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ABSTRACT

Two key technologies enabling scalable on-demand delivery of stored multimedia content are work-ahead smooth-
ing and multicast delivery. Work-ahead smoothing reduces the burstiness of variable bit rate streams, simplifying
server and network resource allocation. Recent multicast delivery techniques such as patching or bandwidth
skimming serve clients that request the same content close together in time with (partially) shared multicasts,
greatly reducing required server bandwidth.

Although previous studies of work-ahead smoothing have generally assumed very limited client buffer space,
in a number of contexts of current interest (such as systems that have significant settop storage), it becomes
feasible to fully smooth variable bit rate content. We quantify the start-up delay and settop storage requirements
of full smoothing for a number of sample variable bit rate objects. We then evaluate a fundamental conflict
between aggressive smoothing and the new multicast delivery techniques. Work-ahead smoothing requires
sending data for high rate portions of an object earlier than it is needed for playback, while multicast techniques
yield their greatest benefit when data is delivered within each stream as late as possible so that more clients can
share reception of that data. A new multicast delivery technique is proposed that can accommodate aggressive
smoothing with increased efficiency in comparison to previous techniques, particularly for high request rates.

Keywords: streaming media, multicast, bandwidth skimming, variable bit rate, work-ahead smoothing

1. INTRODUCTION

A number of emerging applications require efficient methods for on-demand streaming of popular stored mul-
timedia content, such as movies, news clips, or lecture videos. Generally, the straightforward approach of
delivering a separate stream of uncompressed video to each client will consume too much server, network, and
client bandwidth to be feasible.

Compression'® can reduce the bandwidth requirements of streaming video by one to two orders of magnitude.

Compression yields either variable quality content, in which quality is degraded during scene changes and periods
of high motion or greater detail, or variable bit rate (VBR) content. Constant-quality, VBR video has been shown
to exhibit substantial rate variability, on time scales as long as several minutes'!. Such rate variability greatly
complicates the task of designing server and network resource management mechanisms that can efficiently
support jitter-free playback.

The problem of effectively delivering VBR content can be addressed by work-ahead smoothing?'. Work-
ahead smoothing reduces rate variability by streaming data from high rate portions of an object before it is
needed, during otherwise low rate periods, and buffering it at the client until playback. The extent to which
smoothing can take place is constrained by the available client buffer space. Although most prior work on
work-ahead smoothing has assumed that clients have very limited buffer space (i.e., a few megabytes or less),
in many contexts of current interest (such as delivery to PCs or to settops containing disk storage) clients have
sufficient buffer space to permit full smoothing to a constant bit rate (CBR) stream. The start-up latency and
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storage space required for full smoothing of several MPEG-1 video traces are quantified and shown to be quite
modest in Table 1 of Section 3.

A second key technology that enables efficient on-demand streaming of stored multimedia content is multicast
(or broadcast) delivery techniques that are able to serve many clients requesting the same content at different
times with only a few streams. Of particular interest in this work are patching® 3 %13, hierarchical stream
merging® ¢, and bandwidth skimming” '®. These delivery techniques require no a priori division of objects into
“hot” and “cold” sets, and allow the server to start streaming an object immediately upon receiving a request
for it. These techniques enable a client to “catch up” to an earlier client being served the same content, at the
cost of requiring the newer client to receive data at a higher rate, and some additional client storage space for
buffering data that is received ahead of when it is needed. Once a client has caught up to another client or
group of clients, they can share a single multicast stream.

The questions addressed in this paper are motivated by the observation that there is a fundamental conflict
between aggressive work-ahead smoothing and scalable on-demand streaming. That is, providing on-demand
streaming requires frequent transmissions of the earlier portions of a media object, while providing scalable
delivery requires highly shared and relatively infrequent transmissions of the latter portions of an object. Since
work-ahead smoothing involves moving data from high rate portions of an object to otherwise low rate por-
tions closer to the beginning, smoothing has the side-effect in the context of scalable on-demand streaming of
increasing the frequency with which this data must be delivered. To understand the impact of this conflict on
the design of scalable streaming protocols, we address the following questions:

¢ How much rate variability occurs in existing VBR videos as well as in existing composite objects, where a
composite object is a collection of synchronized components (e.g., an audio clip together with a sequence
of static images)?

e What is the minimum server bandwidth required to deliver media objects that have rate variabilities that
occur in practice, and is this server bandwidth significantly lower than with the straightforward approach
of applying an existing scalable delivery protocol to an aggressively smoothed stream?

o If there is significant room for improvement over the straightforward approach, can we devise a practical
new scalable delivery protocol that achieves significantly more efficient delivery of popular VBR objects?

The principal contributions of the paper are (1) quantification of the rate variability in existing VBR objects,
(2) a simple equation for computing the lower bound on required server bandwidth for delivering a given VBR,
object under a specified maximum client start-up delay, and (3) a new delivery protocol, VBRBS, that has
fixed-rate server streams, yet exploits knowledge of the VBR profile to more effectively aggregate clients and
conserve server bandwidth. The new delivery technique is derived from the bandwidth skimming protocol. A
similar approach could be applied to other techniques such as patching.

The remainder of the paper is organized as follows. Section 2 provides background on work-ahead smoothing
and on bandwidth skimming. Section 3 evaluates the start-up delay and storage requirements of full smoothing
for a variety of VBR video traces, composite multimedia objects, and synthetic objects. The impact of rate
variability and of full smoothing on the inherent server bandwidth requirements for on-demand streaming of
stored content is studied in Section 4. Section 5 presents the new VBR Bandwidth Skimming delivery technique,
and presents simulation results assessing its performance. Variants of this technique that support delivery to
clients with limited storage capacity are described and evaluated in Section 6. Section 7 concludes the paper.

2. BACKGROUND
2.1. Work-ahead Smoothing

Streams with high bit rate variability greatly complicate the task of allocating server and network resources.
Basing resource allocation and provisioning on peak rates is inherently inefficient, as peak rates may be more
than an order of magnitude higher than average rates. Furthermore, the achievable transmission rate to a
particular client may be sufficient to accommodate the average rate of a VBR stream, but not the peak rate.



If the achievable transmission rate to a client is high enough for the peak rate of unsmoothed VBR content,
it would seem preferable, from the client perspective at least, to receive instead higher quality (but smoothed)
content. For these reasons, it is highly desirable to reduce the rate variability of individual streams, a task that
is accomplished by work-ahead smoothing.

A number of work-ahead smoothing techniques have been proposed in the literature. These techniques differ
in how client buffer size constraints impact various properties of interest (peak rate, rate variability, number
of rate changes, as well as others)®. This paper focuses for the most part on the case in which clients have
sufficient available storage space, for example a commodity disk, to permit full smoothing of VBR content to a
CBR stream. Full smoothing minimizes the peak rate, thus permitting delivery of the highest possible quality
content as constrained by the achievable transmission rate to the client, as well as enabling the most efficient
server and network resource allocation.

Section 6 investigates variants of VBR bandwidth skimming for clients with more limited storage capac-
ity. In this case, the variant that delivers the “smoothest” streams uses the optimal smoothing algorithm of
Salehi et al.2!. This algorithm minimizes peak rate and rate variability, subject to specified constraints on the
transmission schedule.

2.2. Bandwidth Skimming

Of interest in this paper are the multicast delivery techniques (including patching? 3 9 13, hierarchical stream
merging® ¢, and bandwidth skimming”> '¢) that operate over low and high request arrival rates, and allow the
server to start streaming an object to a client immediately upon receiving the client request. To date, these
techniques have been developed for constant bit rate streaming only. This is in contrast to the segmented, periodic
broadcast techniques in which objects are divided into segments that are continuously broadcast, independent of
client requests!? 14:16-19,22,24  {Jge of these latter techniques with VBR objects has been considered in previous
work!217:18:22. 54 common approach!?17:18 ig to fully smooth each segment, and construct the transmission
schedule so that each segment can be completely received by clients prior to its play point.

Bandwidth skimming is distinguished by its low required aggregate transmission rate to each client. Other
than bandwidth skimming and the Optimized PB protocol', multicast techniques for on-demand streaming
require that the achievable transmission rate to each client be at least twice the object bit rate, so that clients
can “catch up” to other clients that have made earlier requests for the same object by concurrently receiving
two or more full-rate (or equivalent) transmission streams. In contrast, bandwidth skimming uses only a small
“skim” of the achievable transmission rate to support this dynamic client aggregation, allowing most of the
bandwidth to the client to be consumed in supporting streaming of the highest possible quality content. This
objective is achieved through use of the hierarchical stream merging approach to aggregating clients, together
with a mechanism for using the bandwidth skim to effect each aggregation.

An example of hierarchical stream merging is depicted in Figure 1 for the simple case in which the achievable
transmission rate to each client is assumed equal to at least twice the (constant) object bit rate, and thus clients
can receive two full-rate streams simultaneously. In the scenario depicted in the figure, four clients request
the same object and are each initially provided with their own multicast stream. Clients B and D also begin
listening to the streams that were initiated for clients A and C|, respectively, thus accumulating data at twice
the object bit rate, as indicated in the figure by the dashed lines. At times T2 and T'5, respectively, clients
B and D have accumulated sufficient data that their own streams can be terminated as long as they continue
listening to the streams initiated for clients A and C, respectively. After clients C' and D have been aggregated
in this manner, both begin listening to the stream initiated for client A, thus accumulating data at twice the
object bit rate and allowing the stream created for client C' (and now received by both clients C' and D) to be
terminated at time 7'6.

Variants of hierarchical stream merging differ according to the precise policy used to determine which clients
to aggregate with which others, and in what order, as well as according to what streams are listened to by
clients so as to accomplish the desired aggregations. For the results presented in this paper, we have adopted
the Earliest Reachable Merge Target (ERMT) policy®, in which each client (or group of aggregated clients) tries
to “catch up” to the closest earlier client (or group of clients) that is “catchable”, if any. The target client may
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be simultaneously trying to catch some other client, with the successful merge being the one that occurs first.
There are a number of other policies''* 8 that would give similar results.

When only a small “skim” of the bandwidth to the client is available to support client aggregation, the
mechanism of listening on two full-rate streams so as to catch up to earlier clients cannot be used, and a new
mechanism is needed. The two most promising previously defined bandwidth skimming policies are Partition
and Latest Patch”. Partition was shown to have highest performance among the previously studied bandwidth
skimming policies, whereas Latest Patch has reasonably good performance and is simpler to implement. Each
uses hierarchical stream merging together with a different mechanism for using the skim bandwidth to aggregate
clients. Latest Patch is illustrated in Figure 2 and described below.

The Latest Patch policy is defined for an arbitrary achievable transmission rate to the client, or “client
receive bandwidth” (erd), greater than the (constant) object bit rate. In Figure 2 the object bit rate is chosen
as a unit of measurement; i.e., fixed at 1. The data required for a merger client to catch the mergee is delivered
by a merger stream at rate crb, as illustrated in the figure. This figure supposes that the mergee is itself
attempting to catch an earlier client, and distinguishes between the actual streams that run at rate equal to
the crb, and the rate 1 “raw” streams that are not delivered by the server, but simply define the rate at which
the data is being viewed or played by the client. (For aggregated clients, the raw stream is defined according to
the viewing/playing point of the client that is furthest along in the object.) The implementation approach for
Latest Patch that is illustrated in Figure 2 forms the basis of the VBR bandwidth skimming technique presented
in Section 5, and, in fact, the terminology and drawing of Figure 2 anticipates this technique.

3. VBR OBJECT CHARACTERISTICS

The analyses and simulations in this paper use traces from a variety of VBR videos, as well as bit rate profiles
from two “composite” objects consisting of a mixture of media types. Synthetic bit rate profiles are also used, as
these yield additional insight into how rate variability impacts server bandwidth requirements and the relative
performance of various delivery techniques. The characteristics of these objects are summarized in Table 1.

The video traces are of 16 MPEG-1 encoded video segments?® and an MPEG-1 encoding of the movie
starwars'!. The video segments were created using the UC Berkeley MPEG-1 software encoder. Each contains
40,000 frames, representing 26.7 minutes of video at 25 frames per second. The encoder input was 384 x288
pels with 12 bit color information. The 121 minute starwars video consists of 171,000 frames with a frame rate
of 24 frames per second (i.e., the original film rate). The original video was captured as 408 x508 pels, and
then interpolated and filtered to standard CIF frame size, which is 240x352 (Luminance - Y) and 120x176
(Crominance - U & V). All videos use the sequence of MPEG I, P and B frames “IBBPBBPBBPBB”. For
each video, Table 1 gives the average bit rate, the average, maximum, minimum, and standard deviation of the
frame sizes, the start-up delay and the client-side buffering requirements assuming a CBR transmission at rate
equal to the average object bit rate or 1.2 times the average bit rate, and the delivery bit rate (relative to the



Table 1: Object Characteristics

Video [|Avg Rate| Frame Sizes (KBytes) Start-up Delay (%) Storage (%) Rate/Avg
Name || (Mbps) || Avg | Max | Min | Std || Rate=Avg | 1.2Avg || Rate=Avg | 1.2Avg [ (Delay=0)
asterix 0.56 2.79 | 184 | 0.04 | 2.52 0.43 0.00 6.23 19.2 1.02
dinosaur 0.33 1.63 | 15.0 | 0.11 | 1.84 6.62 0.04 7.26 124 1.21
fuss 0.68 3.39 | 23.4 | 0.31 | 3.25 0.91 0.00 2.74 16.7 1.07
lambs 0.18 091 | 16.8 | 0.04 | 1.40 4.09 0.66 10.0 16.7 3.83
movie2 0.36 1.79 | 21.6 | 0.03 | 2.36 3.85 0.20 5.26 17.5 1.26
mrbean 0.44 2.21 | 28.6 | 0.04 | 2.58 3.45 0.74 9.45 21.3 2.73
mtvl 0.62 3.08 | 28.7 | 0.05 | 2.88 4.87 0.03 6.34 13.5 1.81
mtv2 0.49 247 | 314 | 0.06 | 2.68 6.31 0.02 11.8 21.2 1.29
news2 0.38 1.92 | 23.7 | 0.03 | 2.44 1.96 0.01 4.68 16.4 1.42
race 0.77 3.84 | 256.3 | 0.52 | 2.65 1.83 0.07 2.90 17.1 1.38
simpsons 0.46 2.32 | 30.1 | 0.04 | 2.58 3.98 1.50 3.98 15.6 1.90
soccer 0.63 3.14 | 23.8 | 0.37 | 2.66 1.33 0.16 4.85 16.9 1.93
superbowl|| 0.59 294 | 176 | 0.04 | 2.34 1.38 0.00 4.27 15.8 1.06
talkshowl|| 0.36 1.82 | 134 | 0.26 | 2.06 2.44 1.16 4.02 18.3 2.58
talkshow2| 0.45 2.24 | 16.6 | 0.45 | 2.28 1.99 0.01 4.27 18.5 1.52
terminator]| 0.27 1.36 | 9.95 | 0.04 | 1.27 2.02 0.25 2.97 15.5 1.30
starwars 0.37 1.95 | 23.2 | 0.06 | 2.27 0.51 0.00 6.58 21.1 1.18
Name Avg Rate | Peak Rate || Start-up Delay (%) Storage (%) Rate/Avg
(Mbps) (Mbps) Rate=Avg | 1.2Avg || Rate=Avg | 1.2Avg || (Delay=0)
composite 1 1.95 4.70 4.62 0.00 18.0 26.5 1.09
composite 2 0.03 0.07 5.35 0.00 7.73 12.2 1.10
synthetic 1 0.55 1.0 40.9 25.8 40.9 30.9 1.82
synthetic 2 0.55 1.0 0.00 0.00 40.9 50.9 1.00

average object bit rate) required for no start-up delay. Here start-up delay is defined to be the time from when
the client begins receiving the stream until the client can begin to view/play the object, neglecting any delay
component required to hide network jitter.

The required start-up delay depends on the relationship between the initial bit rate of the video (as de-
termined by the sizes of the initial frames) and the initial streaming rate. The amount of client-side storage
required for buffering video data depends on the object’s rate variability, and the degree and type of work-ahead
smoothing. Table 1 shows start-up delays expressed as a percentage of the object playback duration and storage
requirements expressed as a percentage of the object size, for the cases of full smoothing to a CBR stream at
the average object bit rate (“Rate=Avg”), and full smoothing to a CBR stream at rate equal to 1.2 times the
average bit rate. Note that when the streaming rate is equal to the average bit rate, an appreciable start-up
delay is required in some cases. Delivery at 1.2 times the average bit rate largely eliminates this start-up delay,
but at the cost of increasing the amount of required buffering at the client.

A composite multimedia object consists of a number of components of potentially differing types, such as
static images, text files, video clips, and/or audio clips, organized into a coherent multimedia presentation with
specified relative viewing/playing times'® 2%, Considered here are bit rate profiles from two composite objects?.
Composite object 1is a 157 second report of an Olympic swimming competition, and includes a number of images,
narrations, and video clips. Composite object 2 provides a two minute guided tour of Washington D.C., and
consists of a sequence of images with accompanying narrations, together with background music. Figure 3 gives
the unsmoothed bit rate profiles of these objects, while Table 1 provides summary statistics.

The bandwidth requirement with multicast delivery and the operation of work-ahead smoothing are greatly
impacted by the bit rate at the beginning of an object. The two synthetic bit rate profiles that are considered
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Figure 3: Composite Object Bit Rate Profiles

here represent opposite extremes. Each profile consists of two CBR sections of equal duration. In synthetic 1,
the initial section has high bit rate while the remainder has low bit rate; in synthetic 2, the positions of these
two sections are reversed. As shown in Table 1, both profiles have the same average and peak bit rate, and both
have relatively high client storage requirements when smoothed to a CBR stream. Owing to its high initial bit
rate, however, synthetic 1 requires a large start-up delay, while synthetic 2 requires no start-up delay.

4. IMPACT OF VBR ON BANDWIDTH NEEDED FOR ON-DEMAND DELIVERY

This section addresses the following two basic questions:

e How does bit rate variability impact the server bandwidth required for scalable on-demand streaming
using multicast delivery techniques?

e What is the impact on server bandwidth requirements of smoothing a variable bit rate object and delivering
it as if it were a constant bit rate object?

These questions are addressed through consideration of fundamental bounds instead of within the context of a
single delivery technique, so as to obtain more broadly applicable insight.

A tight lower bound BSEE - on the required server bandwidth! for any delivery technique providing

immediate on-demand streaming of a constant bit rate object, with no start-up delay, is as follows:

CBR T da
B = ; =In(TA+1) =In(N + 1), (1)

mintmum T + %
where server bandwidth is in units of the (constant) object bit rate, T is the playback duration of the object, A
is the average object request rate, and N = AT is the average number of requests for the object per period of
length T'. The above bound is derived by considering a small portion of the object at some arbitrary time offset
z. For an arbitrary client request that arrives at time ¢, this portion of the object can be delivered no later
than time ¢ + z, in order that the client can begin to view/play the object immediately and without jitter. If
this portion is multicast at time ¢+ z, then (at best) those clients that request the file between time ¢ and ¢ + z,

could receive this multicast. If the average time from ¢ + z until the next request for the object is 1/A, then the
minimum frequency of multicasts of the portion at time offset z is 1/(z 4+ 1/}), yielding the above bound.

The bound given by equation (1) assumes Poisson request arrivals, and no constraint on the aggregate rate
of transmissions that clients can receive concurrently. The former assumption can be relaxed to yield a more
general but very similar analytic result®. The latter assumption as well does not appear to impact the insights
obtained here, as will be shown in Section 5.

"The “required server bandwidth” for an object and delivery technique is defined as the average server bandwidth
the delivery technique uses to satisfy client requests for that object.
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The two questions raised at the beginning of this section are addressed through an extension of the above
analysis to the delivery of a VBR object. Without loss of generality, define a VBR object as a sequence of m
CBR segments << tg,bg >, < t1,b1 >, ...... ,< tm_1,bm_1 >>, where the i*" segment starts at time offset t;
from the beginning of the object (to = 0; 0 < t; < T for 4 > 0) and has bit rate b; (b; > 0) measured in units
of the average bit rate for the object. A tight lower bound BYBE  on the required server bandwidth for
on-demand streaming, with no start-up delay, can be derived as:

b dg b2 gy T dx
BYBE :b/ +b/ + e + by / 2
minimum 0 " $+§ 1 A +% 1 T +§ ( )
tiA+1 toA+1 TAX+1
=bol byIn(—) +...... b1l .
e R by ey DR U R Sy wr )

The above bound can also be applied for a non-zero start-up delay, by adding a CBR segment at the beginning
of the object of length equal to the start-up delay, and bit rate of zero.

Figure 4 provides lower bounds on required server bandwidth for six of the VBR objects described in Section
3. Results for the other VBR objects are qualitatively similar. The x-axis is the normalized client request rate
for the object, N, and the y-axis is the required server bandwidth in units of the object’s average bit rate.

In Figure 4(a) the CBR curve shows the lower bound on required server bandwidth, computed using equation
(1), for a true CBR object, which has no start-up delay when delivered at the object’s average bit rate. The
bound for each VBR object is computed using equation (2) with no start-up delay. Note that bit rate variability
has a large impact on the minimum required server bandwidth. Particularly under high request rates, the
minimum required server bandwidth is largely determined by the bit rate of the beginning of the object, since
this portion must be delivered most frequently. This point is illustrated clearly by the two synthetic objects.

In Figure 4(b) the CBR curve gives the minimum required server bandwidth, as computed using equation
(1), when a VBR object is fully smoothed and delivered at the average object bit rate, as if it were a CBR
object. Note that this is the same required server bandwidth as for a true CBR object (Figure 4(a)), but a
start-up delay is implied for the VBR object. For each VBR object, the graph shows the minimum required
server bandwidth computed using equation (2) with an additional term for the start-up delay (given in the
“Rate=Avg” column of Table 1) that would be required for CBR delivery of the fully smoothed object. Note
that equation (2) assumes that after the start-up delay, each segment of the VBR object is delivered as late
as possible and at the bit-rate that the segment is consumed. These curves show that there is a substantial
increase in the minimum required server bandwidth, particularly at high request rates, when a VBR object
is fully smoothed and delivered as a CBR object as compared with delivering the unsmoothed object at the
variable bit rate.

Figure 4(c) gives the minimum required server bandwidth when the VBR object is fully smoothed and
delivered at 1.2 times the average bit-rate (thus reducing or eliminating the start-up delay, as shown in the



“1.2Avg” column of Table 1), and for each of the six VBR objects assuming the object was not smoothed and
was delivered at its variable bit rate after the lower client start-up delay. This figure shows a similar performance
penalty as in Figure 4(b) for creating a CBR object from the VBR object.

5. VBR BANDWIDTH SKIMMING

The results of the previous section indicate that fully smoothing a VBR stream and then applying bandwidth
skimming (or another multicast stream merging technique) to the CBR, stream requires more server bandwidth
than necessary for many compressed videos and composite objects and most target start-up delays. Thus, this
section develops a new multicast delivery technique, called VBR Bandwidth Skimming (VBRBS), that exploits
the variable bit rate profile of the object being delivered. It is assumed here that the available client storage
space permits full smoothing to a constant bit rate stream at the achievable transmission rate to the client
(crb).} Section 6 describes variants of the technique that support delivery to clients with more constrained
buffering capability.

VBRABS is based upon the implementation of the Latest Patch delivery technique illustrated in Figure 2,
with the following four key changes, illustrated in Figure 5:

e The “raw” streams shown in Figure 5 are now variable bit rate streams, corresponding to play/view
progress through a VBR object. The “delivered” streams now serve two purposes: catching up to an
earlier client (as before), and also work-ahead smoothing.

e In VBRBS the delivered stream is always a constant bit rate stream at rate crb, even if there is no earlier
catchable client. Since all of the streams transmitted by the server are constant bit rate, server and
network resource allocation may be greatly simplified.

e A “merge point” (i.e., a point at which two clients or groups of clients can be aggregated) can no longer
be simply defined by the intersection of a delivered stream and a raw stream (as illustrated in Figure 5);
instead, merge points are defined based on when a delivered stream dominates a raw stream, in the
sense that it will achieve the same or later position in the object, in comparison to the variable bit rate
raw stream, at all subsequent points in time. More precisely, a merge point should satisfy the following
constraints: (1) the merger’s delivered stream should have achieved the same position in the object as
the mergee’s raw stream, (2) at any time ¢ after the merge point until the end of delivery, the merger’s
delivered stream (i.e., the delivered stream of the aggregated clients) should have achieved the same or
later position in the object as the mergee’s raw stream (i.e., the raw stream of the aggregated clients),
and (3) since we wish clients to be aggregated as quickly as possible, the merge point is the earliest point
satisfying the first two constraints. An efficient off-line analysis that can be used for determining merge
points is described below.

e For a dynamic merging policy such as ERMT or CT%, VBRBS employs a variant of the policy that can be
viewed as a hybrid between dynamic and “static pairing” approaches. The new policy variant is motivated
by the potential bandwidth cost of delivering all streams at rate crb. Note that whenever a client is caught
by a later client, any object data that has been delivered from beyond the client’s view/play point when
caught is “wasted” in the sense that the server will be delivering it again for the merger client. Although
perhaps surprisingly, our results indicate that the performance cost of this wasted bandwidth is often
not excessive, the cost becomes more substantial as crb increases. To address this problem, the VBRBS
merging policy commits to aggregating two groups of clients substantially ahead of when the aggregation
can actually occur (in the results presented here, after a time duration equal to only a third of the time
required for the merger delivered stream to reach the merge point, from its previous merge point if the
merger delivered stream has participated in an earlier merge, or from the beginning of the stream if not).
Once an aggregation is committed to, the delivered stream for the mergee can be shut off before the
aggregation takes place, specifically, after it has reached the position in the object defined by the merge
point. Although potentially this new policy might lead to poorer choices of which clients to aggregate, in
our simulations this has not been found to have a significant performance impact.

tClient heterogeneity can be addressed with standard techniques such as layered encoding or multiple object versions.
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Figure 6. Algorithm for Generating a Dominating Table

Figure 5 illustrates client aggregation in VBRBS. The mergee client’s delivered stream and its raw stream
indicating its play/view progress start at time T'1, while the merger client’s streams begin at time T2. The
merger client’s delivered stream and the mergee client’s raw stream intersect at the points @, R, and S. Each
of these points satisfy the first of the constraints on merge points defined above. However, between the point
R and the point S, the mergee’s raw stream reaches later positions in the object than the merger’s delivered
stream. Therefore, the points () and R violate the second constraint. The point S is the earliest point satisfying
both constraints, and thus it defines the merge point. Note that with the “early commit” used in VBRBS, the
merge is committed to at time 7T'3, at point V in the merger delivered stream, and the mergee’s delivered stream
can therefore be shut down once it has delivered data up to position P2. Without early commit, in contrast,
the stream would continue until time 7'4, even though the data delivered from P2 on would be “wasted” as this
data must be delivered again for the merger client. In comparison to Latest Patch, VBRBS is more efficient in
two main respects: (1) the merger stream can catch the mergee stream sooner than if the mergee stream was
smoothed, and (2) the mergee stream is terminated even before the merge occurs.

One approach to determining when two clients or groups of clients can be aggregated (i.e., determining
merge points) entails computing off-line a “dominating table” for each VBR object. For example, consider a
VBR video, in which case each entry in the dominating table contains two fields: a separation time t and a
dominating frame number i, indicating that if the time separation between the merger and the mergee clients is
equal to the time ¢, then the merger and the mergee can be aggregated when the mergee’s raw stream reaches
the i** frame of the video. Using the dominating table, the merge time for mergee and merger clients with
request times ¢, and ¢,., respectively, can be determined from the entry with the smallest separation time ¢ that
is greater than or equal to t, — t.. The merge time is computed as t. + i/ R, where i is the dominating frame
number, and R is the frame rate.

Figure 6 outlines an O(M) off-line algorithm for generating the dominating table for a VBR video, and
defines notation d, M, b;, R, S;, and F;. Although the algorithm as shown assumes a granularity of frames
and does not restrict the number of table entries, it is straightforward to modify the algorithm so that it only
adds an entry whose separation time differs by some minimum value from that of the previously added entry,
and therefore bounding the space usage to a reasonable value. The algorithm loops through frames from last
to first, with two main cases depending on the comparison between b; and d for a frame i:

e Case 1: b; < d (Lines 4 — 8). In this case, as illustrated in Figure 7 (a), the current frame ¢ is a potential
merge point. The corresponding separation time can be computed as t = ¢ — %, where £ is the time
duration from the raw stream’s starting time to the merge point, and 5% is the time duration from the

d
delivered stream’s starting time to the merge point.
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Figure 8: Performance of VBRBS, Partition, and Latest Patch versus Client Request Rate
(erb=1.2)

e Case 2: b; > d (Lines 9 — 13). This case is illustrated in Figure 7 (b). Assuming that the next point where
an intersecting delivered stream would intersect with the raw stream, if such a point exists, is at frame j,
then any frame from j + 1 to i (e.g., frames p and ¢) can not be potential merge points. Therefore, the
next frame to check is frame j.

Figures 8 and 9 compare the required server bandwidth for delivery of a VBR object using VBRBS, to that
required if the object is fully smoothed and then delivered as a constant bit rate object using the Partition
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Figure 9: Performance of VBRBS, Partition, and Latest Patch versus crb
(N = 200)

or Latest Patch techniques”. Results are presented for the two composite objects, and for two of the videos

(asteriz and dinosaur), described in Section 3. Similar results are obtained for the other objects. The y-axis
in each graph is the required server bandwidth in units of the object’s average bit rate. In Figure 8, the x-axis
is the normalized client request arrival rate N. The value of crb is fixed at 1.2 (in units of the object’s average
bit rate). In Figure 9, the x-axis is crb, and the normalized client request arrival rate is fixed at 200. These
results were generated using simulations in which client request arrivals are Poisson; qualitatively very similar
results were obtained using a heavy-tailed distribution of interrequest times modeled by a Pareto distribution.

Each graph in Figures 8 and 9 includes six curves, two for each technique. For the curves labelled Partition
and Latest Patch, these techniques are applied to a VBR object that has been fully smoothed to a constant
bit rate equal to the average object bit rate. Start-up delay is required in this case, with values as indicated
in Table 1. For the curve labelled VBRBS, this technique is applied with the same start-up delay added to the
“raw” stream defining play/view progress. For the curves with the labelling Partition or Latest Patch “reduced
start-up”, the respective technique is applied to the object after it has been fully smoothed to a rate equal
to the minimum of: (a) the rate needed to reduce the start-up delay to zero, and (b) the average object bit
rate plus one-half the amount by which crb exceeds the average object bit rate (thus achieving a compromise
between using extra bandwidth for stream merging, and using it to reduce start-up delay).5 Whatever start-
up delay is then required (if any), is added to the raw stream used by the VBRBS technique, for the curve
labelled VBRBS “reduced start-up”. Note that reduced start-up delay generally implies higher required server
bandwidth. (These variations in start-up delays explain the occasional raggedness in the VBRBS curves.)

$For Partition, it is also necessary to consider only points such that crb is equal to 1+ 1/m times the smoothed object
bit rate, for some positive integer m.



The key observations from these figures are:

e All of the considered techniques are scalable, in that required server bandwidth for high request rate grows
only logarithmically.

e The required server bandwidth with VBRBS is substantially lower than that with Latest Patch.

e For low client bandwidth “skims” (i.e., crb less than 1.5), and high client arrival rates (i.e., N > 100), the
required server bandwidth with VBRBS is (sometimes substantially) lower than that with Partition. In
other cases these two policies have similar required server bandwidth.

e The extent of improvement provided by VBRBS depends on how much variability there is in the bit rate
profile of the object, particularly the beginning portion. The analysis of Section 4 yields useful insight in
this respect. For example, Figure 4(b) and (c) indicate less scope for reducing required server bandwidth
with asteriz with smoothing to the average object bit rate, and dinosaur with smoothing to 1.2 times
the average object bit rate, than in the other cases considered in the figure, which is consistent with the
results in Figures 8 and 9.

6. ACCOMMODATING CLIENTS WITH LIMITED STORAGE CAPACITY

Recall from Table 1 that the client buffer space requirements for VBRBS with ¢rb equal to 1.2 times the average
object bit rate are approximately 20-25% of the object, or less, for the MPEG-1 video or composite objects.
This section considers two variants of VBRBS for the case that clients have insufficient buffer capacity to receive
the entire object at fixed rate equal to ¢rb. These variants adopt the same basic approach illustrated in Figure 5,
but with delivered streams that are not constant bit rate.

The two variants make differing tradeoffs between the smoothness of the delivered streams, and how quickly
clients are aggregated. The first of these variants is perhaps the most direct extension of the VBRBS technique
as described in the previous section, and is referred to simply as VBRBS in the following. Whenever there is
available client storage space for buffering more object data, the server delivers a stream at rate crb. Whenever
the buffer space is filled, the server delivers a stream of rate given by the minimum of ¢rb and the rate at which
the buffer is being drained. This strategy minimizes the time required for a merger client to catch up with a
mergee client, but may result in delivered streams with high bit rate variability.

The second of these variants, referred to as “VBRBS with smoothing” in the following, uses an “optimally”
smoothed delivery schedule, computed by adapting the algorithm of Salehi et al.2! as follows. The delivery
schedule used by the first variant is the “upper bound” on the schedule to be computed. For the lower bound
on the schedule, the “raw consumption” schedule is used, with two modifications. First, let L be the duration of
the upper bound schedule. The duration of the raw consumption schedule is modified to equal L by supposing
that all of the data consumed after L is instead consumed at that point. Second, this lower bound schedule is
“minimally smoothed” in a single pass from the end of the schedule to the beginning, so that, at each point, its
rate is less than or equal to ¢rb.¥

Figure 10 compares the above two variants of VBRBS for the same four VBR objects considered in Section
5. The value of crb is fixed at 1.2, and the normalized client request rate is fixed at 200. The x-axis of each
graph gives the available client storage capacity expressed as a fraction of the entire object. The “VBRBS” and
“VBRBS (S)” (for “VBRBS with smoothing”) curves give the required server bandwidth with these techniques
for a start-up delay equal to that which would be required if the object was fully smoothed and delivered at
the average object bit rate. The “VBRBS (R)” and “VBRBS (SR)” curves give the required server bandwidth
for reduced start-up delay, specifically for the minimum possible start-up delay given the assumed constraint of
crb on the transmission rate to the client. These results show that for small client storage capacity, there can
be substantial server bandwidth cost to smoothing the delivered streams, as it may take longer for a delivered
stream to “catch” a raw stream of an earlier client. For clients with limited storage, this must be traded off
against the increased effectiveness of server and network resource allocation with smoothed streams.

YIf client storage space is insufficient to support this minimal smoothing, then either the client storage space or the
achievable transmission rate to the client must be increased if streaming of the object is to be possible.
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Figure 10: Performance of VBRBS with Limited Client Storage Space
(N =200, crb=1.2)

7. CONCLUSIONS

This paper has considered the interaction between two key technologies for efficient on-demand, real-time deliv-
ery of stored multimedia content: work-ahead smoothing, and recently proposed multicast delivery techniques
that dynamically aggregate clients. It was shown that with aggressive smoothing (i.e., full smoothing to a con-
stant bit rate stream), the straightforward approach of applying these technologies in tandem can be inefficient.
This motivated development of a new delivery technique, called VBR Bandwidth Skimming (VBRBS), that
adopts an integrated approach. Simulation results for a variety of VBR objects showed that for high client
request rates and small “skims”, the server bandwidth required by the previous techniques can be 50% or more
higher than with VBRBS.

VBRBS achieves efficient client aggregation since it determines merge points based on the variable bit rate
profile of the object being delivered, rather than on a smoothed stream that may include significantly more
of the object data in its initial portion and thus take longer for a new client to catch up with. At the same
time, VBRBS delivers fully-smoothed streams when sufficient client storage space is available. Effectively, the
difference between the achievable transmission rate to the client, and the variable minimum rate at which the
object must be delivered so as to avoid jitter, forms a variable “bandwidth skim” that can be used for catching
up to earlier clients that have requested the same object.

On-going research includes further exploration of multicast delivery techniques for structured objects such as
layered video and indexed multimedia presentations. Other current work concerns the experimental evaluation
of various multimedia delivery and proxy caching techniques using a prototype system, and the integration of
caching, error recovery, and security considerations into multimedia delivery systems.
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