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Abstract 

Two new distributed protocols for fair and efficient bus arbitra- 
tion are presented. The protocols implement round-robin (RR) and 
first-come first-serve (FCFS) scheduling, respectively. Both proto- 
cols use relatively few control lines on the bus, and their logic is 
simple. The: round-robin protocol, which uses statically assigned 
arbitration numbers to resolve conflict during an arbitration, is more 
robust and simpler to implement than previous distributed RR proto- 
cols that are based on rotating agent priorities. The proposed FCFS 
protocol uses partly static arbitration numbers, and is the first practi- 
cal proposal for a FCFS arbiter known to the authors. The proposed 
protocols thus have a better combination of efficiency, cost, and fair- 
ness characteristics than existing multiprocessor bus arbitration algo- 
lithIllS. 

Three implementations of our RR protocol, and two implementa- 
tions of our FCFS protocol, are discussed. Simulation results are 
presented that address: 1) the practical potential for unfairness in the 
simpler implementation of the FCFS protocol, 2) the practical impli- 
cations of the higher waning time variance in the RR protocol, and 
3) the allocation of bus bandwidth among agents with unequal 
request rates in each protocol. The simulation results indicate that 
there is very little practical difference in the performance of the two 
protocols. 

1. Introduction 

A parallel contention arbiter, invented at Computing Devices of 
Canada [UKPS66] and by D. M. Taub [Taub84], is a popular method 
for multiprocessor bus arbitration. For example, it has been adopted 
in nearly ah multiprocessor bus standards, including Futurebus, 
Fastbus, NuBus, and Multibus II [Taub84, Gust86, PWGr86, 
IMSC861. 

The parallel contention arbiter is very efficient. Selection among 
up to 2’ competing devices can be carried out in approximately k/2 
end-to-end bus propagation delays, plus a small amount of delay for 
the arbiter logic, Thus, the overhead of this distributed arbiter is 
comparable to the overhead of efficient central arbiters. However, 
there are at least three reasons for the popularity of this arbiter over 
the central arbiters. First, it requires very few wires on the bus to 
carry out the arbitration algorithm. The number of wires required is 
[loga (N+I)~ , where N is the number of devices that may compete for 
control of the bus, plus a few control lines. Second, priority schedul- 
ing of urgent requests is easily integrated with mechanisms for fair 
scheduling of non-priority requests in this arbiter. Third, the state of 
the arbiter is available and can be monitored on the bus. This is use- 
ful for software initialization ot the system and for diagnosing sys- 
tem failures. 
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Assured access protocols have been designed to provide fairness 
in the parallel contention arbiter [Gust84]. These protocols are 
widely regarded as being fair. That is, it is widely believed that 
these protocols provide ah devices on the bus with equal access to 
the bus [Gust84, Taub84, IMSC86, PWGr86, Haw187]. However, 
recent modeling studies [KlCa86, VeLe881, and a recent trace simu- 
lation study [EgGi87], show that existing assured access protocols 
are actually quite unfair. Under important system assumptions, these 
studies show that the amount of bus bandwidth allocated to each 
device in a set of purportedly equal devices is a continuum, in which 
the most favorably treated device receives perhaps typically lo%, 
but in the worst case 100% more bandwidth than the least favorably 
treated device. The relative bus bandwidth allocated to each proces- 
sor in a multiprocessor translates directly to the relative speeds at 
which application processes run on the processors. 

This paper proposes two new protocols that can he implemented 
in the parallel contention arbiter. The protocols implement round- 
robin (RR) and first-come first-serve (FCFS) scheduling, respec- 
tively. The RR protocol implements true round-robin scheduling, 
identical to the central round-robin arbiter, yet retains the advantages 
of the parallel contention arbiter outlined above. The FCFS protocol 
implements scheduling that is very close to true first-come first-serve 
scheduling, and is the first practical proposal for a FCFS arbiter 
known to the authors. The RR and FCFS protocols are perfectly fair. 
Furthermore, the logic required to implement the RR and FCFS pro- 
tocols is as simple as the logic required for the assured access proto- 
cols. 

We wish to emphasize that the RR and FCFS protocols are very 
general and have the potential for wider applicability than bus arbi- 
tration. The protocols implement arbitration among a set of agents, 
each of which is identified by a unique, statically-assigned number. 
The only requirements are: 1) that there is an efficient mechanism for 
selecting the maximum out of any subset of agent identities, and 2) 
for the RR protocol, that each agent is able to know the identity of 
the winner at the end of each arbitration. It is the application of the 
protocols to bus arbitration that we focus on in this paper. 

The organization of this paper is as follows. In section 2 we pm- 
vide a review of the of the parallel contention arbiter, including a 
description of the information that is available to all devices on the 
bus. Section 3 describes our new protocols which make use of this 
information to implement RR and FCFS scheduling. Section 4 
presents a comparative analysis of the RR and FCFS protocols. The 
practical implications of the theoretical properties that distinguish 
the RR and FCFS algorithms are explored. The results of this sec- 
tion indicate that the advantages of either protocol relative to the 
other are very small. Section 5 contains the conclusions of this 
study. 
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2. Background 
In this section we review the parallel contention arbiter and the 

existing assured access protocols for this arbiter. We then comment 
briefly on the fairness of the assured access protocols, and on how 
priority service of urgent requests is integrated with the assured 
access protocols. Throughout the discussion, we use the term agent 
to refer to any device that can request control of the bus to initiate a 
data transfer. All other devices on the bus can act only as slaves. 
The agent that has control of the bus will be called the current bus 
master. 

Each bus line used by the arbiter has the important property that 
it carries the “wired-OR’ of the signals applied by all agents. That 
is, the line is tied to a voltage source and each agent either lets the 
line float (logical “o”), or forces it to another particular voltage level 
(logical “1”). Applying a “1” to a line will be called asserting the 
line; allowing it to float back to “0” is releasing it. 

2.1. The Parallel Contention Arbiter 

The parallel contention arbiter is based on assigning each agent a 
unique k-bit arbitration number, which we will call its “identity”. 
The value of k is rlog#+l)] , where N is the maximum number of 
agents that can be attached to the bus. (No agent is assigned the 
identity “O”.) For example, in the Futurebus standard, k=6. 

An agent that wants control of the bus asserts a shared bus 
request line, and waits for a signal to start arbitration. The signal to 
start arbitration may be generated by the current bus master, a central 
timing controller, or any agent on the bus. The details and altema- 
tive possibilities for this mechanism are not important for the current 
study. 

At the start of an arbitration, the agent applies its arbitration 
number to a set of arbitration lines provided on the bus for this pur- 
pose. The agent then monitors each of the arbitration lines, in paral- 
lel. If the value carried by line i is “l”, but the agent is applying “0” 
to it, then the agent removes the lower-order i-l bits of its identity. 
If line i drops back to “O”, the agent reapplies the lower-order bits it 
removed before For example, consider the case where two agents 
with identities 1010101 and OOlllCQ respectively, are requesting 
the bus. The first agent will remove its three lowest order bits, leav- 
ing 1010000, and the second agent will remove all its bits. Next, the 
first agent will reapply its three lowest order bits, and the second 
agent will do nothing, since the most significant bit still remains. It 
is easy to see that after some period of time the system reaches 
steady state, in which the lines carry the maximum identity over all 
competing agents. The agent whose arbitration number matches the 
winning number becomes the next bus master. Note that at the end 
of the arbitration, each agent knows the identity of the winner, as 
well as whether it has won or lost. 

The arbitration algorithm is cleverly designed so that the delay to 
reach steady state is very small. Iu fact, Taub has proven that the 
maximum delay to reach steady state is $ end-to-end bus propaga- 

tion delays, plus a small amount of delay for the monitoring logic 
[Taub84]. His proof is based on a worst-case physical assignment of 
identities along the bus. In practical systems, the delay for arbitra- 
tion safely occurs within one hundred nanoseconds. Furthermore, a 
scheme for binary patterned arbitration lines [John831 reduces the 
arbitration overhead to a single end-to-end bus propagation time, 
plus some overhead for comparison logic. However, the identity of 
the winning agent is not available to all agents on the bus in the 
binary patterned scheme. 

The overall control of the arbitration, including starting an arbi- 
tration and handing over control to the winner, is synchronized by 
the clock in synchronous buses, or occurs in a self-timed fashion in 
asynchronous buses. As noted above, the details of this control are 
not important for the protocols studied in Uris paper. 

2.2. Assured Access Protocols for the Parallel Contention Arbiter 

The parallel contention arbiter reviewed above implements fixed 
priority service, in which an agent’s priority is defined by its 
assigned arbitration number. Round-robin scheduling, implemented 
using a dynamic assignment of arbitration numbers, has been pro- 
posed. However, this scheme is less robust and mom complex to 
implement than schemes that are based on static identities. The two 
fairness protocols discussed below use the static identities, and have 
been adopted in the bus standards that employ the pamlIe contention 
arbiter. 

For non-priority requests, arbitration numbers in the paralIe1 con- 
tention arbiter are used as a means for efficient distributed agreement 
on who willbecome the next bus master. To overcome the unfair- 
ness inherent in the basic priority selection mechanism, assured 
access protocols have been designed to provide all agents with equal 
access to the bus. These protocols are based on batching requests, 
such that all requests in a batch arc served before any new requests 
can be made. In particular, requests in the batch from agents with 
low assigned identities will receive service before new requests can 
be made by agents with high assigned identities. 

There are two distinct assured access protocols that implement 
slightly different batching rules. One protocol has been adopted in 
the Fastbus, NuBus, and Multibus II standards [Gust86, PWGr86, 
IMSC86]: the other has been adopted in the Futurebus standard. 

In the first protocol, alI requests that arrive to an idle bus assert 
the bus request line and form a batch. An agent in the batch com- 
petes during each arbitration until it has been granted ownership of 
the bus. An agent that generates a new request while a batch is in 
progress must wait for the batch to end before asserting the request 
line and competing for access. The end of the batch is generally sig- 
nailed by a logical “0” on the request line, since each agent in the 
batch releases the request line at the start of its bus tenure. All 
requests that are waiting at the end of a batch assert the shared 
request line and form a new batch. Agents in a batch receive service 
in order of their assigned identities, according to the parallel conten- 
tion arbitration. 

In the second assured access protocol, an agent with a request 
asserts the request line and competes in successive arbitrations until 
acquiring the bus ownership status. At the completion of its bus 
tenure, the agent marks itself as “inhibited”, and won’t assert the 
request line or compete for bus ownership until a fairness release 
operation takes place. The fairness release operation is an arbitration 
cycle in which no agents assert the request line. In other words, 
either there are no outstanding requests, or alI agents with outstand- 
ing requests are inhibited. 

The second protocol implements a batching algorithm similar to 
the first protocol. A batch starts and ends with a fairness release 
cycle. No agent is bus master more than once in a batch, but an 
agent with a request that is generated during a batch is allowed to 
join the batch if the agent has not previously received service in the 
batch. 

2.3. Fairness of the Assured Access Protocols 

There is a significant source of unfairness in the above assured 
access protocols. In every batch, an agent always receives service 
a&r all agents in the batch that have higher identities. For multipro- 
cessor systems ip which the processors do not continue executing 
while waiting for a memory request to be satisfied, this means that 
the lower-identity processors execute at a slower rate. The differ- 
ence in throughput between the most favorably treated agent (i.e. the 
agent with the highest assigned identity) and the least favorably 
treated agent is perhaps typically about lo%, and can be as high as 
100% for each of the protocols described above [VeLe88]. A 
slightly modified version of the second protocol has a maximum of 
lo-15% difference in throughput. This type of unfairness that cart 



lead to undesirable results when discovered by the users of the sys- 
tem. Furthermore, tightly coupled parallel algorithms are often sen- 
sitive to the speed of the slowest processor. In this case, the unfair- 
ness can affect total system performance. The unfairness is com- 
pletely eliminated in the RR and FCFS protocols we propose in Sec- 
tion 3. 

2.4. Integration of Priority and Fairness in the Parallel Contention 
Arbiter 

Priority scheduling of urgent requests is easily integrated with 
the assured access protocols in the parallel contention arbiter. In this 
case, agents follow the assured access protocol for non-priority 
requests, but ignore the protocol and compete in every arbitration for 
priority requests. Furthermore, an extra line can be provided on the 
bus, to be treated as the most significant bit of the agent’s identity. 
Agents with priority requests assert this line during arbitration; 
agents with non-priority requests do not. This guarantees that all 
priority requests will be served before non-priority requests. 

The integration of priority requests is also straightforward in the 
RR and FCFS protocols we propose in Section 3. 

3. Two New Distributed Protocols 

The key idea in designing distributed arbitration protocols is that 
some information about the status of all agents can be obtained very 
efficiently. The information that can be obtained efficiently is usu- 
ally very partial (e.g., is anyone requesting the bus?), and consists of 
a set of bits that can be set and/or sensed simultaneously by all 
agents. In the parallel contention arbiter, the shared information con- 
sists of the following: 1) the wired-OR of whether or not each agent 
is requesting the bus, 2) control signals for starting an arbitration and 
handing over control to the winner, and 3) the wired-OR of each bit 
of the competing arbitration numbers, (or a subset of these numbers 
in the case of binary patterned arbitration lines). It seems at first that 
this kind of distributed information is very limited, but in fact it can 
be used as a basis for simple yet powerful algorithms.’ Below we 
present two new protocols which show that it is possible to mauipu- 
late the given partial information to obtain fair agreement on the next 
agent to control the bus. Both protocols rely on an efficient roux- 
hum jinding algorithm, such as the algorithm implemented by the 
parallel contention arbiter. One protocol enforces a round robin 
scheduling policy; the other enforces a first-come first-serve policy. 
In both cases, statically assigned identities are used in resolving 
conflict during an arbitration. We believe that these protocols am 
more robust and simpler to implement than the round-robin protocol 
that can be implemented using a dynamic assignment of identities. 

3.1. The Round Robin Protocol 

The most obvious way to implement round-robin scheduling in 
the parallel contention arbiter is to use a dynamic assignment of 
identities for each agent. However, more careful thought reveals that 
a simple protocol which uses the statically assigned identities is pos- 
sible. To see this, note that if an agent with assigned identity j is the 
winner of a given arbitration, then the round-robin algorithm will 
scan agents with assigned identities j-l through 1 and then agents 
with identities N through j in the next arbitration. Our round-robin 
protocol is based on the important observation that the maximum 
finding algorithm will implement this round-robin scan if we provide 
a mechanism to specify that agents with identities j-l through 1 
have priority over agents with identities N through j. in each arbitra- 
tion. Below we outline three possible implementations of the 

’ The general idea can be canpared with the design of the Ethernet and aher multiple BC- 
cess channel protocols. However, the possibiiities are very different. since the propagation of 
signals is much faster in the current setting. ‘There is no need for “back&,” nor probabilistic 
choices. Also. WE do not assume to be able to detect collisions. We can only teU whaler the 
line is busy or not. 

round-robin protocol that are based on this idea. All three imple- 
mentations require the identity of the winning agent to be available 
to all agents. In other words, binary patterned arbitration lines can- 
not be used easily for the protocol. This is not a serious drawback, 
since the parallel contention arbiter with fuIl arbitration lines is 
highly efficient.* 

The first, and probably simplest implementation of the round- 
robin protocol requites an extra bit of shared information (i.e. an 
extra line on the bus). We call this bit the round-robin priority bit. 
The round-robin priority bit is treated as the most significant bit of 
the agent’s identity. Each agent records the identity of the winning 
agent at the end of every arbitration, excluding the round-robin prior- 
ity bit. An agent asserts the shared bus request line and competes in 
the next arbitration whenever it desires control of the bus. When an 
agent competes in an arbitration, the agent sets the round-robin prior- 
ity bit to “1” if its static identity is smaller than the recorded identity 
of the winner of the previous arbitration. The logic needed to imple- 
ment this protocol thus primarily consists of a register to store the 
winning identity, and a comparator to determine if the agent’s 
assigned arbitration number is smaller than the recorded value. The 
output of the comparator is input to the round-robin priority bit of 
the agent’s arbitration number. Note that this logic replaces the logic 
required to implement either of the assured access protocols 
described in Section 2.2. 

The second implementation of the round-robin protocol also 
requires the round-robin priority line, but uses it in a different way. 
To avoid confusion, we re-name the round-robin priority line the 
low-request line. Any agent that wants control of the bus asserts the 
shared bus request Iine. In addition, an agent requesting control of 
the bus asserts the low-request line if its identity is lower than the 
recorded identity of the most recent winner of an arbitration. An 
arbitration is only started if the bus request line is asserted. If low- 
request is also asserted at the start of an arbitration, only agents with 
identities lower than the winner of the previous arbitration compete 
in the arbitration. The agent with the highest identity among this 
group of competitors becomes the next bus master, and releases the 
shared request line at the start of its bus tenure. The logic required 
for the second implementation is similar to the logic for the first 
implementation. Each agent requires a register to record the winning 
identity at the end of each arbitration, and a comparator to determine 
if it’s statically assigned identity is smaller than the recorded iden- 
tity. 

The third implementation of the round-robin protocol is some- 
what less efficient than the first two implementations, but does not 
require the extra line on the bus. As in the first two implementations, 
an agent asserts the shared bus request line whenever it wants control 
of the bus, and each agent records the identity of the winning agent 
at the end of every arbitration. An arbitration is only started if the 
shared bus request line is asserted. Only agents with assigned identi- 
ties lower than the recorded identity of the previous winner compete 
in an arbitration. Since no agent has an assigned identity of zero, a 
winning identity of zeta indicates that no agent participated in the 
arbitration. In this case, the value N+l is recorded as the winning 
value and a new arbitration is started immediately. Note that no 
agents will be inhibited in the second arbitration. 

The above protocols implement non-preemptive round-robin 
scheduling, each with approximately the same complexity. The 
round-robin scan is conceptually implemented in two parts. The first 
part scans all agents with identities lower than the previous winner, 
and the second part scans all agents with higher identities. Detailed 
timing considerations, currently under study, will reveal which of the 

’ Note that if the efficiency of the binary patterned arbitratim lines is required. the identity 
of Be winning agent could be broadcast on an extra set of k lines that would have to be provid- 
ed for this purpose. 
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first two implementations is best. In any case, the implementation is 
expected to be as simple and efficient as existing assured access pro- 
tocols. 

Priority scheduling of urgent requests is easily integrated with 
round-robin scheduling of non-priority requests in any of the imple- 
mentations of the round-robin protocol. The first implementation 
has the further advantage that round-robin scheduling can be easily 
implemented within the priority class, if desired. Mechanisms for 
round-robin scheduling of priority requests are more complex in the 
other two implementations. The integration of priority service in the 
first implementation of the round-robin protocol works as follows. 
The round-robin priority bit is treated as the second most significant 
bit of the arbitration identity, a new most significant bit is used for 
true priority requests, and the remaining bits carry the agent’s static 
identity. Agents may ignore the round-robin protocol for priority 
requests by always setting the round-robin priority bit to “1” for 
these requests. Alternatively, agents can follow the protocol to 
implement round-robin scheduling within the priority class. 

3.2. The First-Come First-Serve Protocol 

The key idea in our first-come first-serve (FCFS) algorithm is 
that each agent’s identity is the concatenation of two parts. The first 
and least significant part is the statically assigned arbitration number, 
as in the standard parallel contention arbiter. The second and more 
significant part is a counter that indicates how long a request has 
been waiting relative to other requests. The counter is set to “0” 
when the agent has a new request for the bus, and is incremented 
upon some predefined global events that occur while the agent waits 
for bus ownership. The idea is similar to the idea behind proposals 
for rotating assigned arbitration numbers in the parallel contention 
arbiter, but is more robust since part of each identity is statically 
assigned. 

An agent wanting control of the bus asserts the shared bus 
request line immediately, and competes in the next arbitration using 
its composite identity. The trick is to use the counter as the most 
significant bits of the full identity. The maximum finding algorithm 
will select the agent with the highest counter. This algorithm gives 
priority to the agents that have waited longer, which is exactly the 
goal in the FCFS policy. 

The waiting time counters cannot implement the global FCFS 
order of the requests in the bus queue perfectly, since there will 
always be some chance that two requests will arrive at different 
instants, but within the same interval between two events that cause 
the counters to be incremented. In general, there is a trade-off 
between how accurately the counters implement the FCFS ordering, 
and the simplicity of the hardware needed to implement the counting 
mechanism. Below we suggest two alternative strategies for incre- 
menting the counters which have different characteristics in each of 
these two dimensions. We first discuss the strategies assuming prior- 
ity requests am not supported in the implementation, and then dis- 
cuss how the implementations change to integrate priority requests. 

The simpler, but less accurate strategy for incrementing the 
counter, is to increment the counter each time the agent loses in an 
arbitration. In this case, two agents that generate requests during the 
the same interval between two successive arbitrations will have the 
same value of the waiting time counter, and will be served in order 
of their statically assigned identities. Otherwise, agents will be 
served in FCFS order. If each agent can have a maximum of one 
outstanding request, then N is the maximum number of requests that 
can received service while the agent waits for bus ownership. Thus, 
the logic needed to implement this strategy is a modulo-N counter 
that is incremented by the arbitration result: “lose”, and reset by the 
arbitration result: “win”. 

The second strategy for incrementing the counter requires an 
extra line on the bus. Call this line a-incr. An agent asserts this line 

for a very short period of time (e.g., two to four end-to-end bus pro- 
pagation delays), when it senses a “0” on the a-incr line and it has a 
new request for the bus. A waiting agent increments its counter each 
time the a-incr line is asserted. It is possible to have two agents 
asserting the a incr line at the same time, in which case these two 
agents will have the same values for their waiting time counters, and 
will be served in order order of their statically assigned identities. 
However, the length of the interval in which this can occur is defined 
by the time it takes to sense the a-incr line, generate the a-incr sig- 
nal, and propagate the signal along the bus. This interval is certainly 
much smaller than the time between successive arbitrations. Thus, 
this second strategy implements the FCFS policy more precisely than 
the first strategy. The second strategy also requires the same number 
of bits to implement the counter. However, the logic to implement 
the second strategy is slightly more complicated, due to the need to 
generate a signal on the a-incr line when a new request arrives. 

Both implementations clearly implement a first-come first-serve 
policy, except for the case when more than one agent requests the 
bus in the same interval between counter updates. These reqeusts are 
served in a fixed priority order. We expect the inaccuracy and 
unfairness due to this effect to be negligible for the second method of 
incrementing the counters. In Section 4, we evaluate the unfairness 
in the protocol due to this effect for the first method of incrementing 
the counters. 

One nice property of the FCFS algorithm is that it can easily be 
modified to allow each agent to have more than one active request, 
yet still serve all requests in FCFS order. If the maximum number of 
outstanding requests from each agent is r, then only r logzrl more 
bits are needed for the waiting time counters. For example, if one 
allows each agent to have up to 8 requests outstanding, first come 
first serve can still be implemented with only 3 more lines, and a 
small increase in arbitration delay. 

Priority requests can be integrated in the FCPS arbiter by adding 
a third part to each agent’s composite identity. This third pan is a 
most significant bit that is set to “1” for priority requests. Note that 
in the case of priority requests, agents can use the counting mechan- 
ism that implements FCFS scheduling, or some other value can be 
used for the second part of the identity. However, priority requests 
introduce some complexity in the strategies for updating the waiting 
time counters for non-priority requests in the FCFS arbiter. The 
complexity arises because an arbitrary number of priority requests 
can increment the counter for any given non-priority request. One 
solution is to ignore this problem and increment the countem exactly 
as specified in either of the strategies above. In this case, the waiting 
time counters for non-priority requests may overflow and be reset to 
zero. This may be the right approach if the likelihood of overflow is 
small. Another option, using the first strategy for incrementing the 
waiting time counters, is to update the counter only if the most 
significant bit of the winning identity matches the value of the prior- 
ity bit for the agent’s request. In this case, the value of the waiting 
time counter for a non-priority request correctly specifies the number 
of intervals the request has been waiting, but the size of the interval 
during which two new requests might arrive is larger, since it is 
measured by the time between two successive arbitrations in which 
no priority requests compete. The relative merit of this approach 
compared with the strategy that allows counter overflow is highly 
dependent on the characteristics of the bus workload, and is beyond 
the scope of this paper. A third option can be implemented using the 
second strategy for incrementing the counters. In this case, two extra 
lines are provided on the bus: a-incr, and a-incrgriority. An 
agent’s waiting time counter is updated only if the priority of its 
request matches the priority of the asserted a-incr line. In this case, 
the waiting time counters work as well as in the original scheme, at 
the expense of some complexity in the logic. 

The distributed first-come first-serve algorithm is efficient, 
although not as efficient as the round robin algorithm. The main 
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difference is due to the larger identities in the FCFS protocol. This 
implies a larger overhead for the maximum finding algorithm (i.e., 
for the arbitration), and requires mote lines on the bus. However, 
only [ logfl] bits arc required for the dynamic portion of the iden- 
tity. That is, at most we need to double the the size of the identities. 
It is possible that binary patterned arbitration lines [John831 can be 
used for the lines that carry the static portion of the agent identities, 
to make up for the higher overhead.3 Alternatively, fewer bits in the 
dynamic portion should implement nearly ideal FCFS scheduling 
when the bus is not saturated. 

4. Comparative Evaluation of the Proposed Protocols 

Given the above proposals for round-robin and first-come first- 
serve arbitration, we might ask which of the two protocols is the pre- 
ferred method? The RR protocol is simpler to implement, somewhat 
more efficient unless binary patterned arbitration lines arc used in the 
FCFS scheme, and is perfectly fair. On the other hand, the FCFS 
protocol is also simple and efficient, and has the nice theoretical pro- 
perty of minimum waiting time variance [ShAhSl].4 The simpler 
implementation strategy for the FCFS protocol has some potential 
for unfairness due to the coarse resolution of the waiting time 
counters; however, the second implementation strategy we proposed 
should bc nearly perfectly fair. 

In this section we report the results of some preliminary simula- 
tion studies that explore the practical potential for unfairness in the 
simpler FCFS implementation, and the practical implications of the 
lower waiting time variance for the FCFS discipline. We also 
explore how agents with unequal mean request rates are treated in 
each of the arbitration protocols, and we examine the performance of 
the RR protocol for a contrived “worst case” workload scenario. 
Section 4.1 discusses the assumptions made in our simulation experi- 
ments; Sections 4.2 - 4.5 present the results. 

4.1. Assumptions in Our Simulation Experiments 

We outline the assumptions made in our simulation studies in 
this subsection. We believe that these assumptions represent one 
reasonable and important set of assumptions that can be used for 
comparing the protocols. 

To begin with, we assume that bus transaction times are deter- 
ministic, as would be the case if the transfers were cache block 
transfers or I/O block transfers in a multiprocessor. We let the bus 
transaction time define the unit of time in our simulations. We allow 
inter-request tunes to vary, and specify only the mean and the 
coefficient of variation (CV) of the interrequest time distribution.’ 
We vary the CV between 0 (i.e. deterministic) and 1 (i.e. the 
exponential distribution). The exponential distribution yields the 
highest contention for the bus, and thus the largest value for metrics 
such as waiting time variance. In the presentation of the results, 
values of CV are only explicitly given if they arc other than 1.0. We 
further assume that the bus arbitration overhead is 0.5 units of time. 
That is, arbitration overhead is half of a bus transaction time. (Gen- 
erally, this last assumption implies small block transfers, on the 

’ The description of how this works is beyond the sccpe of this paper, however. in this 
case, tic arbit,mio,, overbead for the FCFS pmowl would be nearly identical to the overhead 

k 
for the RR pmtcal. since the delay for the dynamic portion of the identity would be - tnd- 

2 
to-end bus propagation delays, and the delay for the static portion of the identity would be P 
single end-toad bus pqagatim delay. Recall that binary pattcmedlincs cannot bc used casi- 
ly in the round-Aim arbir. 

’ Note that the mean waiting time for bus mqucsts is the same for both the RR and FCFS 
prmcols. a8 well as for the existing awmd access pmtocnls reviewed in Section 2.2. ‘Ihis is 
true according to a welLestablished conservation law for workumscrving systems with non- 
pncmptive service disciplines, where the order-of-scrvia is not detmnimd by the service 
timea of the individual requests IKlei761. 

QIG CV is de&ml as the standad deviation divided by the mean. For D<CV<l. WC USC 
the Erlmg distribution with the specified mean. 

order of four bus cycles for 10 MHz buses; however, the primary 
significance of the assumption is that arbitration is completely over- 
lapped with bus service whenever requests are waiting.) Finally, we 
assume that arbitration for the next master starts at the beginning of a 
bus transaction whenever requests are waiting. 

Because the input bus intermquest times in our simulations are 
samples from a specified probability distribution, obtained by using a 
pseudo-random number generator, it is important that we compute 
confidence intervals for our output measures. We do so using the 
method of Batch Means [Lave83]. AU of our simulations were run 
for 10 batches, with 8000 sample outputs in a batch. We have com- 
puted 90% confidence intervals, which arc generally within 5% of 
the reported measures. 

In most of the studies below, we considered systems with 10,30, 
and 64 agents. The offered load of. an individual agent is defined as 
its bus transaction time divided by the sum of its bus transaction time 
and mean interrequest time. This is the fraction of time the agent 
would use the bus if them were no interference from other agents. 
The total offered load is the sum of the individual loads over all 
agents. Total offered load is referred to as “load”, and the offered 
load of a agent is referred to as “load” with a subscript for the static 
identity of the agent. 

We report performance measures as a function of total offered 
load, which we typically varied from 0.25 to 7.5 for each system. 
We note that a total offered load of 1.5-2.0 is sufficient to keep the 
bus 100% utilized, even with variable interrequest times. Thus, the 
loads we studied above this value represent peak demand for the sys- 
tem, and are useful for looking at the asymptotic behavior of the pm- 
toco1s. 

4.2. Fairness of the Simple FCFS Implementation 

Our first simulation experiments were performance to investigate 
the practical potential for unfairness in the simple implementation of 
the FCFS protocol. We investigate how equitably this implementa- 
tion allocates bus bandwidth to a set of agents with identical bus 
interrequest time (and service time) distributions. We have noted 
earlier that the batching assured access protocols can be highly unfair 
in this regard. In contrast, the RR protocol is perfectly fair. The 
second implementation of the FCFS protocol proposed in Section 3.2 
can also be used to achieve nearly perfect fairness. The extent to 
which this is necessary is the subject of our first simulation experi- 
ments. 

The results for a bus with 10 agents are shown in Table 4.1(a). 
The first column in the table contains the total offered load. The 
second column indicates the total system throughput, in bus requests 
per unit of time. This value is also the bus utilization, since the unit 
of time is defined by the bus transaction time. The third and fourth 
columns of the table give the ratio of the throughput for the agent 
with the highest static identity to the throughput of the agent with the 
lowest static identity, for the RR and FCFS protocols, respectively. 
The RR results are included to illustrate the statistical variations that 
occur in the simulation outputs, since the throughput ratio for this 
protocol should be precisely 1.0. Tables 4.1(b) and (c) contain the 
results for 30 and 64 agent systems, respectively. 

We observe that the fairness of the simple implementation of the 
FCFS protocol is generally quite good. The maximum difference in 
throughput appears to be about 6-8%, which occurs near the point at 
which the bus becomes saturated. This compares favorably with the 
rcsuhs for the assured access protocols [VeLe881. Results for the 
first assured access protocol described in Section 2.2 are given in the 
last column of Table 4.1(b) to illustrate the comparison. If more per- 
fect fairness is requited in the FCFS protocol, the second proposed 
implementation method should be used. 
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Table 4.1: Allocation of Bus Bandwidth Among Agents agents, 195% higher for 30 agents, and 350% higher for 64 agents, 
with Equal Request Rates than in the FCFS arbiter. 

To illustrate the difference in waiting time variance further, we 
have plotted the cumulative distribution function (CDF) of the wait- 
ing time for both protocols in Figure 4.1, for a “typical” set of 
parameter values. Note how sharply the CDF rises near the mean 
waiting time for the FCFS protocol. 

One advantage of a smaller waiting time variance may occur 
when useful execution can be overlapped with bus waiting times. In 
this case, for certain values of the amount of time the agent can exe- 
cute productively while waiting for bus ownership, the agents in the 
FCFS system may be able to precisely overlap productive execution 
with waiting time more often. Note that the “optimal” overlap for 
differentiating between the protocols will have some value approxi- 
mately equal to the mean waiting time. This value must be selected 
carefully in order for the differetlces between the two protocols to be 
observable. In this sense, the experiments which yield observable 
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19.00 2.35 6.62 
25.00 1.60 4.71 
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4.3. Signilicance of the Waiting Time Variance for RR and FCFS 

In our next set of experiments, we investigate the practical 
significance of the difference in waiting time variance between the 
RR and FCFS protocols. Sharma and Ahuja have shown that the 
FCFS protocol has the minimum waiting time variance [ShAh81]. 
Bain and Ahuja have presented some results that indicate the differ- 
ence in waiting time variance may be substantial at high load 
[BaAh81]. However, the practical significance of the difference in 
waiting time variance is not clear. We have measured the standard 
deviation of the bus waiting time in several simulation experiments. 
We also speculate that due to the reduced waiting time variance, 
FCFS will have better performance if useful execution can be par- 
tially overlapped with bus delays. We have studied a hypothetical 
system with this property. These results are reported below. 

In Table 4.2, we present the mean bus waiting time (for both pro- 
tocols), the waiting time standard deviation for each protocol (ox. 
X=RR,FCFS), and the ratio of the waiting time standard deviations, 
as a function of offered load for each of three system sizes. We find 
that the standard deviation in RR is as much as 60% higher for 10 

(c) 64 Agents 

- 
1 W uw FCFS aw RR 

1.66 0.37 0.37 
1.96 0.72 0.76 
5.52 3.23 4.06 

22.32 4.54 10.99 
32.99 3.93 13.78 
39.39 3.51 14.45 
52.20 2.44 10.89 
56.46 1.95 7.46 



r Table 4.3: Performance Comparison for Execution 
Overlapped with Bus Waiting Times 
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Figure 4.1: CDF of the Bus Waiting Time for RR and FCFS 
(30 Agents; Load = 1.5) 

differences between the protocols are very contrived. 
We have investigated one hypothetical case that maximizes the 

advantages of the FCFS protocol. In this experiment, we set the 
amount of useful execution that may be overlapped with bus waiting 
to be fixed and equal to the minimum integer value at which the CDF 
for RR is less than the CDF for FCFS. The actual amount of useful 
execution that is overlapped with each request waiting time, is the 
minimum of this value and the request waiting time. Inter-request 
times remain unchanged in this experiment. This implies that the 
overlapped execution is some “extra work” that the processor per- 
forms. Another way to look at this assumption is that the extra work, 
when added to the inter-request time, approximately represents a 
longer inter-request time with data pn?-fetching. The model is not 
realistic, since some of the useful work is ignored (when bus waiting 
times are less than the overlap value.) More realistic assumptions 
lead to much smaller differences between the protocols. 

Table 4.3 contains the data for the overlap experiments. For each 
offered load, we give the total mean waiting time including the over- 
lapped execution, the mean bus waiting time after the overlapped 
execution is subtracted for the RR and FCFS systems, a measure of 
the “productivity” of the agents in the system for both RR and 
FCFS, and the value that was used for the execution overlap. The 
agent productivity is defined to be the mean time it spends executing 
productively between bus requests, divided by the mean time 
between bus requests. We note that the confidence intervals for the 
productivity measures are so large that they are no longer useful: 
thus they are omitted from the table. However, it appears that under 
the assumptions stated above, productivity in the FCFS system is 
somewhat higher than in the RR system. 

We conclude that further study of this aspect of the two pmto- 
cols, based on data for real systems, is warranted. However, we 
emphasize that minor changes in the assumptions, such as specifying 
a variable amount of overlap with the same mean, result in 

(c) 64 Agents 
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0.93 
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0.96 
0.98 

0.98 
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23.0 
33.0 
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productivity measures which are nearly equal in the two systems. 
Furthermore, the waiting time standard deviations decrease, and 
become closer in value, as the CV of the interrequest times in 
reduced. Our results lead us to predict that significant differences in 
the protocols will not be observable. 

4.4. Allocation of Bus Bandwidth Among Agents with Unequal Loads 
A third difference between the protocols that we have explored 

concerns the allocation of bus bandwidth to agents with unequal 
request rates. At low bus utilizations, (i.e. when there is plenty of 
bandwidth for all agents), both protocols should allocate bus 
bandwidth in proportion to the agent request rates. However, at high 
bus utilizations, the RR scheduling discipline will tend to even out 
the allocation of bus bandwidth, since requests am served in a fixed 
order, regardless of arrival times. On the other hand, the FCFS pro- 
tocol will potentially continue to allocate bandwidth more in propor- 
tion to each agent’s request rate, since scheduling is based on request 
arrival times. The first question we might ask is which of these two 
properties is more desirable. Tbis question is difficult to answer, and 
appears to be, dependent on system implementation goals. Instead, 
we report the results of simulation experiments which investigate 
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when and by how much the two schemes differ in this regard. 
Our results, given in Tables 4.4(a) and (b). indicate how much 

difference we can expect from the protocols when the offered load of 
agent 1 is twice and four times the offered load of agent 2, respec- 
tively. All other agents have offered loads equal to the offered load 
of agent 2 in this experiment. The results are only shown for the 30- 
agent system, since the results for 10 and 64 agents are very similar. 
The first column indicates the total offered load, which is slightly 
higher in each case than in Table 4.1, due to the one higher-rate 
requester. The second column shows the bus utilization. which is 
similarly slightly higher than in the previous tables, and the third 
column shows the ratio of agent l’s offered load to agent 2’s offered 
load. Columns 4 and 5 give the ratio of the agent l’s throughput to 
agent 2’s throughput. 

As expected, both protocols allocate bus bandwidth in proportion 
to agent request rates at low load. As load increases, throughput 
ratios tend toward 1 .O in both systems, due to the effects of bus wait- 
ing times, However, we do observe some evidence that the FCFS 
protocol allocates bandwidth more in proportion to agent demands, 
(e.g. at offered loads of 2.07 and 2.58 for the double-rate experi- 
ments). The difference is very slight. Based on these preliiinary 
results, it appears unlikely that this characteristic will be a major 
deciding factor in selecting one of the two protocols over the other. 
However, it may be worth considering this dimension as a secondary 
consideration. 

4.5. Worst-Case Analysis of the Protocols 

In our fmal experiment, we consider a worst-case scenario for the 
RR protocol. This model is again very contrived, but also serves to 
point out a potential drawback to the protocol and its practical 
significance. Here we assume that one requester repeatedly “just 
misses” its turn in the RR order. This can occur reliably only with 

Table 4.4: Allocation of Bus Bandwidth Among Agents 
with Unequal Request Rates 
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deterministic interrequest times and high bus utilizations. For exam- 
ple, it will occur in the following case. Let the interrequest time for 
the “slow” agent be deterministically n-0.5, where n is the number of 
agents on the bus, and let the interrequest times of all other agents be 
deterministically n-3.6. The slow agent will just miss it’s turn, and 
will have a mean waiting time of n-0.5, whereas all other agents will 
have mean waiting times of approximately 3.5 units. In Table 4.5 
we present the ratio of the offered loads of the slow and regular 
agent, and the ratio of the throughputs of these agents measured in 
the simulation runs. for various values of the coefficient of variation 
of the interrequest time. We note that the effect of “just missing” a 
turn at the bus is manifested in reduced throughput for the slow 
agent. This effect is only observable for CV=O. Just a small amount 
of variabihty in the inter-request times is sufficient to render this 
characteristic unimportant. The intuitive explanation for this is that 
a small amount of variability in the interrequest times allows a pro- 
cessor to “sneak in” ahead of other processors that have been waiting 
longer about as often as the agent “just misses” its turn. 

We could similarly devise a worst-case model for FCFS, in 
which ah agents generate a request for the bus within the same inter- 
val deftned by the waiting time counters, each time they make a 
request. This situation would be. equally as connived, if not more so, 
than the previous model. Thus, we choose not to pursue this issue 
further. 

5. Conclusions and Further Research 

We have presented two new distributed arbitration protocols 
which can be implemented in the parallel contention arbiter for 

Table 4.5: Worst Case Bus Allocation for RR 
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multiprocessor system buses. The protocols implement the tound- 
robin (RR) and first-come-first-setve (FCFS) scheduling policies. 
The RR protocol is simple, efficient, and perfectly fair. The FCFS 
protocol is also simple and efficient and can be nearly perfectly fair, 
Both protocols are significantly more fair than existing assured 
access protocols for the parallel contention arbiter. They also have a 
better combination of efficiency, cost, and fairness characteristics 
than existing multiprocessor bus arbitration algorithms in general. 

Our initial simulation studies show that the practical differences 
in performance between the RR and FCFS protocols ate relatively 
minor. One potential advantage of the FCFS arbiter is due to its 
lower variance in bus waiting times. A case where this could be 
significant is in systems where bus requests can be made in advance 
of when the response is actually needed. Our simulation results 
show a somewhat higher productivity for the FCFS system in a con- 
trived best possible case. Another observable difference between the 
protocols is the way bus bandwidth is allocated to agents with 
unequal request rates at high bus loads. The RR protocol tends to 
even out the allocation of bus bandwidth among the agents in this 
case, whereas the FCFS protocol gives service more in proportion to 
the actual request rates. Again, the differences are relatively small, 
and are negligible at bus loads below saturation. Also, which of 
these properties is more desirable depends on system implementation 
goals. 

It may be possible to combine both protocols into one hybrid 
protocol. For example, the round robin protocol might be used only 
for requests that arrive at the same time, while the FCFS protocol is 
used for other requests. It may also be possible to design an adaptive 
scheme that uses the history of request patterns to optimize its 
behavior. Further investigation into these possibilities is in progress. 
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