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Abstract 

 
Closed Queueing Networks are used in modeling various systems such as FMS, CONWIP Material Control, 
Computer/Communication Systems, and Health Care. Mean Value Analysis (MVA) is often used to compute the 
performance measures for these models. For networks with multiple-server stations, the exact MVA algorithm 
becomes computationally complex and existing approximations introduce high errors. The Schweitzer-Bard (S-B) 
approximation for MVA is simple and computationally efficient. However it has only been developed for networks 
with single-server stations. We provide an extension to S-B MVA to enable the analysis of networks with multiple-
server stations. Comparison with simulation demonstrates the accuracy of our approach.  
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1. Introduction and Motivation 
A closed queuing network (CQN) can be used to represent many systems. Examples include Flexible Manufacturing 
Systems (FMS), Biotech Manufacturing Systems, CONWIP Material Control, Computer/Communication Systems, 
and Health Care Systems. Exact analysis of CQNs is possible for networks that satisfy the product-form structure 
[1]. For these networks, computation of steady state performance measures such as server utilization and mean 
queue lengths requires the computation of a normalization constant. However, due to the large number of states even 
for moderately sized networks, obtaining the normalization constant requires a great deal of computational effort. 
Efficient computational algorithms such as convolution [2] and mean value analysis (MVA) [3] were developed to 
overcome this problem. With convolution, however, numerical difficulties arise when the network has a large 
number of stations and customer classes, and the method also does not lend itself to heuristic extensions for more 
general system models. Mean value analysis, which avoids these problems, is therefore often used to compute the 
performance measures. However, the storage requirements for MVA increase for networks with many service 
stations, customer classes, and customers within each class. Furthermore, if the network contains multiple-server 
stations, the solution requires the evaluation of marginal probabilities in addition to the mean values, thereby making 
the solution more complex and increasing the storage requirements further.  
 
Some approximations have been developed to reduce the computational complexity of MVA. For networks with 
multiple-server stations an approximation was proposed by Chandy and Neuse [5], and improved by Akyildiz and 
Bolch [6]. A key feature of these approximations is that instead of determining the probability mass for the queue 
length distributions exactly, it is placed as close as possible to the mean queue length estimate. In addition to 
introducing high errors, this method is still complicated enough to have limited use in practical applications. For 
networks with single-server stations, the Schweitzer-Bard (S-B) approximation (also known as approximate MVA 
or AMVA) improves the computational efficiency of the MVA algorithm [7] [8]. The basic assumption (for single 
class networks) in this approximation is that when a customer is removed from a CQN, the proportion in which the 
customers are distributed across the network does not change. AMVA is very simple; however, it has only been 
developed for networks with single-server stations.  
 
We attempt to develop a simple approximate method, which is an extension to AMVA, for enabling the analysis of 
networks with multiple-server stations. On the one hand the method retains the simplicity of the AMVA algorithm 
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and on the other it strives for accuracy in performance predictions. We compare our method with simulation for a 
variety of networks to demonstrate the accuracy of our approach. Note that throughout this paper we will assume 
exponential service time distribution and FCFS scheduling discipline.  
 
2. Overview of Strategy for Developing New Approximation 
The notation used in the development of this method is given in Table 1: 
 

Table 1: Notation for model development 
Given Parameters Steady State Performance Measures  

K    -  Number of stations in the network 
N   -  Customer population in the network 

kC  -  Number of servers at station k  

kV  -  Mean number of visits by a customer to   
           station k  

kT   -   Mean service time per visit to station k  

)(NRk   -    Mean response time per visit to station k   
)(NQk   -   Mean queue length (including customers in 

                      service) at station k  
)(NX k   -   Throughput of station k  

)(NX      -   Throughput of network  
)(Nkρ    -   Utilization of each server at station k   

 
MVA is based on the arrival theorem [4] which states that the queue length at station k , as seen by an arriving 
customer, is given by ).1( −NQk  Thus, the response time for this customer at a single-server station is given by [3] 
 
                                                                    )1()( −+= NQTTNR kkkk                                                                         (1) 
 
If station k  has multiple servers then this arriving customer may find some customers in service and some waiting. 
Customers at the multiple servers in the station would result in multiple residual service times.  Also, the waiting 
time in the queue will now be less than the waiting time if there were only one server. As a way of dealing with 
these complications, and to capture the reduction in waiting times at the multiple-server station, we propose to use a 
correction factor, denoted by ,kY  in conjunction with the AMVA algorithm.  We propose the following equation for 
the mean response time for an arriving customer, per visit to a multi-server stationk : 
 
                                                                    )1()( −+= NQTYTNR kkkkk                                                                     (2) 
 
We give the following interpretation to equation (2): When a customer circulating in the network arrives at a multi-
server station k , the mean response time is equal to its own service time, kT , added to its mean waiting time. The 
mean waiting time is the product of the mean number of customers that the arriving customer sees in the station and 
a reduced interference time, kkTY , for each of those customers, to capture the effect of multiple servers in the station. 
Using the S-B approximation, equation (2) becomes 
 

                                                                 )(1)( NQ
N

NTYTNR kkkkk
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+=                                                       (3) 

 
The throughput of the network and the mean queue length at station k  are given by  
 

                                                                       )()(
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                                                                       )()()( NRNXVNQ kkk =                                          (5) 
 
On rewriting equation (5) and substituting for )(NX  from equation (4) we obtain 
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If we know ,kY  on substituting equation (3) into equation (6) we get a system of k  non-linear equations in the k  
unknowns ).(NQk  The values of )(NQk  for the stations are calculated by solving these equations, which 
ultimately allows for the calculation of the network throughput.  In order that equations (3) to (5) can be solved to 
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obtain the values of the performance measures, we need to have an expression for kY .  In keeping with the product-
form solution structure, we would like kY  to be a function of the local station parameters. From elementary queuing 
theory, the waiting time should be influenced by the number of servers kC  at station k  and the station utilization 

.kρ  Therefore, in an effort to derive the simplest possible approximation we hypothesize that kY  can be expressed 
as a function of only these two parameters, i.e. 
 
                                                                             ),( kkk CfY ρ=                             (7) 
 
To determine the form of ,kY  we first analyze a simple 2-station balanced network under various conditions and 
obtain a candidate function. Then we test an algorithm based on this function for a variety of complex networks.  
 
3. Analysis of a Balanced 2-Station Network 
We consider a 2-station network in which the first station has one server ( 11 =C ) and the second station has 
multiple servers ( 2C ). To obtain a balanced network, let 1V = 2V =1, and let ,11 =T  .22 CT =  Henceforth, for 
simplicity of notation, we refer to 2C  as C  and 2Y  as .Y  Also (since the network is balanced) denote the 
utilization of both stations by .ρ  On substituting equation (5) into (3), substituting 2C  for 2T  and rearranging the 
terms, we express Y  as   
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The station utilization is related to the network throughput as follows  
 
                                                                         CTNXN 2)()( =ρ                             (9) 
 

Using this and the fact that ,2 CT =  equation (8) becomes 
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Since the exact values of )(2 NR  and )(Nρ  can be calculated analytically via convolution [2], this expression 
gives us the value of Y  which would result in the exact throughput for a given set of parameters. Next we attempt to 
ascertain whether Y  can be expressed simply in terms of C  and .ρ   To do this, for the 2-station network as 
described previously, we obtain )(2 NR  and )(Nρ  analytically for values of C  from 2 to 11 and N  from 1+C  
to 15+C  for each C . We next calculate value of Y  for each of these settings using equation (10), and plot Y  as a 
function of ρ  for each C .  From the shapes of the plots, and using insights from Sakasegawa’s approximation [9], 
we hypothesize a function of the form .baY ρ=  However, since we have different curves for each ,C  the 
parameters a  and b  should depend on C .  Hence the complete functional form is hypothesized to be  
 
                                                                         )()(),( CbCaCY ρρ =                           (11) 
 
Next we verify if such a function can fit the data reasonably well. First, we find a form for the function )(Ca  using 
a boundary condition. Then, for each value of C  we find the values of )(Cb  that fit the data best. This gives us a set 
of values )11(),...,3(),2( bbb , which we use to find a form for the function )(Cb .  
 
3.1 Determining Functional Form for )(Ca   
On dividing the numerator and denominator of equation (10) by 2R  and on rearranging the terms, we get 
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Now as ∞→N , 1→ρ  and ∞→2R .  Using these limits in equation (12), we have 
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On combining equations (11) and (13) we see that 
 
                                                                                 CCa 1)( =              (14) 
            
3.2 Determining Functional Form for )(Cb   
We first estimate the numerical values of )(Cb . We use equation (14) to express the correction factor Y  as 
 

                                                                                 )(1 Cb

C
Y ρ=                            (15) 

            
For each value of C , we first use the observed data ρ(  and Y ) for a linear regression on the logarithmic form of 
equation (15) (i.e., ρlog)()log( CbCY = ) and get the best fit values for )(Cb . Next, we plot the )(Cb  values 
against the corresponding C  values. Note that 0)( =Cb  at 1=C . To prove this, we show that for a balanced 
network, 1=Y  at 1=C  as follows:  Based on the arrival theorem, for the balanced 2-station network with a single 
server at each station, an arriving customer should see 2)1( −N  customers on average at each station. Since there is 
a single server in station 2, from the second term of the right hand side of equation (3), 
 

                                                                         
2

1)(1
2

−
=

− NNQ
N

NY                                                     (16) 

 
Since the network is balanced 2)(2 NNQ =  and putting this in equation (16) we see that Y  equals 1. Based on the 
plot of  )(Cb  vs. C  and the fact that 1=Y  at 1=C  (which results in 0)1( =b ), we guess )(Cb  to be of the form 

).1()( −= βα CCb  We use the least squares estimation method using the )(Cb  data obtained earlier to get 
464.4=α  and .676.0=β )(Cb  can now be expressed as ).1(464.4)( 676.0 −= CCb  A comparison of this 

expression with actual )(Cb  data shows that the curve fits the data well. Putting together the expressions for )(Ca  
and )(Cb , we obtain the final form for our correction factor as 
 

                                                                         )1(464.4 676.01 −= C

C
Y ρ             (17)  

 
4. Testing the New Approximation for a Variety of Networks 
The solution method using the correction factor is shown next. We call this new method MS-AMVA (Multiple-
Server AMVA). A set of non-linear simultaneous equations are solved to obtain the performance measures.   
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For validation, we first conduct experiments for a balanced 2-station network with one single and one multiple-
server station. We assume kV =1 k∀ . We vary 2C  from 2 to 6 in increments of 2 and we also vary the population 
in increments. Results show that the throughput errors are within 2.5% for all the test cases. We then test the MS-
AMVA method for an unbalanced 2-station network. To unbalance the network, we vary 1T  below and above 1 
while we keep 22 CT =  We use four different values of 2C : 2, 4, 6, and 8. N  is varied from 6 to 12 in increments 
of 2. Even when the multiple-server station is highly stressed (has a relatively high utilization), the throughput errors 
are within 8% of exact values. Next, we test an unbalanced 4-station network with 4 servers in station 4 and one 
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server in each of the other stations. The throughput errors are within 3% for all cases (including high stress cases for 
the multiple-server station) for the range of parameters selected. From these results it appears that the form of Y  that 
was originally developed for a 2-station balanced network also gives low error values when used to predict 
throughput of unbalanced and extended networks. We next test MS-AMVA for a 3-station unbalanced network 
containing one single server and two multi-server stations with ,11 =C  22 =C  and .43 =C  As an example, 
Table 2 shows the results for 8=N . iS  represent the service stations and the service times at these are included in 
the table. The results show that for the range of parameters selected, errors are within 6.5%.  
 

Table 2: Results for an unbalanced 3-station network with 2 multi-server stations, 8=N  
Service Time %Utilization Throughput 

1S  2S  3S  1S  2S  3S  Exact MS-AMVA 
% Error 

1 2 2 84.3 84.3 42.2 0.8434 0.8407 -0.3 
1 2 4 74.6 74.6 74.6 0.7463 0.7643 2.4 
1 2 8 48.2 48.2 96.5 0.4824 0.4558 -5.5 
1 1 2 97.5 48.7 48.7 0.9749 0.9347 -4.1 
1 4 2 49.6 99.2 24.8 0.4959 0.4704 -5.1 
1 1 4 83.2 41.6 83.2 0.8322 0.8275 -0.6 
1 4 4 48.6 97.2 48.6 0.4862 0.4622 -4.9 
1 1 8 49.3 24.6 98.5 0.4927 0.4605 -6.5 
1 4 8 41.4 82.8 82.8 0.4138 0.4187 1.2 

 
5. Determining the Correction Factor for Multi-Class Networks 
We use the following notation: 
N             - Customer population vector ( mN  is number of customers of class m ) 

mkT ,          - Mean service time for class m  per visit to station k  
)(, NR mk -  Mean response time for a class m  customer per visit to station k  with N  customers in network   
)(, NQ mk -  Average queue length for class m  customers at station k  with N customers in network   

)(NX m   - Throughput of class m customers                                                                                                    
 
When there are multiple customer classes, the waiting time of a class m  customer at station k  is also dependent on 
the queue length of class r  )( mr ≠  customers in front of it. If station k  has only one server then using the S-B 
approximation [7] [8] the response time for an arriving class m  customer is given by 
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If station k  has multiple servers, we denote the correction factor to be applied for estimating the waiting times due 
to the class r  customers, by rkY , . We note that rkY ,  may or may not be equal to kY  and therefore needs to be 
investigated. We first conduct a thought experiment wherein we consider two simple 2-station networks, Network 1 
with a single customer class and Network 2 with two customer classes. We set the population, mean service times, 
and visit counts for the networks in such a way that the networks are equivalent in terms of the response times for 
the customers. Then we compare the equations for the two networks to express rkY ,  in terms of kY .  We find that 
the correction factor for a network containing multiple classes with same mean service times has the same form as in 
the case of a single class network or in other words rkY , = kY  . We now hypothesize that in a network containing 
multiple customer classes with different mean service times, the same form for the correction factor will hold.  In 
other words, the mean response time for a class m  customer at a multiple-server station k  can be approximated by 
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We also hypothesize that kY  is a function of the total utilization at station k  by all the customer classes. We 
perform experiments to test our hypotheses and compare our results with simulation, since analytical results do not 
exist when the network has FCFS service discipline with different mean service times for different customer classes. 
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6. Validation Experiments for Multi-Class Networks 
The solution method using the correction factor uses a set of non-linear simultaneous equations similar to those in 
section 4, but with equation (19) used for the response time, and the remaining equations modified suitably for 
multiple classes (see [7] [8] for details). We use three different networks for the validation experiments. For each 
network, we compute the throughput for different service times, and for each service time setting we evaluate 
various customer populations. The networks are: 2-station 2-class, 3-station 4-class and 4-station 6-class. We 
assume probabilistic routing for the customers. For the 2-station network, we set 11 =C , 22 =C  for one 
configuration and 11 =C , 42 =C  for another. For the 3-station network, we set 121 == CC , 23 =C  for one 
configuration and 11 =C , ,22 =C 33 =C  for another. For the 4-station network, we set 1321 === CCC , 

24 =C  for one configuration, ,131 == CC ,32 =C 24 =C  for another, and ,11 =C  
,22 =C ,33 =C 44 =C  for the third. We obtain throughput by solving MS-AMVA non-linear equations using 

the GAMS equations solver. We also model the networks using the Arena simulation software. The 95% confidence 
intervals in the simulations were found to be within 2% of the observed mean for all cases. For the 2-station 2-class 
networks, the MS-AMVA throughput prediction errors were less than 6.5%. For the other two networks the errors 
were within 10%. Table 3 shows results for a particular 3-station 4-class network configuration.   
 

Table 3: Comparison results for a 3-station 4-class network with 11 =C , 22 =C  and 33 =C  

% Utilization Throughput - 
Class 1 

Throughput - 
Class 2 

Throughput - 
Class 3 

Throughput - 
Class 4 

N  
1S  2S  3S  Sim. 

MS- 
AMVA 
%Error 

Sim. 
MS-

AMVA 
%Error 

Sim. 
MS-

AMVA 
%Error 

Sim. 
MS-

AMVA 
%Error 

2,2,2,2 64.2 82.9 81.5 0.2681 -3.8 0.5468 -8.0 0.2748 -5.0 0.3909 -6.6 
3,1,4,2 64.8 58.1 91.9 0.2901 -4.2 0.357 -6.4 0.3639 -6.8 0.2469 -8.1 
1,1,1,1 45.4 67.4 56.5 0.2018 -1.9 0.429 -7.9 0.1579 0.7 0.3261 -6.8 
1,2,3,1 72.1 69.3 81.4 0.1415 -3.2 0.6336 -8.6 0.3886 -6.1 0.2245 -7.3 

  
2,2,2,2 94.1 59.1 77.4 0.1788 -1.0 0.4043 -4.8 0.2906 -5.0 0.4231 0.2 
3,1,4,2 90.8 52.9 88.8 0.2431 -0.9 0.2377 -8.3 0.4872 -5.6 0.3333 -6.4 
1,1,1,1 84.1 39.8 53.0 0.1237 -2.2 0.3915 -5.7 0.2424 -5.5 0.2467 0.1 
1,2,3,1 96.2 35.7 58.8 0.0884 -1.6 0.3667 -5.9 0.4113 -2.5 0.2440 0.8 

 
7. Conclusion 
It is evident from the results that the MS-AMVA throughput predictions are reasonably accurate. We conclude that 
the MS-AMVA method developed using single class networks also provides reasonable throughput estimates for 
multi-class networks.  
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