
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 1, MARCH 1994 225

Performance Analysis of Mesh Interconnection
Networks with Deterministic Routing

Vikram S. Adve, Member, IEEE, and Mary K. Vernon, Meinher, IEEE

Abstract-This p a p e r develops detailed analytical per formance
models fo r k-ary n-cube networks with single-flit o r infinite
buffers, wormhole routing, a n d the nonadapt ive deadlock-free
routing scheme proposed by Dally a n d Seitz. I n contrast to
previous per formance studies of such networks, t he system is
modeled as a closed queueing ne twork tha t 1) includes the effects
of blocking a n d pipelining of messages in the network, 2) allows
for a rb i t r a ry source-destination probabili ty distributions, a n d 3)
explicitly models the virtual channels used in the deadlock-free
rout ing algorithm.

T h e models a r e used to examine several per formance issues for
2-D ne tworks with shared-memory traffic. Some results obtained
are: 1) when processors a r e allowed to have multiple outs tanding
requests, system per formance is bandwidth-limited, a n d hence
ne twork per formance does not scale well with increasing system
size; 2) communicat ion locality improves system efficiency, b u t
a very high level of locality is needed in o rde r fo r system
per formance t o scale well; 3) in contrast to previous hot-spot
studies for indirect ne tworks tha t assume nonblocking processors,
this s tudy finds tha t significant tree-saturation does not occur,
even in the presence of severe hot-spots in systems with u p
to four outs tanding requests pe r processor; a n d 4) a t some
plausible system operat ing points, there is a perceptible difference
in the efficiencies of processors a t different locations in the
mesh because of asymmetr ic loads on the virtual channels by
the deadlock avoidance algorithm. These results should prove
useful for engineering h igh-per formance systems based on low-
dimensional k -a ry n-cube networks.

Index Terms-Approximate mean value analysis, closed queue-
ing networks, finite buffers, hot-spots, multiprocessor intercon-
nection networks, k-ary n-cube networks, mesh networks, nea r -
neighbor communication, per formance analysis, wormhole rout-
ing

I. INTRODUCTION
ULTIPROCESSOR mesh interconnection networks are M 2-D networks, with the processors arranged at the

nodes of a grid, and point-to-point links connecting each
node to its neighbors. Mesh interconnection networks are a
special case of k-ary n-cube networks in which the number
of dimensions, 71, is 2. Recent studies of k-ary ?/,-cubes with
wormhole routing (a low-latency pipelined routing scheme [9])
have shown that under reasonable assumptions, the optimal
value for n is 2 or 3 [2] , [SI, [IO]. Many existing and
emerging multiprocessor systems use such low-dimensional

Manuscript received July 7, 1992; revised July 12, 1993. This work was
supported by the National Science Foundation under Grant DCR-845 140.5,
and by an IBM Graduate Fellowship.

V. S. Adve is with the Center for Research on Parallel Computation. Rice
University, Houston, TX 77521,

M. K. Vemon is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI S3706.

IEEE Log Number 9215356.

direct networks to interconnect the processors, including the
Intel Paragon, Cray T3D, Stanford Dash [141, MIT Alewife
[l] , MIT J-Machine [16], and CMU-Intel iWarp 151.

In this paper, we develop performance models to study A:-ary
n-cube networks with wormhole routing, with either single-flit
or infinite network buffers. Our model for the single-flit buffer
case includes the deadlock free routing algorithm of Dally and
Seitz 191. In contrast to previous analyses of these networks
[2] , [lo], [l I], the models we derive are closed queueing
network models. Also in contrast to previous work, we 1)
include the effects of blocking and pipelining of messages in
the network, 2) allow for arbitrary source-destination probabil-
ity distributions, and 3) explicitly model the virtual channels
used in the deadlock avoidance algorithm. In the single-flit
buffer model, the representation of message pipelining and
blocking, and the asymmetric virtual channel loadings of the
deadlock avoidance algorithm, require an approximate Mean
Value Analysis (MVA) solution that is rather complex. These
features, however, have a significant impact,on system perfor-
mance and are thus important to model. The model provides
a further example that approximate Mean Value Analysis can
be used for accurate performance prediction of highly complex
systems with non-product-form queueing behavior.

We use the models to examine several performance issues
for 2-D networks. We study network performance and scal-
ability with processors that must block after each request,
as well as with processors that can make multiple requests
before blocking for responses. We compare the performance
of three mesh network topologies: the unidirectional and
bidirectional tori (meshes with end-around links connecting
corresponding nodes on opposite edges) and the bidirectional
mesh without end-around links. We first study the above issues
under a uniform traffic pattern. We then examine the impact
of communication locality on network performance and scal-
ability, and discuss how the other conclusions obtained under
uniform communication change in the presence of varying
degrees of locality. We also study network performance when
a communication hot-spot occurs, including the effect of a hot-
spot on other traffic in the network. Finally. we analyze and
explain a potentially important performance implication of the
deadlock avoidance algorithm. Specifically, this algorithm pro-
duces asymmetric loads on the virtual channels sharing each
physical network link. The pcrforinance analysis shows that
this asymmetry can lead to a perceptible difference between
the efficiencies of processors at different locations in the mesh.

The remainder of this paper is organized as follows. Section
I1 describes the mesh network and key performance issues

1045-9219/94$04.00 0 1994 IEEE

226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

Fig. 1. Basic mesh topology.

in more detail and states the assumptions about the system
workload. Section 111 presents an overview of the models
and gives the details for the new techniques developed. The
models also use several previously developed Mean Value
Analysis approximations; the complete set of equations is
given in Appendix B. Section IV first presents the results of
the model validations we performed by using simulation and
then presents the performance analysis by using the analytical
models. Section V contains the conclusions of our study.

11. SYSTEM DESCRIFTION

We describe the system and workload assumptions made in
this study in Sections 11-A through 11-E. In Section 11-F, we
discuss several performance issues related to mesh networks
that will be studied using the model.

A. Mesh Network Topologies

The basic topology of multiprocessor mesh interconnection
networks is illustrated in Fig. 1. There are a number of
variations on this basic topology. The connection between each
pair of adjacent nodes may be unidirectional or bidirectional,
with the latter usually being implemented as two unidirectional
links. With the unidirectional topology, end-around connec-
tions that connect a node at one edge to the corresponding
node at the opposite edge (as shown in Fig. 1) are necessary. A
mesh with end-around connections is often called a torus. End-
around connections may also be included in the bidirectional
case to reduce the average number of hops that a message
must travel in the network. A torus can be organized so that
all links are of equal length, with each link being about twice
as long as in the case without end-around connections [8].

B. Organization of a Node

A node in the system typically consists of one or more
processors, some associated local memory, and a hardware
switch that controls the routing of messages through the node
(Fig. 2). When the node needs to send a message to another
node, it queues the message in a local buffer (not shown in
the figure). The message waits until the node-to-switch link
(connecting the processor and memory to the local switch)
becomes free, and then until space becomes available in the
outgoing virtual channel buffer. (The message must compete
for the channel buffer with messages from neighboring nodes
that request the same buffer; we assume that the switch
chooses among competing requests in first-come-first-serve

Physical
Link

Virlual
Channel
Buffer

Fig. 2. A node In a unidirectional networks

order.) Thereafter the message is forwarded down the link
into the channel buffer in the pipelined manner of wormhole
routing, which we describe next. We assume that the processor
is not involved in transferring the message from the local
buffer into the outgoing channel in the local switch.

C. Wormhole Routing

In wormhole routing, a switch begins forwarding a message
as soon as the header is received and the required channel
buffer in the next switch can accept one or more flits of this
message. Thus, the flits of a message are transmitted from
one switch to the next in a pipelined fashion and may occupy
several channels along the path from source to destination.
Only the header flit of a message contains routing information.
If the header flit of a message is blocked because the required
buffer in the next switch along its path is full, all of the flits
in the message are blocked, and, therefore, so are the channels
that they occupy. If more than one flit can be buffered at a
node, flits behind the header can “catch up” until the available
buffer space is filled. At this point, they block and can continue
only after the header is unblocked. We assume this method of
routing throughout the paper.

D. Deadlock Avoidance for Finite Buffers

In the ideal case, when buffer capacity is unlimited, dead-
lock cannot occur in the network and the wormhole routing
scheme is equivalent to an optimized form’ of the virtual
cut-through routing algorithm defined for data communication
networks [12]. In practice, buffer capacity in a node is limited
and deadlock can occur in the networks with end-around
connections because all of the buffers in a cycle could be filled,
with no message able to make progress along that cycle.

Dally and Seitz have proposed a detefministic routing
scheme that uses the concept of virtual channels to break
cycles and prevent deadlock in the networks with end-around
connections [9]. In this scheme, each physical link is shared by
two virtual channels that are fed by sepaiate buffers. As long
as both virtual channels have messages to send, they alternate
their flits on the physical link. If one of the buffers is empty
or blocked, the other channel can transmit continuously, using

’ The virtual cut-through algonthm specifies that if the header flit is blocked
at a switch, the entire message has to be received before the message is
forwarded. Instead, wormhole routing allows a partially received message to
be forwarded as soon as its outgoing channel becomes available.

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

Fig. 3. Example for deadlock-free routing algorithm. Unidirectional 4 x 1
torus. Channels on path from S = 1 2 to D = 20.

the entire link bandwidth. When a message is blocked, all of
the virtual channels occupied by the flits of that message are
also blocked, and no other messages can use those channels,

The algorithm is illustrated in Fig. 3, and operates as
follows. Each node in the IC-ary n-cube is assigned an n-
digit, base-lc number that specifies the position of the node in
the cube. Dimensions are numbered and messages are always
routed in decreasing order of dimension. (For example, in Fig.
3, d = 1 for the columns, d = 0 for the rows, and routing is
column first.) In each dimension d, d = n- 1, . . . , 0, a message
is routed in that dimension until it reaches a node whose dth
digit agrees with the dth digit of the destination node. The
message is routed along the “high” virtual channel if the dth
digit of the destination address is greater than the dth digit of
the present node’s address. Otherwise, it is routed along the
“low” virtual channel. For example, in a unidirectional mesh
network (as in Fig. 3), a message to a node with a higher row
number is routed on the high virtual channel along the column
until it crosses the link out of node on row 0 (shown at the edge
of the network in the figure), and thereafter uses the low virtual
channel on the column until it reaches the destination row.

The algorithm imposes a total order on the virtual chan-
nels that are used in each direction along any dimension of
the network. Furthermore, the requirement that messages are
routed in decreasing order of dimension implies that no cycles
exist across dimensions. The algorithm is thus deadlock-free
because it imposes a partial order on all virtual channels in
the network.

The above deadlock-free routing scheme generates asym-
metric loads on the virtual channels in the network even when
all processors have a uniform message destination probability
distribution (i.e., even when the loads on the physical links
are balanced). Fig. 4 shows the fraction of total link traffic
that uses each virtual channel for the links on a single column
in a unidirectional 8 x 8 torus, assuming uniform message
distribution. Note that all traffic on the link leaving the
processor on row 0 uses the high virtual channel, and thus the
buffer space of the low virtual channel is completely unused.
In general, on a physical link near the “edge” row or column
(after which traffic crosses over from the high to low channel,

-

221

ROW Number

Fig. 4. Traffic on the high and low virtual channels along a column.
Unidirectional 8 x 8 torus. Uniform traffic distribution.

or vice versa), the traffic tends to be concentrated on one of
the two virtual channels. For links far away from the terminal
row or column, the traffic is more evenly balanced on the two
virtual channels. In parallel work, Bolding [4] has recently
observed the same phenomenon and gives similar data as in
Fig. 4, showing the buffer utilizations on the high and low
channels for bidirectional and unidirectional topologies.

E. Workload Assumptions

We assume that all of the processors in the system execute
subtasks of large multiple instruction, multiple data (MIMD)
parallel programs2 Most previous studies of mesh networks,
the hypercube, and other k-ary n-cubes, have assumed a
message-passing workload [8], [lo], [l l] ; but a number of
recent shared-memory systems have also been based on mesh
networks (Alewife [l], Dash [14], Cray T3D). Our model of
the network is applicable to both types of workloads.

We allow a processor to have a maximum of Nout requests
outstanding before it is required to block for a reply. (Nout is
a parameter of the model.) For the model and results described
in this paper, we assume that the rate of generation of requests
is independent of how many requests are outstanding, until the
maximum of Nout is reached. This assumption can accurately
capture the behavior of systems in which each processor can
switch between multiple contexts [I], [21], and should also
be a reasonable model for many message-passing workloads.
The assumption may be somewhat more approximate for
processors that permit nonblocking memory operations (e.g.,
as with buffered writes, nonblocking caches, or prefetching),
where the intervals between successive requests may depend
in complex ways on the number of outstanding requests.
Finally, as explained in Section 111, a simple modification
would allow the model to capture the behavior of hierarchical
multiprocessors [141 containing multiple processors per node
(by allowing the rate at which a node generates requests to be
proportional to the number of additional requests it can make
before blocking).

Our model does not restrict the communication patterns in
the system. Each processor sends a message to each other
processor with a specified probability, and these arbitrary
probability distributions are inputs to the model. This permits

*We do not explicitly model synchronization events. Instead, we assume
that these are reflected in the rate at which processors generate messages.

228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

us to study the effect of nonuniform traffic patterns on system
efficiency.

The workload and system parameters used in the study are
defined in Section III.

F. Pe$ormance Issues for Mesh Networks

In Section IV, we use the model to study the performance
as well as the scalability of mesh networks in varying configu-
rations (various system sizes, buffer sizes, network topologies)
and under different workloads (varying communication rates,
single or multiple outstanding requests per processor, and
uniform or nonuniform communication patterns). We begin
by examing the performance and scalability of a baseline
system: a bidirectional torus with a uniform communication
workload and processors that must block after each request
(Nout = 1). We then study a number of variations on this
system to evaluate several issues that arise in the design of
mesh networks. The issues we examine are as follows.

Channel Buffer Size: The buffer size per network link
or channel is a design parameter that has significant cost
and performance implications. In studying various network
design issues, we compare network performance with single-
flit buffers per virtual channel against the performance with
infinite switch buffers. These are extreme cases that bound the
performance of any particular finite buffer size, and show how
much can be gained by increasing switch buffer sizes.

Multiple Outstanding Requests: Allowing a node to have
more than one request outstanding has the potential to at
least partially hide the latency of remote communication, but
there is also potential for higher congestion in the network.
We investigate how much improvement in absolute system
efficiency is possible with multiple outstanding requests (due
to overlapping communication with computation) and whether
at some point network congestion cancels this gain. We also
investigate how system scalability is affected by allowing
multiple outstanding requests per processor.

Mesh Topology: There are performance and cost trade-offs
between the three network topologies mentioned in Section
I. In a k-ary n-cube network, the mean number of links that
a message must traverse, assuming that all other nodes are
equally likely to be the destination, is approximately i n k ,
$n.k, and fn.k for the bidirectional torus, the bidirectional
mesh without end-around connections, and the unidirectional
torus, respectively.

The extra links in the bidirectional networks imply a higher
cost, however, and this must be accounted for to allow
a fair comparison between the various topologies. When
comparing these networks, we assume that the number of
input and output wires per switch is fixed, which implies that
the channels of the unidirectional network can be twice as
wide as those in either of the bidirectional networks, offsetting
the larger mean number of hops required. Furthermore, the
bidirectional mesh without end-around connections, unlike
the torus networks, does not require the deadlock-prevention
algorithm of Dally and Seitz, because the fixed-dimension-first
routing is sufficient to prevent cyclical dependencies between
links in the network. To allow a fair comparison, we compare
the torus networks with single-flit buffers per virtual channel

to nontorus mesh networks with two-flit buffers per physical
link. This ensures that the buffer capacity per switch is equal
for all three topologies.

Locality of Communication: A large class of scientific algo-
rithms, called continuum models [19], involve a grid structure
where a particular variable depends only on its nearest neigh-
bors. Such problems can be mapped to the mesh network so
that any processor requires mostly values calculated by its
four neighboring nodes (or some set of nodes situated within
at most a few hops). This would reduce network latency
and contention compared with uniform communication. We
investigate how near-neighbor communication locality affects
system performance and scalability, and reevaluate the design
issues discussed above under workloads exhibiting varying
degrees of near-neighbor locality.

Communication Hot-Spots: It has been shown that commu-
nication hot-spots can seriously degrade the overall perfor-
mance of indirect (e.g., multistage) interconnection networks
with nonblocking processors. Furthermore, in such systems,
hot-spots can cause buffers to fill up in large portions of
the network, severely increasing the latency of unrelated
(nonhot) network traffic as well, a phenomenon called tree-
saturation [17]. We use our model to study the effect of
communication hot-spots in mesh networks, with processors
that block after a limited number of outstanding requests. We
study the degradation in overall system performance due to a
hot-spot, as well as the effect of a hot-spot on the latency of
other traffic in the network.

Per$ormance imbalance caused by the deadlock-avoidance
algorithm: In Section 11-D, we pointed out that the deadlock-
free routing algorithm of Dally and Seitz generates asymmetric
loads on the virtual channels in the network. The asymmetry
does not necessarily imply that the processors near the edge are
more adversely affected than the processors near the center of
the mesh. The actual effect is complicated and requires careful
reasoning about the pipelining effects of wormhole routing. A
more detailed explanation of the asymmetry, and a quantitative
analysis of its potential impact on performance, are given in
Section IV-G.

111. THE MODEL
In order to study the design trade-offs outlined at the end of

the previous section, we have created closed queueing network
models of the k-ary n-cube network for each of two buffer
sizes: finite buffers of size one flit, and infinite buffers. The
parameters of the models are defined in Table I. No,, denotes
the number of outstanding requests that each processor can
have before it blocks. For the model and analyses in this
paper, we assume that when a processor has less than Nout
requests outstanding, it generates request messages with a
mean interval of T cycles between requests. A request message
generated by processor i is directed to processor j, j # i
with probability F&. We allow two sizes of messages to be
generated: Lmsgl and Lmsg2, with respective probabilities PI
and P2. These probabilities are the same for all processors.
The sizes of the respective responses are Lrespl and Lresp2.

For a shared-memory workload, the two request message
types could represent memory read and write requests, and

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

~

229

TABLE I
MODEL INPUT PARAMETERS

Parameter Description

N

X O U 1

Number of processors in the system

Maximum number of requests a processor can have
outstanding before it must block for a reply

are outstanding

Fraction of messages by processor 7 that are directed to
processor j , C F,, = 1.1 = 1,

Probability that a message is type 1 (msg 1) or type 2 (msg
2), repsectively

Length of message of type
I E msg 1. msg 2 , resp 1, T ~ S P 2

Time to respectively read and write one word from a

7 Mean time between messages when less than Nout requests

FV
, N

JfL

4 1 p2

L ,

D,,, I,

D,,, memory module

the reply types could represent data and acknowledgment
responses, respectively. The network is assumed to operate
synchronously. The values of 7, Dmem,r!, and Dmem,, are
assumed to be in units of switch cycles.

In our models, each processor forms a class of customers
with its own destination probability distribution and with
population equal to Nout. In other words, each possible
message that a processor can have outstanding is modeled
as a separate customer in the system. When there are n <
Nout requests outstanding, the remaining Nout - n customers
are served in first-come, first-served (FCFS) order at the
proce~sor,~ as in [22]. Thus, each customer in the system
repeatedly performs the following actions:

execute-for an amount of time measured in switch
cycles that is geometrically distributed, with mean 7,

visit a remote node and return to the proces-
sor-(representing a remote memory access, or sending
a message and receiving an acknowledgment),
queue at the processor-to resume execution.

We develop the equations assuming that a remote processor
is not interrupted when it receives an incoming message,
which would be true for a shared-memory system. In this
case, an incoming message requires only a memory access
at the remote node. (The equations can easily be modified to
reflect message processing by the node processor or message-
handling coprocessors.)

We choose to develop approximate Mean Value Analysis
models because of the previous success of this technique for
analyzing other interconnection networks with features that
violate separable model assumptions [20], [22]. Approximate
Mean Value Analysis is based on estimating the mean
round-trip time, or cycle time, for each class of customers
in the queueing network, relative to some reference point.
The processor serves as the reference point for the residence

'FCFS service at the processor is appropriate for systems such as those
that maintain multiple contexts at each processor, because only one context
executes at any time. An injnite server would be more accurate for hierarchical
systems. The equations for queueing at the processor can easily be modified
for this case.

time equations in our model. The mean round-trip time for
a customer of class i is the sum of its mean residence times
(queueing and service) in the local processor, in the network,
and at the remote node, as shown below:

R[i] = Tproc[i] + Tnetwork[i] + Tremote[i]: i = 1 ' ' ' N . (1)
Each processor in the system has a distinct mean round-trip
time, because of nonuniform virtual channel loads as well
as possibly nonuniform communication patterns.

The mean round-trip time in the network is the weighted
sum of the mean times for the message and the response, for
each type of request, as shown below:

Tnetwork[S] Fsd(PI(Tmsg1,sd f Tresp1,ds)
d#s

+ P 2 (~ m s g 2 , s d + ~ r e s p 2 , d s)) 1 s = 1 1 ' . ' r > N
(2)

where T j , & is the mean time for a message of type j from
node s to node d.

To calculate Tj , ,d , we need to model the routing, pipelining,
and blocking of messages in the network. These features
require an approximate model solution. Our model for systems
with infinite channel buffers is similar to the model developed
for Banyan networks in [22]. Their equations assume that
processor cycles are required to transfer a message into the
network; we do not make this assumption. The only other
difference is that we use a somewhat more accurate technique
to estimate residence times at the processor for Nout > 1. This
technique is also employed in our finite buffer model, and is
discussed in Section 111-C below. Otherwise, we do not give
the model equations for the infinite buffer case.

For our model of wormhole routing with single-flit channel
buffers, we have developed new approximations to estimate
1) the channel waiting and blocking times, 2) the customer
queueing time at the processor, and 3) the mean queue length
seen at the first outgoing link when multiple channels connect
the processor to its switch. Below we present an overview
of the model for networks with single-flit buffers, and then
describe each of the three new approximations. Our notation
is summarized in Appendix A, and the full set of model
equations for the model with single-flit channel buffers is
given in Appendix B. In Section IV, we discuss the results
of validating the model and the results of analyses using the
model. The validation studies show that the model is accurate
over a wide range of input parameter values.

A. Overview of the Model with Single-Flit Buffers
Since messages in the mesh network can occupy several

channels simultaneously, the mean message residence time,
~ j , ~ d , is the sum of the following three terms:

1) the mean waiting time for the link from the node to its

2) the mean residence time for the header flit on each

3) the mean delay until the remaining flits of the message

switch, (wnode,sdJj),

virtual channel c between s and d (~j , , , ,d[l]) , and

reach d(Tcatchup):

T j , s d = Wnode,sdlj f T j , c , s d [l] + Tcatchupr
C

j E {msgl, msg2, respl, resp2}, (3)

230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

where the summation is over virtual channels, c, on the path
from s to d, including the channels out of the processor at
s and into the processor at d.4 Note that the above equation
is similar in form to the equation used in [2] and [22] . One
difference between our equation and the corresponding one
in [2] is that we include the waiting time for the link that
connects the processor to the switch, not just for the first switch
buffer. A difference between our model and both [2] , [22] is
that Tcatchup is not deterministic, because at each link, the
flits may or may not have to alternate with flits on the link's
other virtual channel. To compute Tcatchup, we assume that the
probability that a flit must share a link is approximately equal
to the utilization of the link by messages on the other virtual
channel mapped to the link. Appendix B contains the details.

Further development of the model equations requires new
techniques for estimating r j , , , , d [l] , rproc, and the waiting time
for the first network virtual channel when there are multiple
channels from processor to switch. These approximations
are motivated and outlined in Sections 111-B through 111-D,
respectively. Section 111-E concludes with a discussion of the
model complexity.

The key question for the model is how to calculate w c l ~ ,
the waiting time for virtual channel c experienced by a header
flit of a message that enters c via input port I . This waiting
time is the sum of three terms?

1) the mean residual residence time of a message in service
at c that arrived via some other input port i # I , if any,

2) the mean residual residence time for the last flit of a
message in service at c from port I, if any, and

3) the mean time to serve messages waiting to use c from
other input ports (at most one per port):

B. Mean Channel Residence Time (rj,,,,d[k])

Let r j , , , , d [k] denote the average residence time of the kth
flit of a message from to d on channel c. The mean 1) The total residence time of a message at c is random with

an unknown distribution. Rather than assume knowledge residence time for a header flit (k = 1) on channel c is itself
of this distribution to calculate the mean residual life the sum of three terms:
of a message in service, we assume that the residence 1) the average waiting time for the next channel on the path
time of each flit of a message is deterministic, i.e., from s to d (this channel is denoted by (c + l) , d) ,
that its mean residual life is r j , c , i [k] / 2 . We expect 2) the average waiting time for a flit on the virtual channel
that this assumption will be good for'low to moderate that is multiplexed onto the same physical link as c
network traffic, and will introduce only small errors (we denote this channel by E, and approximate this term
at higher loads, because a flit residence time is small by 'Illink,Z, the mean utilization of the link by messages
compared with total message residence time. Thus, the on E (i.e., the fraction of time that the link is actually
mean residual residence time of an entire message (seen transmitting flits from E)) , and
by an arrival on input port I) can be calculated by 3) the one cycle for transferring the flit to the next queue:
conditioning on the event that the arrival finds the kth

r j , c , s d [l] = w(c+l),dll + ulink,Z + 1 , (4) flit of a type j message that arrived from input port i
where a message from s to d enters (c + l) , d via input port in service at channel c. The probability of this event
I . The possible input ports to a virtual channel are the virtual is approximated by the average utilization of c by such
channels from neighboring switches or the channel from the a flit: u j , , , ; [k] . The mean residual life of the message
processor at the current node. The waiting time for (c + l),. in this case is (i r j , c , i [k] + xf&+l r j , c , ; [Z]) . Summing
is a function of the input port, because the traffic on (c + l),d over all flits 1 5 k 5 L j for all message types j , and
coming from the various input ports is asymmetric, in general. all possible input ports i # I , gives the first term in the

For flits numbered k, k > 1 , if d is k or more steps away above equation.
from c, the mean residence time on c is estimated by the mean 2) Because of the pipelined routing scheme, if the tagged
residence time of the header flit on channel (c + IC - l) ,d (the message arriving at c via input port I finds another
channel k - 1 steps ahead on the path to d), plus waiting for message at c that also arrived via I , then it can find only
a flit that might be on 1. Otherwise, the header flit has already the tail flit of that message occupying c, and cannotJind
reached the destination, and the residence time of the kth flit any orherJEit of the message. Therefore, we approximate

the second term by the ratio of time that channel c is is one plus the mean waiting time for a flit on E:

occupied by a tail flit from I (~ j , ~ , r [L j]) to the total time
d is k or more steps that channel c is not occupied by any other flits from I

L J t - 1
away from channel c (k> 1). (1 - xj, ~ j t , ~ , ~ [l]) . The residual residence time

in this case is just r j , c , ~ [L j] / 2 . Summing over j gives
the second term.

The calculation of each of these terms is explained below:

rj,c,sd[kl

T(,+k-i),, [l]-hLlink,c

1 + ulink,Z otherwise
(5)

4Henceforth, we use variables to denote the number of a virtual channel
and ensure that the appropriate number or set of numbers in a summation is
clear from the context.

'TO denote a summation over all four types j, we write E, instead of

EjE{msgl ,msg2,respl ,resp2) '

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

~

23 1

3) The third term is the average waiting time for messages
that are waiting on input ports other than i when a
message arrives at input port I . We assume that these
will be transmitted by channel c before the arriving
message. For each input port i # I , the probability that
a type j message is waiting to use c is approximated by
the utilization of channel (c - 1)% by header flits of type
j messages that will next use c: ~ ~ , (~ - 1) , [l]. Multiplying
by the total residence time of such a message and
summing over i # I and all message types j gives the
third term.

The remaining unknowns in the above equations (U ~ , ~ , ~ [I C] ,
ullnk,c) are calculated by using previously developed MVA
techniques [20], [22], as described in Appendix B.

C. Processor Residence Times (rproc[z])

The processor is modeled as an FCFS queueing center,
where the service time is geometrically distributed with a
mean value of r cycles. In early model validation experiments,
we found that the widely used Schweitzer [181 approximation
for product-form networks is not sufficiently accurate for the
processor queues, because the customer population for each
processor, Nout, can be small. Furthermore, previously de-
veloped approximations such as Linearizer [6], which achieve
greater accuracy by solving the equations at a few neighboring
populations, introduce too much additional complexity into the
model. Below we develop a new approximation for rproc[i]
that is empirically accurate, yet requires very little additional
computation when Nout is not large. The key idea is that we
solve for rproc [i] recursively (i.e., similarly to exact MVA)
without recursively solving for the residence times at other
queues in the system for each customer population. Empir-
ically, we found the new approximation to be considerably
more accurate than the Schweitzer approximation. Further-
more, we note that the approximation is applicable to any
multiclass queueing detwork where all of the demand at some
queue comes from a small fraction of the customers in the
network. As far as we are aware, this approach has not been
previously reported in the literature.

Consider some processor i . Define rproc(z,n) to be the
steady-state average residence time at processor i if there
are n customers in its class. Thus, rproc[z] = rproc(i,Nout).
Similarly, let qproc(i, n) and uproc(i, n) denote the mean queue
length and the mean processor utilization at processor i with
n customers in its class. rproc(i,n) is the sum of the mean
service time (r), the mean waiting time for customers found
waiting in the queue, and the mean residual service time
(resproc) for the customer in service, if any. We estimate
the mean queue length and processor utilization seen by an
arriving customer by qpro,-(i ,n - 1) and uproc(z,n - l),
respectively (just as in exact MVA), producing a recursion
over n = 1, . . . , Nout. The key to the approximation is
that qproc(i,n - 1) and uproc(i,n - 1) are calculated by
using the same values of rnetwork[z] and Tremote[Z], for all
n = 1, . . . , Nout. (These values are available from the previous
iteration in the numerical solution of the overall model.) Thus,

we have the following equations:

rproc(i , n) = 7 + [qproc(i, - 1) - uproc(i, 71 - I)] x 7

+ uproc(i, n - 1) x resproc, n > 1, (14)

n x r
uproc(i, n) = , n L 1 ,

and (16)

qproc(z,1) = uproc(i, 1) = . (17)

(The equations above are numbered to correspond to the
complete set of equations in Appendix B.) The mean residual
service time of a customer found in service, resproc. has to be
calculated as seen by the tail flit, not the header flit, because
the customer is queued up at the processor only when its
tail flit arrives. Conditioned on finding a customer in service,
the mean residual service time seen by the head is r , by the
memoryless property of the geometric distribution. A returning
message is of length Lrespl with probability PI and Lresp2

with probability Pz. In one cycle, the probability that the
customer in service at the processor does not complete service
is y = 1 - (l / ~) . Therefore, the average residual service time
seen by the tail flit is approximated by the following equation:

(18)

rproc(i , n) + rnetwork[i] f rremote[i]

r
7 + rnetwork[i] + rremote[i]

resproc = (7 - 1) x (~1-y~respl-l + ~ 2 y ~ r e s ~ l - ~).
Equations (14)-(18) are solved for each prqcessor i separately,
in order to calculate all of the rproc[i].

D. Waiting Time for First Virtual Channel with
Multiple Processor-to-Switch Channels

In our mesh network analysis, we found the physical link
that connects each processor to its associated switch to be
a bottleneck under high loads, in the network with single-flit
channel buffers. Therefore, we investigated the use of multiple
physical links connecting the processor to the switch, one for
each outgoing virtual channel from the switch to neighboring
nodes. (In practice, only two to three physical processor-
to-switch links should provide about the same performance,
because almost all of the messages out of a processor are
concentrated on a few outgoing virtual channels.) With this
organization, when a message from the processor finds its link
to the switch busy and later reaches the head of the queue
for this link (where it must wait for the outgoing virtual
channel buffer), it cannot find a message from any other
input port occupying the channel; it can find only the tail flit
from the preceding message. Furthermore, such an arriving
message is more likely to find waiting messages at other input
ports (which were blocked by the preceding message). These
observations lead to a somewhat different expression for the
waiting time for the outgoing channel (i.e., the first virtual
channel along the path of the message) in the case of multiple
processor-to-switch links.

Consider a tagged customer of class q, and let c denote
the first virtual channel along its path. Define w:,~ to be the
average time that this message has to wait before entering

232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

channel c. As in (6), wLlq is the sum of three terms:
1) the mean waiting time for messages in service at c

that arrived from input ports i # PROC, if the tagged
message found the processor-to-switch link idle (PROC
denotes the input port used by messages arriving to c
from the processor),

2) the mean waiting time for the tail flit of previous
messages from PROC, if the tagged message found the
processor-to-switch link busy, and

3) the mean waiting time for messages blocked at input
ports i # PROC that arc waiting to use channel e:

WLlq =

The form of the first term for wLlq is the same as the first
term in (6), with uj , , , i [k] replaced by bi , , , i lq[k] . Here b;,c,iIq[k]
is the probability that a message of class q finds channel c
busy serving the kth flit of a type j message that arrived via
input port i # PROC, j E {msgl, msg2, respl, resp2). This
is estimated as follows:

b;,c,zlq[kl =
1 - Pr { processor-to-switch link is busy}

fraction of time c not serving message coming from node
x uj ,c , i [k]

where bnode,3,clq[k] denotes the probability that a class q
message finds the processor-to-switch link corresponding to
outgoing channel c busy serving the kth flit of a type j
message.

The second term in wLIq is straightforward, because the
probability that the processor-to-switch link for channel
c is found busy with a message of type j is merely
Ck bnode3,clq[k], and the tagged message must see all but
one cycle of the residence time of the lust flit of the message
ahead of it.

For the third term, qi,c,z,q is defined as the average number
of messages of type j from i # PROC found waiting to use
c by the arriving class q message. The calculation of qi,c,z.,q
requires another observation about the blocking phenomena m
the mesh. A message following another message out of the
node and into c is more likely than a random arrival at c to
find a message on input port i already waiting for channel c.
To account for this, we calculate the probability that a random
message using c via I = PROC blocks a type j message
on incoming virtual channel i . (The latter message will then
be waiting to use c when the following message from I =

PROC reaches the head of its queue for c.) Similarly, we
consider messages from each i' # PROC (and i' # i) blocking
messages from i to c. Therefore, qi,c, i lq is as follows:

{ 1 q(l,c,tlq = F: nnode,i,clq[kl
3 k = l

x Pr{ message from I = PROC blocks
a type j message from i }

x Pr{message from i' blocks a
type j message from i } . (26)

We illustrate the calculation of one of these terms here. A
key observation we make is that Pr{a message from I =
PROC blocks a type j message from i} is proportional to
the relative number of messages to c that arrive from i and I ,
respectively, (counting only type j messages from i). But this
relative number is exactly the ratio of the visit ratio of type
j messages from i to c to the visit ratio of all message types
from I = PROC to c. This ratio of visit ratios, multiplied by
the probability that a random message from i is blocked by
a message from I = PROC then gives us the probability that
a random message from I to c blocks a message on i . Thus,
define &J to be the sum of the visit ratios of customers of
all classes as type j messages to channel c via input port i.
Then, the following conditions exist:

Pr{message from I = PROC blocks a type j message
from i}

where the summations in the parentheses sum to the probabil-
ity that a random message arriving to c from i has to wait for
a message from I = PROC (which may be in service at c, or
blocked on the processor-switch link to e).

The above discussion highlights the main points of this new
heuristic used to calculate the waiting time for the first virtual
channel. The complete equations are given with the rest of the
model in Appendix B.

E. Complexity of the Models

The model for wormhole routing with single-flit buffers has
O[Lm,,N3] time complexity and O[L,,,N2] space complex-
ity, where L,,, is the length of the longest message type. As
a result, the model with L,,, = 11 and N = 64 cannot
practically be run on systems with fewer than 10 megabytes
of main memory. Nevertheless, solving the model is still
about 10 to 100 times faster than simulating the wormhole
routing protocol under a statistical workload. Furthermore, the
model allows us to explore various issues and design trade-
offs under the realistic assumptions of arbitrary message sizes,
and blocking due to finite buffers. For example, the effects

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS 233

TABLE I1
PARAMETER VALUES USED IN THE EXPERIMENTS

Value
Symbol Range of values Symbol

Bidirectional Unidirectional

N 16,64,144 - 1024 Lmsgl 3 2

Xout 1 - 8 Lrespl 9 5
7 20 - 200 Lmsga 11 6

Fn n 0% - 100% L r e s p a 3 2

Dmem.1 = Dmem.2 4 4
Fhot 0% - 20% Pl , pz 0.8, 0.2 0.8, 0.2

of asymmetric channel loads and hot-spot traffic are a direct
result of limited buffer space for the channels. Finally, the
model with infinite buffers is highly efficient and can be used
to explore many of the mesh network design trade-offs for
larger systems.

IV. RESULTS
In this section, we describe the results of extensive analyses

of 2-D networks using the above models. We assume a shared-
memory workload for these experiments, as discussed below.
We first present the ranges of input parameter values used
in our study (Section IV-A), and the results of validation
experiments (Section IV-B). In Section IV-C, we evaluate
the performance and scalability of a baseline system that
we use as a reference point for studying further network
design issues. In Section IV-D, we study the impact of
allowing multiple outstanding requests. In Section IV-E, we
compare the alternative mesh topologies. In Section IV-F, we
study the performance impact of near-neighbor workloads, and
reevaluate the design issues studied in Sections IV-C through
IV-E under such workloads. In Section IV-G, we study the
degradation in system performance due to communication hot-
spots. Finally, in Section IV-H, we analyze the imbalance in
processor efficiencies caused by the asymmetric loads on the
virtual channels in the deadlock prevention algorithm (see
Section 11-D).

A. Model Input Parameter Values and Pegormanee Measures

The measures of system performance that we use are
individual and average processor efficiency, defined as the
fraction of time that a processor spends doing useful work,
as shown below:

Other measures that are obtained from the model equations
include steady-state mean channel queue lengths and steady-
state link utilizations. We validated the accuracy of several of
these detailed measures as well.

The ranges of values used for the various model input
parameters are given in Table 11. Most of the experiments
with finite-buffer systems focus on a 64-processor (8 x 8)
mesh, whereas we use the infinite-buffer model to examine
the performance impact of increasing system size for systems
as large as 1024 processors (a 32 x 32 mesh). All processing
times and memory access times are specified in units of switch
cycles. In many of the graphs, processor efficiency is plotted

as a function of 117, where 1/r intuitively measures the
average communication rate (e.g., cache misses per cycle per
processor). T was varied from 20 to 200 cycles. Values of
T higher than 200 showed very little further improvement in
processor efficiency (for our parameter settings). Also, because
average remote access latencies are typically greater than 20
switch cycles in an 8 x 8 mesh, it is difficult to envisage
programs that make requests faster than about 1 every 20
cycles executing with any reasonable efficiency on this or
larger systems. Thus, we believe that the above range of r
should allow us to study the performance of a fairly wide
range of programs.

Messages are assumed to consist of a header flit, plus
address flits (type msgl), data flits (type respl), address
and data flits (type msg2), or acknowledgment flits (type
resp2). These interpretations of the message contents and the
associated message lengths in Table I1 are intended to represent
a shared-memory workload. Message-passing programs could
be expected to exchange larger messages between processes,
though less frequently [8]. The models can be modified to
study such workloads; however, that is beyond the scope of
this paper. The message sizes also reflect the assumption that
the channels in the unidirectional torus are twice as wide as in
the bidirectional networks, with an equal number of wires per
switch. Finally, we set PI = 0.8, P2 = 0.2, and D,,,,, =
D,,,,, = 4 for all experiments. We do not expect moderate
changes in these parameters to significantly alter our results.

B. Validation of the Models Against Simulation

We used event-driven simulators to validate the analytical
models, for both the single-flit and infinite buffer cases. The
simulators use a statistical workload identical to that of the
analytical models, but implement the wormhole routing of
the flits and the deadlock-free routing algorithm exactly. We
present representative results of the validations of the single-
flit buffer model in Tables I11 and IV.

At low to moderate network loads, the average processor
efficiency from the analytical model agrees closely with the
value obtained by simulation (less than 3% error). Thus, our
finite buffer model has accuracy similar to the very accurate,
less complex models of the infinite buffer case; validations of
the infinite buffer model gave results very similar to the model
in the Willick Eager Multistage and are not shown here.

In cases of high network contention (e.g., with Nout 2 4
and r < 501, the analytical single-flit buffer model tends
to be somewhat optimistic. In these cases, some links are

234

Parameters
Nout 7

1 5
1 25
1 100
2 5
2 25
2 100
4 5
4 25
4 100
8 5
8 25
8 100

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

Processor efficiency Network residence time

12.37 12.01 -2 .9% 22.62 24.70 9.2%
43.01 42.29 -1.7% 21,.07 22.44 6.5%
76.54 76.02 -0.7% 19.59 20.15 2.8%
19.56 19.58 0.1% 31.05 33.18 6.8%
68.93 70.26 1.9% 24.90 26.55 6 .6%
96.34 98.60 2.3% 20.21 20.69 2.4%

Simulation Analytical % error Simulation Analytical % error

24.11 26.12 8.3% 60.81 57.29 7 5 . 8 %
91.48 98.30 7 .4% 33.64 33.63 -0..0%
99.96 100.0 0.0% 20.44 20.75 1.5%
25.07 30.08 20.0% 136.79 112.53 -17.7%
99.56 100.0 0.4% 44.89 34.44 -23.3%
100.0 100.0 0.0% 20.43 20.76 1.61%

TABLE 111-A
COMPARISON OF OVERALL PERFORMANCE ESTIMATES WrTH SIMULATION:

BIDIRECTIONAL 4 X 4 TORUS, SINGLE CHANNEL FROM PROCESSOR TO SWITCH

Parameters

1 20
1 33.3
1 50
1 100
4 20
4 33.3
4 50

Nout T

4 100

Processor efficiency Network residence time
Simulation Analytical % error Simulation Analytical % error

34.6 34.24 1.0% 32.98 33.54 1.7%
48.9 48.37 -1.1% 30.03 30.72 2.3%
60.4 59.92 0.8% 27.94 28.61 2.4%
76.9 76.50 0.5% 25.36 25.88 2.0%
44.8 49.54 10.5% 144.06 138.57 -3 .8%

75.01 84.16 12.2% 105.88 90.55 -14.54%
97.8 100.0 2.25% 49.20 38.55 -21.6%

27.35 -0.9% 100.0 100.0 0.0% 27.61

nearly saturated, and the absolute value of the processor
efficiency tends to be very low. The maximum error in
average processor efficiency across all of our validation
experiments was 20%, which is shown for N = 16, r = 5,
and Nout = 8 in Table 111-A. In all cases, the predicted
efficiencies are qualitatively correct.

We also examined more detailed performance measures,
including estimates of the individual asymmetric processor
efficiencies. The maximum, minimum, and ratio of maximum
to minimum processor efficiency predicted by the analytical
model and simulation for the 8 x 8 torus are shown in Table IV.
Again, agreement is very good, particularly for the madmin
efficiency ratio. Note also that the ratio of the two efficiencies
is always underestimated by the analytical model. Thus, the
imbalance estimates, discussed in Section IV-H, are generally
conservative.

Parameters
U t T

1 40
1 25

1 100
4 25
4 40
4 100

the bidirectional torus with uniform traffic, and processors
that block after each request (i.e., No,, = 1). In Fig. 5, the
solid lines show the average processor efficiency as a function
of request rate (1 / ~) for the baseline system with single-flit
channel buffers, and system sizes of 16 and 64 processors. The
performance of this system is low at moderate or high request
rates (1 / ~ > 0.03). The poor performance in this system is
chiefly caused by the inherent latency of communication rather
than by contention in the network. To show this, we also give
the efficiency curves, assuming that there is no contention in
the network (the dashed lines in Fig. 5). Comparing the two
sets of curves, we see that the absolute loss in efficiency due to
contention is about 5%-10%. Thus, the system performance is
latency-limited rather than bandwidth-limited when processors
block after each request.

Furthermore. because communication latencv is the chief

Maximum efficiency Minimum efficiency Maximum/Minimum efficiency
Simulation Analysis v/u error Simulation Analysis % error Simulation Analysis % error

50.39 52.55 4.3% 48.93 52.25 6.8% 1.030 l.Od5 -2.4%
37.78 38.92 3.0% 35.56 38.53 8.4% 1.062 1.010 -4 .9%

73.90 76.13 3.0% 72.25 76.03 5.2% 1.023 1:pOl -2.1%
63.76 68.62 7.6% 42.79 41.53 11.1% 1.490 1.444 -3.1%
88.36 96.00 8 .6% 76.77 88.62 15.4% 1.151 1.080 -6 .2%
99.96 100.0 0.0% 99.90 100.0 0.1% 1.001 1.000 -0.1%

C. Baseline System Performance
We choose as our “baseline system” (which we will use as

a reference point for studying further network design issues),

cause of low efficiency, increasing buffer sizes per switch
yields very little performance improvement for these system
sizes. In fact, for these systems, the average processor ef-

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS 235

1001

90'

80 -
%

70'
E
f 60.

50'

: 40.
n
c 30'
Y 20 '

IO'

latency and cantentian :I ~

" , , .
0.00 0.01 0.02 0.03 0.04 0.05

Request Rate (I/r)

Fig. 5. Efficiency of baseline system.. Bidirectional torus, single flit buffers,
uniform traffic, NOut = 1.

Ih = 0.ocs

0.01

0.02
0.025 0.03

88

fizo; 4 8 ;?. 16 20 24 28 ;2
N = 0 16 M 144 256 400 576 784 1024

Fig. 6. Scalability of baseline system. Bidirectional torus, infinite buffers,
uniform traffic, N,,t = 1.

100

90

80
%

E ' O

;@I

c m
:a
c
Y 30

Infinite buffers
Ow-flit buffer per virtual channel

O.Oo0 0.010 O.MO 0.030 0.040 0.050
Request Rate (I/<)

Fig. 7. Efficiency with multiple outstanding requests. Bidirectional torus,
uniform traffic, N = 64.

ficiency with infinite channel buffers (shown in Fig. 6 and
discussed below) is almost identical to the performance with
single-flit channel buffers.

To examine how system performance scales with increasing
system size, in Fig. 6, we plot the average processor efficiency
as a function of mesh radix (fi) for different request
rates (1/r) for the baseline system with infinite channel
buffers. The figure shows that the performance of the baseline
system scales well (i.e., average processor efficiency decreases
slowly) with increasing system size, even though the absolute
performance is low. These curves also show that the decrease
in efficiency with increasing radix is primarily due to higher
latency rather than to network contention. Specifically, the
decrease in efficiency is close to linear, showing that it is

primarily due to the increasing number of hops that a message
must travel, rather than an increase in the delay (due to
contention) at each hop. We conjecture that a baseline system
with small channel buffers will also show good scalability,
based on the low network contention seen in all of the
cases studied above. (The space complexity of our single-flit
buffer model, and the time requirements of simulation, have
prohibited us from testing this directly.)

D. Multiple Outstanding Requests

Since baseline system performance is chiefly limited by
communication latency rather than contention, a plausible
technique for improving processor efficiency is to allow pro-
cessors to make multiple requests before blocking. The impact
of multiple outstanding requests on system performance and
scalability are as follows.

Fig. 7 shows how the performance of an 8 x 8 baseline sys-
tem (i.e., a bidirectional torus, uniform traffic) with single-flit
or infinite buffers improves as Nout increases from 1 to 8. The
figure shows that for single-flit channel buffers (solid lines),
hiding communication latency with small increases in Nout
is clearly effective in improving average efficiency, but each
additional increase in Nout brings diminishing returns because
of increasing network contention. In fact, there is a threshold
at Nout = 4 beyond which no appreciable improvement in
performance is observed.

For the infinite buffer case (dashed lines), we find that
increasing Nout up to 8 is worthwhile for this system size.
In larger systems with infinite buffers (not shown here), we
again found that beyond some threshold, increasing Nout
brings little improvement; this threshold is about 8 and 4
for systems with 144 and 1024 processors, respectively.Zn
general, a few contexts per processor or a few prefetches are
effective in improving efficiency, but there is a clear threshold
at a small value of Nout beyond which no further improvement
is observed because of increased network contention. These
results further support conclusions in previous papers that a
few contexts per processor are sufficient in systems that are
being prototyped today [ll, [211.

The figure also shows that larger channel buffers become
increasingly important as Nout is increased, because of the
increasing contention. The performance difference between
single-flit and infinite channel buffers is significant even for
Nout = 2, and becomes quite large for Nout 2 4.

Because of the increased contention, it is important to
reevaluate the scalability of the network with multiple out-
standing requests. In Fig. 8, we plot processor efficiency
against mesh radix, fi, for Nout = 4, infinite channel
buffers, and various values of l / ~ . In contrast with Fig. 6,
efficiency drops sharply for moderate or high request rates
(l/r 1 0.02), because of increasing network contention.
Thus, the system with four outstanding requests does not scale
well under uniform trafic, even with injinite channel buffers,
because network bandwidth in larger systems does not increase
in proportion to the increased communication load. In the next
several sections, we focus on systems with Nout = 1 and
Nout = 4 when studying further network design trade-offs.

236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 3, MARCH 1994

Bidirectional torus,

j-ij , , , , , , , ,

2 30

20

10

S = O O 4 8 12 16 20 4 28 32
N = 0 16 64 144 256 400 5276 7841024

Fig. 8. Scalability with four outstanding requests
uniform traffic, infinite buffers.

E. Alternate Mesh Network Topologies

We next compare the performance of the different network
topologies under uniform communication. In this subsection,
we use the term “mesh” specifically to refer to the network
without end-around connections. Our first comparison is be-
tween the two bidirectional networks: the torus and the mesh.
The average number of hops a message must travel assuming
uniform traffic is about 33% larger without the end-around
connections. On the other hand, as explained in Section II-
F, the mesh does not require multiple virtual channels per
physical link, as required by the deadlock prevention algorithm
for the torus. We therefore use a buffer size of two flits per
physical link in the mesh network, to ensure a fair comparison
with the torus with a single-flit buffer per virtual channel.6

Fig. 9(a) plots processor efficiency versus request rate
for one, two, and four outstanding requests for the two
bidirectional topologies. The results are for an 8 x 8 system.
For Nout = 1, there is only slight benefit to the end-
around connections, because the higher number of hops in
the mesh has only a small effect on latency, because of the
pipelined routing of messages and the low contention per hop.
For Nout = 4, however, the torus has up to 30% higher
performance, because the higher network contention makes the
higher number of hops in the mesh more significant. Thus, end-
around connections significantly improve peflormance with
multiple outstanding requests. This result should hold as well
for larger systems (where the savings in hops for the torus
increases) and larger buffer sizes (where network contention
is still significant for Nout = 4, as shown in Section IV-D).

We next compare the bidirectional torus with the unidi-
rectional torus. For the former, we use message lengths of
Lmsgl = 4, Lrespl = 10, Lmsg2 = 12, and Lresp~ = 4, rather
than 3, 9, 11, and 3 used in all other experiments. This allows
us to halve these message lengths for the unidirectional torus,
according to our assumption that its links are twice as wide
as those in the bidirectional torus. Fig. 9(b) plots processor
efficiency as a function of 1 / ~ for Nout = 1,2, and 4, for each
topology. The results are similar to the comparison against
the bidirectional mesh. In particular, the bidirectional torus
pe$orms signijcantly better than the unidirectional torus with

Since our single-flit-buffer analytical model does not extend to networks
with two-Kit buffers, we used simulation to estimate the performance in the
mesh with two-flit buffers per link.

~ Bidirectional toms
90 Bidirectional mesh

80

1W

% 70

E 60

f 50
c

e
i 4 0

30

04
0.NM 0.010 0020 0.030 0.040 0.050

Request Rate (I lC

__ Bidirectional toms
100

90 Unidrrectianal toms

80

70

E f 60

50
I
e 40

p 30 : I , , , , ,
0
O.Oo0 0.010 0.020 0.030 0040 0.050

Request Rate (Ik)

(b)

Fig. 9. Comparison of network topologies: 8 x 8 system, uniform traffic,
single-flit buffers. (a) Bidirectional torus vs. mesh. (b) Bidirectional torus vs.
unidirectional torus.

multiple outstanding requests. Thus, the extra number of hops
in the unidirectional torus is not sufficiently offset by the wider
channels. These results should hold approximately as system
size increases, because the distance, as well as the bandwidth,
scales at the same rate in both top~logies.~

F. Nearest-Neighbor Workloads

The previous experiments assumed uniformly distributed
internode communication, i.e., each node is equally likely to
communicate with each other node. In this section, we investi-
gate how near-neighbor communication locality affects system
performance and our previous conclusions about system design
trade-offs. We consider near-neighbor traffic patterns in which
some fraction, F,,, of the traffic generated by each processor
is equally divided among its four nearest neighbors, whereas
its remaining traffic is uniformly distributed to all nodes (in-
cluding the four neighbors). The uniformly distributed traffic
represents non-near-neighbor communication required by the
near-neighbor application, as well as other activity on the
system, such as operating system traffic.

Fig. 10(a) shows processor efficiency as a function of mesh
radix, a, for various values of F,,, for Nout = 1. Curves
are shown for two values of request rate, 1 / ~ = 0.01 and 0.04.
In both cases, increasing locality of communication improves
processor efficiency only gradually. Fig. 10(b) gives the results

Section IV-H, however, shows that performance imbalance between
different parts of the system is higher with the unidirectional network, which
may exacerbate the difference in performance at larger system sizes.

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

120-

A 110.

e 100.
r
a 90.

80.

R 70.
e
s 60.

50.
n
s 40.
e

30.

i 20.
m
e 10.

V

231

7 90 F , =
100%
80%
60%
40?6
20%

9%%
80%

60%
40%
&%

10 - 1/T = 0.04

fiz0\ 4 8 ;2 ;6 ;O 24 28 &?
N = 0 16 64 144 256 400 576 784 1024

(a)

Fb, = 20%

/ & 0%,0.5%, 1%. 2.5%

O J
0.00 0.01 0.02 0.03 0.04 0.05

Request Rate (1h)

A
V Fb, = 20%

e
s 300
P
n
s 200
e
T
i 100
m
e

fi=" 0 4 8 12 16 20 24 28 32
N = 0 16 61 144 256 400 576 784 1024

(b)

Effect of communication locality. Bidirectional torus, infinite buffers
except single points in (b). (a) Nout = 1. (b) Nout = 4.

Fig. 10.

" '

0.00 0.01 0.02 0.03 0.04 0.05
Request Rate

(b)

8 x 8 torus, single-flit buffers. (a) Nout = 1. (b) Nout = 4.
Fig. 11. The effect of hot-spots on overall mean response times. Bidirectional

for Nout = 4 and 1 / ~ = 0.04. (At 1 / ~ = 0.01, the efficiency
is close to 100% even with uniform traffic, as shown in Fig. 8.)
In this case, efficiency improves substantially with increasing
locality, because locality reduces contention as well as latency.
For example, the 1024-processor system with Fnn = 60%
shows more than twice the efficiency of the same system under
uniform traffic.

Locality of communication influences many of the design
issues that were examined in previous sections, assuming
uniform traffic distribution. These must now be reevaluated.

The set of points for single-flit buffers in Fig. 10(b) shows
mean processor efficiency for the 8 x 8 mesh with single-flit
buffers and No,, = 4. We observe that as for uniform traffic,
the infinite buffer case is significantly better than the single-flit
buffer case even up to F,, = 70%-80%.

The results for 1 / ~ = 0.04 in Fig. 10(a) and 10(b) show
that the improvement when Nout goes from 1 to 4 is much
stronger at higher levels of locality, for N > 64. Thus, locality
increases the beneJit of multiple outstanding requests for large
systems. This is true because network contention is reduced
for high values of F,,, so that increasing Nout does not cause
much higher contention; but it does improve performance by
overlapping communication with computation.

We can also reevaluate how system performance scales
when communication locality is present. Under uniform traffic,
we concluded that the mesh network scales well when Nout
is 1, but scales poorly for Nout = 4. In Fig. 10, we see that
increasing locality has a positive effect on the scalability of
the network (as expected); but, nevertheless, for Nout = 4,
system perj5ormance scales well only for F,, 2 80%. It may
be unrealistic to expect such high levels of locality for real
workloads.

Finally, the relative performance of the various mesh topolo-
gies may differ under near-neighbor workloads. In particular,
we showed in Section IV-E that the bidirectional torus has
a significant performance advantage over the unidirectional
torus with multiple outstanding requests. The performance ad-
vantage of the bidirectional torus will increase in the presence
of locality, because in the unidirectional torus, a round-trip
message to a near-neighbor requires fi hops as compared
with two hops.

To summarize the results of this section, locality of com-
munication improves system performance, particularly in large
systems with multiple outstanding requests, and increases the
benefit of multiple outstanding requests; but it only marginally
improves the ability of the mesh to support larger system

238

120-

110.

100.

90.

80.

70.

A

e
r
a

V

t

!

R
e
S

S
e

T

m
e

1

A

r
a

; 500.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

20.

10-

0.01 0.02 0.03 0.04 0.05
Request Rate (117)

(b)

Fig. 12. Overall mean response times under hot-spot traffic withmultiple node-to-switch links. Bidirectional 8 x 8 torus, single-flit
buffers. (a) iVOut = 1. (b) N o u t = 4.

sizes. In particular, the case of Nout = 4 does not scale well
for Fnn < 80%. Other conclusions of the experiments with
uniform workloads are also not altered for workloads with
communication locality.

G. Hot-Spot Effects

Hot-spots are a form of nonuniform communication that
can strongly impact system performance. Hot-spots can arise,
for example, when a number of processors make a significant
fraction of their requests to a single memory module or to a
single node in a multiprocessor. The issue has been studied by
using open queueing models (i.e., assuming nonblocking pro-
cessors) in the context of multistage interconnection networks
U31, [171, V I .

We examine the effect of hot-spots in mesh networks by
assigning some fraction, F h o t , of requests from each processor
to a particular node in the system, while the remaining fraction
1 - F h o t is distributed uniformly across all processors. Fig. 11
plots the mean response time (sum of average network plus
remote-node residence times) versus request rate, 1 / ~ , for
various values of Fhot in a bidirectional 8 x 8 torus with
single-flit buffers. For Nout = 1 (Fig. ll(a)), there is very
little increase in mean round-trip time for P h o t 5 10%. For
Nout = 4, however, much smaller fractions (about 2.5%) of
hot traffic cause significant increases in mean round-trip time.
(Note the larger range on the y-axis in Fig. 1 l(b).) This result
indicates that the effect of a hot-spot is very sensitive to Nout. In
particular, this suggests that open traffic models (Nout = CO)

may yield extremely pessimistic results.
The above hot-spot experiments assumed a single node-to-

switch link, as in all previous experiments. This link in the
hot node is a bottleneck in the system, and substantial queues
build up at the link, because we have assumed unlimited
buffer space for it. Hence, traffic in the rest of the network
sees almost no contention. Using multiple links from node
to switch (e.g., one node-to-switch link per outgoing virtual
channel) alleviates this bottleneck. The average response times
for this case are shown in Fig. 12.’ The figure shows that the

‘The curves for Nout = 4 and Fhot = 10% and 20% in Fig. 12(b) were

average round-trip time has reduced considerably for the cases
that showed non-negligible increases in response time due to
hot-spots in Fig. 11. Although Fig. 12 assumes one link per
outgoing channel, we would expect to see approximately the
same performance if the eight processor-switch channels were
multiplexed onto two or three physical links, because a very
high fraction of the outgoing traffic at each node uses only
two or three of the eight outgoing virtual channels. (Seven-
eighths of the total traffic out of a node must go out first on
the column, and is further restricted to only two or three of
these four outgoing virtual channels by the deadlock-avoidance
algorithm.)

When the bottleneck on the node-to-switch link in the hot
node is alleviated, the switch-to-node link becomes the new
bottleneck in the system. Now channel buffers on paths leading
to this bottleneck link can get filled up, affecting messages to
non-hot nodes as well. Hot-spot studies in indirect networks
have shown that traffic to memory modules other than the hot
module is slowed down as much as traffic to the hot module
itself [17]. This phenomenon has been called tree saturation.
To analyze the corresponding effect in mesh networks, we
plot in Fig. 13 the average response time for messages to
the hot processor (dashed lines) and to all other processors
(solid lines), assuming multiple node-to-switch links.9 For
Nout = 1, we see that traffic to non-hot processors does not
see significant increase in response time, even when Fhot is
as high as 20%. For Nout = 4, mean response time to the
non-hot processors actually decreases slightly when Fhot is
increased from 0%-5%. In this case, contention at the hot
node has significantly decreased overall network throughput,
offsetting any tree-saturation effect.

plotted by using data from simulations, because the analytical model did not
converge in this case. (The results of the analytical models for lower values
of F h o t were in good agreement with simulations.)

’Note that for Nout = 4, with uniform traffic (Phot = 0%) the round-trip
time to the “hot” processor is actually lower than that to other processors. This
is a direct result of the asymmetric loads on the virtual channels described in
Section E D and studied in Section IV-H. The hot processor chosen for these
experiments (processor [2, 21) is located at a point in the mesh where loads
on the outgoing virtual channels are balanced.

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

90-

80.

R
70.

60-

E 5o
n
S

239

Average response time to hot processor
Ave a e res nse time tu A

400 .. . - - -.

~ non-%& p&ssors ,,,'
A'

R 300
A 284
x 10%
+ 5% K e
0 1% ,,' S

E 0% ,A'

- * - x n
A - x - - - s 200

0.05 -
F
! ; 0.04.

R
a
d 0.03.

t
0

H 0.02.
0
t

S
P 0.01.
t

0.00

- .
0.00 0.01 0.02 0.03 0.04 0.05

Request Rate (1/-r)

(a)

7

. Average response time to hot processor
- Average response time to

non-hot pmessors . +

O J
0.00 0.01 0.02 0.03 0.04 0.05

Request Rate WO
(h)

Fig. 13. The effect of hot-spots on mean response times to non-hot processors. Bidirectional 8 x 8 torus, single-flit buffers,
multiple node-to-switch links.

0.05 -

F

i 0.04.

R
a
t 0.03'

t
0

H 0.02
0
t

; 0.01
0
t

0.00 0.05 0.10 0.15 0.20 0.25
Request Rate In Flits ((l/-r)x,&)

K) 0.05 0.10 0.15 0.20 0.25
Request Rate InFlits ((I/T)x=&)

(a) (b)

Fig. 14. Effective flit rate to hot node with blocking and nonblocking processors. Bidirectional 8 x 8 torus, single-flit buffers,
multiple node-to-switch links.

The above results suggest that the presence of hot-spots in
mesh networks does not significantly increase response times
for non-hot traffic, in systems of this size. This is different from
the concludons of Pfister and Norton [17] for systems of the
same size based on multistage interconnection networks. The
principal reason for the difference in results is that Pfister and
Norton assumed an open model, in which processors generate
requesrs continuously without blocking for responses to return
(i.e., Nout = CO). To illustrate the effect of this assumption,
Fig. 14> shows the actual request rate in flits per processor
to the hot module for Nout = CO (dashed lines), as well as
Nout ='1 and Nout = 4 (solid lines) as a function of the
input rate (in flits), (1 / ~) x Lmsg. The request rate tp the hot
module is significantly higher for Nout = 03 than for finite
values &f Nout, and this would also be true for the multistage
interconnection network.

The hot-spot experiments described in this section have
focused on 64-processor systems. The degradation due to a
hot-spot will become more severe with increasing system size.
Finite-buffer models are necessary for realistic hot-spot stud-
ies, however, and we have been unable to use our analytical

finite-buffer model to study large systems quantitatively. (Sim-
ulating these systems is even more difficult.) Nevertheless, we
believe that the results of this section provide insights that
would be valuable in studying large systems. Qualitatively, we
expect multiple node-to-switch links to significantly alleviate
the effect of a hot-spot for larger systems as well. We also
expect that larger systems with blocking processors (finite
Nout) will be able to support much higher levels of hot-
spot traffic without introducing tree-saturation than would
be predicted using open system models (i.e., assuming that
" I t = CO).

H. Pe@ormance Imbalance Caused by the
Deadlock-Free Routing Algorithm

The analyses of torus performance using the single-flit
buffer analytical model show significant differences among
processor efficiencies at different locations in the system,
and these observations are corroborated by simulation (see
Section IV-A). To illustrate the imbalance, Table V-A gives the
efficiencies of the individual processors in the unidirectional
8 x 8 torus, (Nout = 4, 1 / ~ = 0.02) under uniform traffic,

240

Row 0
1
2
3
4
5
6
7

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

89 88 87 88 89 89 89
86 83 82 84 86 87 87 89

85 79 72 71 76 83 85 85
81 67 55 55 63 78 83 83

57 78 83 83
70 81 84 84

81
83 74 62
84 81 78 78 79 82 83 83
85 84 84 83 83 83 83 83

Dl

63
61

62 @

Row0
1
2

5
6
7

@ 52 57 60 60 59 55 49
52 55 60 62 63 61 58 53
59 61 64 66 66 65 63 60

67 66 64
67 66 65
65 63 60 60 62 64 65

53 57 61 62 62 61 58 54
49 53 58 60 60 58 55 49

67 1681 1681
1681 1681

3 6 4 65

4 6 4 65 67
65

Key: 0: Minimum efficiency value. 0: Maximum efficiency value.

i.e., with equal loads on all physical links. The table shows
that the processors near the comers have high efficiencies,
whereas the ones near the center of the mesh have much lower
efficiencies. Table V-B shows the processor efficiencies for the
bidirectional 8 x 8 torus (Nout = 4, 1 / ~ = 0.04) under uniform
traffic. Again, imbalance is observed; however, this time the
processors near the comers have low efficiency. Note that these
two cases represent operating points with moderate to high
average processor efficiency (79% and 58%, respectively), yet
also with significant performance imbalance across the system.

To quantify the performance imbalance at particular pa-
rameter settings, we use the ratio of the maximum processor
efficiency to the minimum processor efficiency. Fig. 15 plots
this ratio as a function of the request rate for the unidirectional
and bidirectional 8 x 8 ton, for Nout = 1, 2, and 4. The
figure shows that the imbalance becomes significant when
network contention is moderately high, but includes cases that
represent reasonable operating points (i.e., average efficiencies
greater than 50%). For example, the 64-processor system with
Nout = 4 has average efficiency greater than 50% at most
request rates, as shown in Fig. 9(b); however, the imbalance
is as high as 1.5 for the bidirectional torus and 4.0 for
the unidirectional torus. Finally, comparing Fig. 15(a) and
15(b), we also see that the imbalance is much greater in the
unidirectional torus than in the bidirectional torus.

! I , , , , ,
0.0

O.Oo0 0.010 0.020 0.030 0.040 0.050
Request Rate (I/r)

(a)

2.0,

; :.:I
" 0 2

0.04 . , , , ,

(b)

0.ooO 0.010 0.020 0.030 0.040 0.050
Request Rate (I/r)

The results described above suggest that the imbalance

considered during the design of the system. The imbalance in
processor performance may have significant implications, for
example, for parallel programs that synchronize via barriers.
Whether the imbalance is significant for any particular system
depends on several factors, including buffer size, message
lengths, and request rate.

Fig. 15. Maximum performance imbalance. Single-flit buffers, uniform
in system performance c m be significant and needs to be traffic. (a) Unidirectional 8 x 8 torus. (b) Bidirectional 8 X 8 torus.

Recent studies have shown that mesh networks without end-
around connections also have significant, symmetric imbal-
ances in processor performance, even under uniform commu-
nication [3] , [7]. These imbalances occur because of unequal
traffic requirements on the physical links, however, a situation

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS 24 1

which arises from edge effects due to the lack of end-
around connections. In torus networks, physical link loads
are balanced under uniform traffic; thus, the source of the
observed imbalance in processor performance must be sought
elsewhere.

A potential source of imbalance in torus networks is the
asymmetric virtual channel loading by the deadlock-avoidance
algorithm, described in Section 11-D. In attempting to deter-
mine whether and how this asymmetry causes the imbalance,
an obvious guess is that the round-trip communication by
some nodes makes greater use of high-load virtual channels
(i.e., channels that carry a high fraction of their links' traffic).
However, this explanation cannot account for an observed
peculiarity in the pattern of imbalance in the unidirectional
case, namely, that processors with poor performance are not
necessarily located where greatest asymmetry in channel load-
ing occurs. In fact, channels near the edges have the greatest
traffic asymmetry (Fig. 4), but processors near the edges
have the best performance (Table V-A). To understand why
the above explanation is invalid in general, note that for
outgoing requests that use high-load channels, the responses
will use low-load channels on the return trip (and vice versa)
because of symmetries in the routing algorithm. (This is easiest
to reason about for the unidirectional torus.) Some careful
thought reveals that the differences between nodes that place
somewhat greater load on balanced virtual channels versus
nodes that place somewhat greater load on high- and low-load
channels are not likely to account for the fairly large observed
imbalance in processor efficiencies.

More careful consideration of message pipelining and block-
ing behavior reveals a different and potentially substantial
impact of the asymmetric loads that can also explain the
particular patterns of imbalance observed in Table V. Specif-
ically, certain nodes' outgoing messages (both requests and
responses to other nodes) experience relatively severe blocking
because of high-load virtual channels after leaving the node.
Such nodes will see significantly higher contention for their
node-to-switch link because of the pipelining and blocking of
messages. Because each processor is the heaviest user of its
own node-to-switch link, increased contention on this link
results in lower efficiency for the processor at such a node.
Furthermore, in the unidirectional torus, it is the nodes near
the center of the network whose outgoing messages experience
most severe blocking because of high-load channels, whereas
in the bidirectional torus it is the nodes near the edges. This
leads to the different patterns of imbalance in the two cases.

To demonstrate the phenomenon quantitatively, consider the
nodes on some fixed column (as in Fig. 4) of a mesh network.
For the node on row i, define the following:

R(c, i) mean residence time on outgoing virtual
channel c for a message out of the node
(i.e., for a message that was transferred over
the node-to-switch link into the buffer
for channel e),

outgoing channels c,

link at the node.

-
R(i)= average of R(c, i), averaged over all

W n o d e (i) = mean waiting time for the node-to-switch

400-

3"

320-

280-

0 1 2 3 4 5 6 7
Row Number (I)

(b)

single-flit buffers, uniform traffic.
Fig. 16. Residence time on first virtual channel. Nodes on column 3;

Fig. 16(a) plots R(c, i) , for c = NH and NL, n(i), and
Wnode(i) as functions of 1 (row number) for column 3 of
a unidirectional 8 x 8 torus (NH and NL denote the High
and Low channels in the North direction). R(i) is higher near
the middle of the column than near the edges, showing that
outgoing messages from the nodes near the middle experience
much more severe blocking, as described above. Now high
R(i) also implies a high residence time on the node-to-switch
link, and hence a high waiting time, Wnode(i), just as shown in
the figure. This leads to poorer performance for these nodes.
For the bidirectional case, Fig. 16(b) plots R(c, i) for c E
{NH, NL, SH, SL}, R(z), and W n o d e (i) . In this case, R(z),
and hence Wnode(z), are higher near the edges of the torus,
and thus the efficiency is lower.

Thus, the ultimate effect of high-load channels is the same in
both networks: They cause more severe blocking for outgoing
messages of some nodes, which produces much greater con-
tention for the node-to-switch link at these nodes. However,
the pattern of use of the high-load channels by outgoing
messages is different in the two networks. In the bidirectional
case, blocking of outgoing messages is more severe for nodes
near the edges, because these nodes' outgoing messages make
much greater use of high-load virtual channels compared to
nodes near the center. For example, a node on row 7 in an
8 x 8 bidirectional network sends all of its outgoing messages
on channels that carry 100% of their links' traffic (NL and
SL), whereas the outgoing messages for a node on row 3
are mostly concentrated on channels with low to moderate

-

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

load (NL and SH). In the unidirectional case, however, the
nodes near the center, which have poor performance, make
only slightly greater use of high-load virtual channels than
do nodes near the edges. In these networks, it appears more
significant that outgoing messages from nodes near the center
travel from channels with a low to moderate load into channels
with a high load, whereas for nodes near the edges the
opposite is true. (Refer to Fig. 4.) The pipelined routing causes
significantly greater blocking for the former than it does for
the latter.

As the preceding discussion indicates, the precise expla-
nation of the relationship between the asymmetric channel
loadings and the performance imbalance is fairly subtle and
nonintuitive. Formulating and validating the explanation re-
quired significant insight as well as analysis of detailed metrics
obtained from the analytical model. Furthermore, the imbal-
ance cannot be detected or analyzed by using models or
simulations that ignore the virtual channel loadings or the
finite switch buffers. Finally, note that the waiting times for the
node-to-switch links, and hence the imbalance itself, might be
reduced by the use of multiple physical node-to-switch links
and/or multiple virtual node-to-switch channels.

V. CONCLUSION

We have developed accurate, approximate MVA models
for k-ary n-cube interconnection networks with wormhole
routing, with single-flit and infinite buffers at the switches.
Interesting aspects of the model include the techniques used
to estimate mean message blocking times, mean message
queueing times at the processors, and the mean queue lengths
seen at the first outgoing link when multiple channels connect
each processor to its switch output channels. Many of the ex-
perimental results would not have been possible with simpler
analytical models that do not represent the message blocking
and details of the routing. The equations for channel waiting
time, which form the foundation of the single-flit-buffer model,
use recurrence relations to model the dependencies among
flit blocking times within a single message, yet use random
arrival instant assumptions to model interference by other
messages. The models were shown to be quite accurate by
extensive validations with simulation. We are not aware of
any previous work that has used similar models of blocking in
these networks. We believe the validation results are important
evidence that approximate MVA is a viable technique for
modeling complex systems.

We used the models to analyze various issues that arise in
the design of 2-D (mesh) networks. These results (summarized
below) should prove useful for engineering high-performance
systems based on low-dimensional k-ary n-cube networks.

Some of our results confirm and quantify existing intuition
about mesh interconnection networks. With processors that
block on every request, we have shown that contention in
the network is low, and the three network topologies (bidirec-
tional and unidirectional torus and bidirectional mesh) show
little difference in performance. Multiple outstanding requests
can help increase performance, but can also cause increased
contention. Thus, in this case, substantial performance gain is
achievable by increasing buffer size.

We also gained new intuition from some of our results,

Under uniform workloads, absolute performance is higher
with multiple outstanding requests; but network perfor-
mance does not scale well with increasing system size.
Communication locality improves system performance,
particularly for multiple outstanding requests, but at least
70%-80% of each processor’s traffic must be directed to
its nearest neighbors before the case of four outstanding
requests scales well.
With multiple outstanding requests, the bidirectional torus
performs significantly better than do the other two topolo-
gies. Furthermore, it exhibits much lower performance
imbalance (see below) due to the deadlock-free routing
algorithm than does the unidirectional torus.
Open system models can yield extremely pessimistic
results in hot-spot studies. When processors block after
making a few requests, only high fractions of hot-spot
traffic cause significant performance degradation in 64-
processor systems with single-flit buffers. Furthermore,
traffic to the non-hot processors is not much affected by
hot-spot traffic in these systems; i.e., tree-saturation is
not observed.
At some plausible operating points (i.e., in cases where
average processor efficiency is reasonably high), there is
a perceptible difference in the efficiencies of processors
at different locations in the mesh. This imbalance is
due to asymmetric loads on the virtual channels by the
deadlock-avoidance algorithm.

A number of related issues for IC-ary n-cube networks
remain to be studied. The models developed in this paper
can be used to study network performance for message-
passing and hierarchical systems. The conclusions from the
experiments need to be examined for 3-D networks. The result
that a communication hot-spot does not significantly slow
down other traffic in the system needs to be reexamined for
larger systems. A related question that needs to be answered
is what buffer sizes are required to approximate infinite
buffer performance under various workload assumptions. For
interconnection networks with pipelined routing in particular,
however, modeling the performance with larger finite buffers
is a difficult problem. (Previous analytical models of inter-
connection networks that allow finite buffer sizes are based
on a decomposition approximation in which each queue is
analyzed in isolation, thus ignoring the dependencies between
network stages caused by the blocking and pipelining of
messages. See, e.g., [I51 and the references therein.) Fi-
nally, it would be worthwhile to develop a deadlock-free
routing algorithm for the mesh network that does not lead
to the imbalance in processor efficiencies that we have ob-
served.

including the following.

APPENDIX A
NOTATION USED IN THE MODEL

We use the following convention for integer subscripts in
the model equations: i , s, d, and q denote node numbers.
(In this usage, i always appears within brackets, i.e., “[il”

ADVE AND VERNON: PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS

Term

RbI

% e t w o r k [i] , T p r o c [i] , T r e m o t e [i]

243

Definition

Terms common to the entire model

Mean round-trip time for customer of class i .
Mean residence time for a customer of class z in the network, at the processor,
and at the remote node, respectively.
Mean residence time in the network for a message of type j from s to d

and “(i, n)”). j denotes message type. 5 denotes flit num-
ber. c denotes a virtual channel. i, I denote input ports.

The table below defines the variables used in the model
equations.

Cjinstead of CjEmsgl,msg2,respl,resp2.
(In this case, i always appears as a subscript, e.g., rj ,c, i .) R[il = r ~ r o c [i l f rnetwork[il -k rremote[i], = ‘ ’ ’ N . (1)

A. in the Network

-
C

APPENDIX B
THE MODEL

The virtual channel that shares the same physical link as c

Queueing for the channels

The equations of the model are given in detail here. (2)
Throughout the development of the model, we call a message T j , s d = wnode,sdlj + rj,c,sd[l] f Tcatchup,j,sd,
from s to d or a response from d to s a message of class C

b n o d e , j , s l q [k I , q”ode,j,slq

s. Also. in

For a message of class q arriving to the link from processor to switch at node s:
respectively, the probability that the link is busy serving the kth flit of a request
of type j , and the mean number of waiting requests of type j .

Ulznk ,?

W n o d e , s / q

W C , I

n) , u P r o c (i i n) , TPrOc(i , n,

TeSproc

Bmem,3,Sld. Qmem,J,s ldr W m e m , J , s l d

T e S m e m ,3’ 13

The virtual channel that is k steps after (or before) virtual channel c on the path
from s to d

Utilization of the physical link corresponding to channel c by messages on
companion channel
Mean waiting time for the link from processor to switch at node s, for the
header flit of a message of class q
Mean waiting time for channel c, for a message arriving to c via input port I

Queueing for the processors

Steady state mean queue length, residence time, and utilization of processor i

Mean residual service time of a customer found in service by a message
arriving to a processor, as seen by the tail flit of the message, conditioned on
the header flit finding the processor busy

Queueing at a remote node

For an arriving request from s at remote node d: respectively, the probability d
is busy serving a request of type j ’ , the mean number of waiting requests of
type J , and the mean waiting time.
Mean residual service time of a request of type j at a remote node as seen by
the tail flit of a type j ’ request, conditioned on the header flit finding the type j
request in service

Queueing for thejrst network virtual channel on a path, with multiple processor
+ switch channels

when there are customers in class i

Mean residence time for the kth flit of a request of type j , on the link from
processor to switch at node s.

Set (d l messages from s to d, or responses from d to s if j is a reply message,
visit c via input port i) .
Respectively, the mean residence time of the kth flit of messages of type j on
channel c, which arrive to c via input port I , and the mean utilization of
channel c by such flits
Mean residence time on channel c of the kth flit of a message of type j from s
to d

For a customer of class q arriving to channel c via input port 2: respectively, the
probability c is serving the kth flit of a request of type J , and the mean number
of waiting requests of type J

Total visit ration of all customer classes to channel c as type j messages
arriving via input port i
Mean waiting time for channel c by a customer of class q, where c is the first
network virtual channel on its path W’

c14

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

where the sum is over all channels c on the path from s to d.

W(c+l) ,d(I + Ulink,? + 1 k = 1,
T(c+k-l),d[l] f Ulink,Z IC > 1, d is IC

or more steps away
from c,

1 + Ulink,F otherwise.
(4)

Tcatchup is the length of the message minus 1 (for the header)
plus the delay due to sharing the physical links with traffic on
other virtual channels, summed over the links that the tail flit
must traverse after the headerflit reaches the destination node:

I Tj,c,sd[k] =

Tcatchup,j,sd = Lj - 1 f Ulink,?.
c:cis<LJ hopsfromd

The equation for the waiting time, wClI, is explained in
Section 111-B.

T \

/ '-1

rj, , , i [k], ~ j , ~ , ; [k], and Ulink,c remain to be calculated. These
can be expressed in terms of rj,,,,d[k] in a straightforward
manner. First, define D c , i l j (s) {dl messages from s to d
visit c via input port i}. Then,

B. Waiting Time for the Processor Link

The remaining term in (3), U)node,sdlj, is calculated next.
For request messages, Wnode,sd(j is the average waiting time
for the P-link at node s seen by a class s message (Wnode,s(s),

and for reply messages Wnode,sdlj is the average waiting time
for the P-link at node s seen by a class d message (Wnodesld).

In general, Wnode,. lq is calculated in a manner very similar to
(6) for WCl,. See (10) at the bottom of the preceding page.

The main differences from (6) for WclI are as follows:
1) The second term in (6) is no longer required, and the

first term does not have a summation over input ports.
In both cases, the reason is that the buffer capacity for
this link is unbounded.

2) The third term in (6) used the probability that there is
a waiting request for each input port i . Now, however,
we require an actual queue length, qnode, j ,s lq , denoting
the average number of requests of type j waiting for
the processor link in node s when a request of class q
arrives. This can be calculated as follows:

where 1fS=¶} is 1 if s = q. and 0 otherwise. We can
calculate Tnode,j,s [k] and bnode,j,slq[k] similarly:

C. Queueing at the Processor

As defined in Appendix A, ~ ~ ~ ~ ~ (i , n) is the average resi-
dence time at the processor for a customer of class i when there
are n customers in its class. Hence, ~ ~ ~ ~ ~ [i] = Tproc(i, No",)
by definition. rproc(i, n) is calculated by recursion on n:

Tproc(i7 n) = [qproc(i, - 1) - Uproc(i , 72 - I)] x T

+ uproc(i ! n - 1) x resproc, n > 1, (14)

, (15) qproc(i , n) =

Uproc(i , n) = , (16)

qproc(i , 1) = ~ p r o c (i , 1) =

x Tproc(i, n)
Tproc(i, n) + Tnetwork[i] f Tremote[i]

n x r
Tproc(2, n) + rnetwork[i] -k rremote[i]

and
7

7 f Tnetwork [i] + Tremote [i] '
(17)

(18)
resproc = (7 - 1) x (~ 1 y ~ r e ~ p 1 - l + ~ ~ y ~ r e s p 2 - l),

y = 1 - (l / r) .

ADVE AND VERNON PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS 245

‘ D. Residence Time at the Remote Node

The equations for the residence time at the remote node
are developed assuming that the request is serviced at the
memory of the remote node without interrupting the remote
processor (we denote TremOte as rmem here). For example, in a
shared-memory system, remote memory accesses could be of
this type, with msgl, msg2, respl, and resp2 corresponding to
read, write, data and acknowledgment messages, respectively.
The time to access one word is Dmem, l for a read request
and Dmem.2 for a write request. We assume that a request is
queued for a memory module only when its last flit is received
at the node. We also assume that the memory at each node
is interleaved, and, to simplify the analysis, that all accesses
read or write the first byte from the first module, the second
byte from the second module, and so on. This implies that
D m e m , l (IJmem,a) cycles after a read (write) request begins
service, the next memory request can begin service. Further,
for a read request, the response (data message) is queued up
to be transmitted as soon as the first word of data is read out
from the first memory module, with subsequent words being
transmitted one per cycle. An acknowledgment in response to
a write request is queued when the last byte has been written,
i.e., after Lmsg2 cycles. We do not limit the number of requests
that can simultaneously be queued up for a given module.

The method for calculating the mean residence time at
memory is the same as that in [22]:

(22)

Finally, just as in the processor queueing equations, the
residual life of a memory request in service has to be calculated
as seen by the tail flit rather than as seen by the head.
Defining resmem,j)lj to be the residual service time of a type
j ’ E { 1,2} request as seen by the tail flit of a message of type
j E {msgl, msg2}, we have the following equation:

. (23)
(D m e m , j f - Lj)
(2 x IJmem,jf)

resmem,jtlj = (D m e m j ! - Lj + 1) x

E. Waiting Eme for the First Virtual Channel in the
Network, with Multiple Processor-Switch Channels

The equations of the model described so far have been the
same for single or multiple processor + switch channels. The

only exception is (10) for Wnode,slq, which now would be
denoted by Wnode,clq, and must be calculated separately for
each outgoing channel c from node s. Similarly, qnode,j,clq,

bnode,j,clq [IC], and Tnode,j,c[k] have to be calculated separately
for each c; however, in all cases, the equations remain essen-
tially the same.

The waiting time for the buffer in the first switch is the
only part that needs to be calculated somewhat differently, as
described in Section 111-E. The equations are as follows:

The first term in (24) has been explained in Section 111-E, and
the remaining two terms are similar to the second and third
terms in (6). Then, as explained in Section 111-E, bi,c,ilq[IC] is
calculated as follows:

Finally, the equation for q(i,c,ilq is as follows:

L,

x y y %,c, iJ [I C] . (26)
t‘#PROC j k = l

* ‘ # r

The first line of (26) corresponds to waiting for messages
that were blocked on input port i # PROC by the preceding
message on the processor-to-switch link, when the processor-
to-switch link is found busy. When it is found idle, but channel
c is busy serving a message that arrived from input port
i’ # i , i ’ # PROC, the tagged message also has to wait for
messages on input port i that were blocked by the message
occupying c. This is the second line of (26).

This completes the equations for the case with multiple
processor switch channels, and the description of the model.

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

ACKNOWLEDGMENT [191 H. S. Stone, High Pe@ormance Computer Architecture.
Addison-Wesley, 1987.

efficient performance analysis technique for multiprocessor snooping
cache-consistency protocols,” Proc. 15th Int. symp. Comput. Architec-
ture, June 1988.

contexts in a multiprocessor achitecture: Preliminary results,’’ 16th Ann.
Int. Symp. Comput. Architecture, May 1989, pp. 273-280.

Reading, MA:

We thank A. Mukherjee and D. Eager for valuable discus- [20] M. K. Vernon, E. D. Lazowska, and J. Zahorjan, “An accurate and
sions during the development of the model. We also thank S.
Adve, A. Agarwd, D. Eager, Hill, S. Owicki, G. Sohi, and
an anonymous referee for valuable C 0 ” m t S On earlier drafts
of this paper.

[21] w. Weber and A. Gupta, “Exploring the benefits of multiple hardware

REFERENCES

A. Agarwal, B. Lim, D. Kranz, and 3. Kubiatowicz, “APRIL: A pro-
cessor architecture for multiprocessing,” 17th Ann. Int. Symp. Comput.
Architecture, May 1990, pp. 1W114 .
A. Agarwal, “Limits on interconnection network performance,” IEEE
Trans. Parallel Distrib. Syst. vol. 2, pp. 398-421, Oct. 1991.
K. Bolding and L. Snyder, “Mesh and torus choatic routing,” Advanced
Research in V U 1 and Parallel Systems: Proceedings of the BrowdMIT
Conference, 1992, pp. 333-347.
K. Bolding, “Non-uniformities introduced by virtual channel deadlock
prevention,” Tech. Rep. 92-0747, Dept. of Comput. Sci. and Eng.,
Univ. of Washington, 1992.
S. Borkar, “iwarp: An integrated solution to high-speed parallel com-
putation,” Proc. Supercomputing ’88, Nov. 1988.
K.M. Chandy and D. Neuse, “Linearizer: A heuristic algorithm for
queueing network models of computer systems,” Communic. ACM 25,
pp. 126134, 1982.
S. Chittor and R. Enbody, “Performance degradation in large wormhole-
routed interprocessor communication networks,” Proc. 1990 Int. Con$
Parallel Processing, 1990, pp. 1-4244-428.
W. J. Dally, “A VLSI Architecture for Concurrent Data Structures,”
Ph.D. dissertation, Cal. Inst. of Tech., 1986.
W.J. Dally and C.L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Comput., vol. C-36,
no. 5, pp. 547-553, May 1987.
W. J . Dally, “Performance analysis of IC-ary n-cube interconnection
networks,” IEEE Trans. Comput. , vol. 39, pp. 775-785, June 1990.
E. Gelenbe, “Performance analysis of the connection machine,” Proc.
ACM SIGMETRICS Con$ Measurement and Modeling of Comput. Sysf.,
vol. 18, pp. 183-191, May 1990.
P. Kermai and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Computer Networks vol. 3, pp.

G. Lee, C. P. Kruskal, and D. J. Kuck, “The effectiveness of combining
in shared-memory parallel computers in the presence of ‘hotspots’,”
Proc. Int. Con$ Parallel Processing, 1986, pp. 3541 .
D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J.
Henessy, M. Horowitz, and M. Lam, “The Stanford DASH multipro-
cessor,’’ IEEE Comput. vol. 25, pp. 63-79, Mar. 1992.
T. Lin and L. Kleinrock, “Performance analysis of finite-buffered
multistage interconnection networks with a general traffic pattern,” Proc.
1991 ACM SIGMETRICS In?. Con$ Measurement Modeling Comput.
Syst., San Diego, CA, May 21-24, 1991.
M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-machine multi-
computer: An architectural evaluation,” 20th Ann. Int. Symp. Comput.
Architecture, May 1993, pp. 224-235.
G. F. Pfister and V. A. Norton, “‘Hot spot’ contention and combining in
multistage interconnection networks,” IEEE Trans. Comput. vol. C-34,
no. IO, Oct. 1985.
P. Schweitzer, “Approximate analysis of multiclass closed networks of
queues,’’ Int. Conk Stochastic Control and Optimization, 1979.

267-286, Oct. 1979.

[22] D. L. Willick and D. L. Eager, “An analytic model of multistage in-
terconnection networks,” Proc. ACM SIGMETRICS Con$ Measurement
Modeling Comput. Syst., May 1990, pp. 192-202.

[23] P. Yew, N. Tzeng, and D. H. Lawrie, “Distributing hot-spot addressing
in large-scale multiprocessor,” IEEE Trans. Comput., vol. C-36, Apr.
1987.

V. S. Adve (S ’ 87-M ' 87-S ' 8 8-M ' 89-S ’ 89-M’ 92)
received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Bombay, in
1987, and the M.S. and Ph.D. degrees in computer
science from the University of Wisconsin-Madison
in 1989 and 1993, respectively.

He is a Research Scientist at the Center
for Research on Parallel Computation at Rice
University, Houston, TX. His research interests
lie in the design and performance evaluation
of hardware and software for parallel computer

systems. His current research is focused on techniques for parallel program
performance prediction, and on techniques and tools for the interactive
performance evaluation and tuning of automatically parallelized programs.

Dr. Adve is a member of the IEEE Computer Society and ACM.

M.K. Vernon (S’82-M’92) received the B.S. de-
gree with departmental honors in chemistry in 1975,
and the M.S. and Ph.D. degrees in computer science
in 1979 and 1983, respectively, from the University
of California at Los Angeles.

In August 1983, she joined the Department of
Computer Science, University of Wisconsin, Madi-
son, WI, where she is currently an Associate Pro-
fessor. Her research interests include techniques for
parallel system performance analysis, and parallel
architectures and systems.

Dr. Vernon received a National Science- Foundation (NSF) Presidential
Young Investigator Award in 1985 and an NSF Faculty Award for Women in
Science and Engineering in 1991. She is currently on the Editorial Board of the
IEEE Transactions on Software Engineering. She has served on the Computer
Science Advisory Board of the Computer Measurement Group, the Board
of Directors of ACM SIGMETRICS, and several NSF advisory committees,
including the Advisory Committee for the Computing and Information Science
and Engineering Directorate and the 1993 NSF Blue Ribbon Panel on High
Performance Computing. She is a member of ACM, the IEEE Computer
Society, and the IFIP Working Group 7.3 on Information Processing System
Modeling, Measurement, and Evaluation.

