∑

r 6=p Qm,r( ~N)Tm,r

0 < Np ≤ 1
Np > 1 (6)

4 Optimization Model to Estimate Customer Population ~N

In this section, we propose a mixed-integer nonlinear optimization model (NOM) to achieve our pri-
mary objective, which is to calculate the number of customers ~N to achieve, as closely as possible,
the target throughput ~Y ≡ {Y1, Y2, . . . , YP }, for a multi-class closed queueing network. Here Yp is the
target throughput for customer class p. The nonlinear optimization model is as follows.

Objective
Minimize -

P∑
p=1

(
Yp −Xp( ~N)

)2

subject to:

Rm,p( ~N) = Tm,p +
(

Np − 1
Np

)
Tm,pQm,p( ~N)φp +

∑

r 6=p

Qm,r( ~N)Tm,r (7)

Zφp ≥ Np − 1 (8)
Np ≥ φp (9)

Xp( ~N) =
Np∑M

m=1 Rm,p( ~N)
(10)

Qm,p( ~N) = Xm,p( ~N)Rm,p( ~N) (11)

Qm,p( ~N), Rm,p( ~N), Xp( ~N), Np, Z ≥ 0 and φp = 0 or 1

Here Z is a large number and the variables Z, φp and equations (8), (9) are used to model the response
time constraint from equation (6). The values of Np generated will be called “the prescribed number
of customers”.
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5 Validating the Optimization Model Using Simulation

In this section we validate our overall approach using some examples. For each example, for a given
set of target throughputs, we use the NOM to generate the prescribed number of customers which
are typically fractional. We then simulate the system, using Algorithm 1 to achieve the fractional
customer levels. In [10], we have tested the accuracy of our model in small and large systems and in
systems with variable processing times. In this paper, we present results from a three-station four-class
network. The routing matrix of this system is shown in Table 4. An “X” in a customer-station pair
denotes that the customers from that class visit the station. Upon finishing processing at a station, a
customer chooses either of the stations along its routing with equal probability.

Table 4: Routing table for three station four class system
Customer Class

Stations 1 2 3 4
1 X X X
2 X X X
3 X X X

We present results from two different balanced system settings. In the first setting, the utilization
for each of the stations is 0.8 while in the second setting the utilization is 0.9. The NOM is solved
using GAMS (www.gams.com) on a Sun Ultra 10 440 MHz workstation. The solution times were 0.09
to 0.11 seconds respectively. For the simulations, we use a warm up period of 20,000 orders. The
simulation is run for another 100,000 orders during which statistics are recorded. 10 replications are
performed during each simulation run. The results are shown in Tables 5 and 6. The 95% confidence
intervals, in these cases too, are within 1% of the average simulation throughput.

Table 5: Target versus Actual Throughputs for three station four class system (Utilization = 0.8)
Prescribed

Customer Target Customer Observed
Class Throughput Populations Throughputs % Error

1 0.4 3.60 0.4014 -0.34
2 0.2 1.13 0.2133 -6.33
3 0.2 1.13 0.2188 -9.40
4 0.2 1.13 0.2142 -7.12

Table 6: Target versus Actual Throughputs for three station four class system (Utilization = 0.9)
Prescribed

Customer Target Customer Observed
Class Throughput Populations Throughputs % Error

1 0.450 7.99 0.4487 0.29
2 0.225 2.59 0.2427 -7.88
3 0.225 2.59 0.2447 -8.74
4 0.225 2.59 0.2438 -8.37

From Tables 5 and 6 we can see that the prescribed customer populations yield throughputs which are
within about 10% of the target throughputs for all the cases. Thus, for the closed queueing networks
tested, we conclude that the NOM provides reasonable estimates of customer populations.
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6 Conclusion

In this paper, we introduced the concept of fractional number of customers to achieve exact target
throughputs in closed queueing networks. We estimated the throughputs using SB-MVA with frac-
tional number of customers. We introduced a control rule to achieve fractional number of customers
in closed queueing networks and then compared the SB-MVA predictions with the throughputs ob-
served from simulation. Then, we proposed a nonlinear optimization model to estimate the number
of customers required to meet target throughputs. For the examples shown, the prescribed number
of customers are able to meet the target throughput within 10%. The optimization model can easily
be extended to non-product form systems [10].
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