
Modeling the Throughput of TCP Vegas

Charalampos (Babis) Samios
Department of Computer Sciences

University of Wisconsin
Madison, Wisconsin 53706

babis@cs.wisc.edu

Mary K. Vernon
Department of Computer Sciences

University of Wisconsin
Madison, Wisconsin 53706

vernon@cs.wisc.edu

ABSTRACT
Previous analytic models of TCP Vegas throughput have been de-
veloped for loss-free (all-Vegas) networks. This work develops a
simple and accurate analytic model for the throughput of a TCP
Vegas bulk transfer in the presence of packet loss, as a function of
average round trip time, minimum round trip time, and loss rate
for the transfer. Similar models have previously been developed
for TCP Reno. However, several aspects of TCP Vegas need to be
treated differently than their counterparts in Reno. The proposed
model captures the key innovative mechanisms that Vegas employs
during slow start, congestion avoidance, and congestion recovery.
The results include (1) a simple, validated model of TCP Vegas
throughput that can be used for equation-based rate control of other
flows such as UDP streams, (2) a simple formula to determine, from
the measured packet loss rate, whether the network buffers are over-
committed and thus the TCP Vegas flow cannot reach the specified
target lower threshold on throughput, (3) new insights into the de-
sign and performance of TCP Vegas, and (4) comparisons between
TCP Vegas and TCP Reno including new insights regarding incre-
mental deployment of TCP Vegas.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Performance, Experimentation, Design

Keywords
TCP, TCP Vegas, Performance Model, Throughput

1. INTRODUCTION
Recently researchers have proposed a number of analytic mod-

els of the throughput of a single TCP flow as a function of round-
trip-time (RTT) and packet loss rate. These models have provided
improved understanding of the sensitivity of TCP performance to
these network parameters, and have also been used in proposed ap-
proaches for controlling the rate of other types of Internet flows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMETRICS’03, June 10–14, 2003, San Diego,California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

such as UDP streams e.g. [9, 23]. All of these models address the
most widely deployed variant of TCP, namely TCP Reno (e.g.,[8,
20, 22, 19, 12]).

Another variant of TCP that has been proposed is TCP Vegas [6,
7]. Vegas employs several new techniques that, together, can re-
sult in significant improvement in throughput as well as decreased
packet loss [6, 2]. Some of these improvements have recently been
implemented, in some cases using alternate mechanisms, in other
forms of TCP. For example, like Vegas, TCP New-Reno [10] only
reduces the window size once when multiple packets are dropped
from the same window, whereas TCP Reno reduces the window
size for each triple-duplicate ACK that is received. Some of the
other innovations are still not well understood and have so far not
been widely deployed. For example, Vegas’ congestion avoidance
algorithm has some key advantages in terms of avoiding packet loss
as well as reducing bias against connections with longer propaga-
tion delays.

The performance of TCP Vegas in complex network environ-
ments that include interaction with other types of flows, is not thor-
oughly understood. Recent studies have used simulation or analytic
models of Vegas behavior in the absence of losses to study some of
these issues. An analytic model of the throughput of a TCP Vegas
flow in the presence of packet losses that might be caused by shar-
ing the network with other types of flows – which has not, to our
knowledge, been previously proposed – can also be an important
tool in understanding the protocol performance and mechanisms.

Several aspects of TCP Vegas need to be treated quite differ-
ently from their counterparts in Reno. These include the conges-
tion detection and avoidance algorithm that preemptively adjusts
the sending rate to avoid packet loss, and the new congestion re-
covery mechanisms. To capture these features of the protocol, we
partition the flow into statistically equivalent time intervals, and
derive a closed-form solution for the throughput of a random such
interval. Loss indications in the form of both duplicate ACKs and
timeouts are modeled, along with the impact of the maximum win-
dow size.

The model is developed gradually by incorporating a new set
of Vegas mechanisms at a time. This provides the opportunity to
examine the intuition behind the different mechanisms employed
by Vegas by characterizing them analytically. Also, we derive a
closed form expression to determine, from the measured packet loss
probability, whether the TCP Vegas flow can achieve the specified
target lower threshold on throughput.

We conducted a large number of simulation experiments using
ns-2 [1] to validate our model against a wide range of network con-
ditions, and to examine TCP Vegas behavior under network condi-
tions that haven’t been explored previously. New simulation results
regarding the relative performance of TCP Vegas and TCP Reno

are also presented, yielding new insights regarding the incremental
deployment of TCP Vegas.

The rest of the paper is organized as follows. In Section 2 we
outline the innovative mechanisms employed in TCP Vegas and
summarize related work. The model is developed in four stages
in Section 3. Section 4 presents the model validation and the other
experimental results, and Section 5 concludes the paper, including
topics for future work.

2. BACKGROUND

2.1 TCP Vegas
This section briefly reviews the innovations of TCP Vegas with

respect to TCP Reno that are most relevant to developing the through-
put model. The first important aspect is the Vegas congestion avoid-
ance mechanism, which differs significantly from TCP Reno. TCP
Reno uses the loss of packets as a signal that there is congestion in
the network. In fact, Reno needs to create losses to find the avail-
able bandwidth of the connection. In contrast, the goal of Vegas
is to pro-actively detect congestion in its incipient stages, and then
reduce throughput in an attempt to prevent the occurrence of packet
losses.

To detect network congestion, once every round trip time (RTT),
TCP Vegas uses the current window size (W), the most recent RTT
(RTT) and the minimum RTT observed so far (baseRTT) to com-
pute:

diff =

�
W

baseRTT
−

W

RTT � baseRTT = W
RTT − baseRTT

RTT
. (1)

Since (RTT − baseRTT) is the total path queueing delay and
W/RTT is an estimate of the current throughput, the product of
these two values is an estimate of the number of packets from this
flow that are backlogged in the network. The goal of the Vegas con-
gestion avoidance algorithm is to keep this number within a fixed
range defined by two thresholds, α and β. Thus, once every RTT
when not in slow-start mode, TCP Vegas adjusts the window size
as follows:

W = �� � W + 1 , diff < α

W , α ≤ diff ≤ β
W − 1 , diff > β

(2)

Alternatively, diff can be divided by baseRTT [6], in which case
the thresholds α and β are defined in a standard unit of throughput
(e.g., packets/second); however, this results in unequal treatment of
connections with different baseRTT [16]. All Vegas implementa-
tions and simulations that we are aware of have the thresholds and
diff in the unit of packets, which is assumed in the remainder of this
paper. Both versions of the thresholds adjust the sending rate so as
to utilize the available bandwidth without incurring congestion.

Another feature of Vegas is its modified slow-start behavior, which
is more conservative than Reno’s. Specifically, Vegas checks diff
every other RTT and exits slow start if diff exceeds a threshold γ
(or if a loss is experienced); otherwise, the window size is dou-
bled. For simplicity, in the rest of the paper we will assume that
γ = (α+β)/2. This algorithm is another instance of Vegas’ proac-
tive congestion detection and loss avoidance mechanisms. Dou-
bling the window every other RTT also facilitates obtaining a good
measure of baseRTT .

The final four innovative mechanisms in TCP Vegas are conges-
tion recovery mechanisms1 . First, a window size of two packets (in-
1The first and fourth of the congestion recovery mechanisms are

stead of one) is used at initialization and after a time-out. Second,
Vegas records the time each packet is sent, and when a duplicate
ACK is received, the sender retransmits the oldest unacknowledged
packet if it was sent longer ago than a specified ”fine grain timer”
value. As in Reno, a triple-duplicate ACK always results in packet
retransmission, but the fine-grain timers detect losses earlier, lead-
ing to packet retransmissions after just one or two duplicate ACKs.
If the retransmission occurs, each of the next two normal ACKs will
also trigger a retransmission of the oldest unacknowledged packet
if its fine-grain timer has expired. Note that packet retransmission
due to expired fine-grain timers is conditioned on receiving certain
ACKs. Third, after packet retransmission triggered by a duplicate
ACK, the congestion window size is reduced only if the time since
the last window size reduction is more than the current RTT. After a
retransmission triggered by a non-duplicate ACK, the window size
is not reduced. Note that when multiple losses occur in a single
window, Vegas decreases the congestion window size only for the
first of those losses. Fourth, when the window is reduced due to a
loss identified by a duplicate ACK, Vegas reduces the window size
by 25%, instead of 50% as in Reno.

If a loss episode is severe enough that no ACKs are received to
trigger the fine-grain timer checks, losses are identified by Reno-
style coarse-grain time-outs. In the remainder of the paper, the
term time-out (TO) refers to the coarse grain TOs unless otherwise
stated.

2.2 Related Work
Several analytic models for the throughput of a single TCP Reno

batch transfer as a function of measured loss rate and average RTT
have been proposed in the literature. Mathis et al. [19] analyzed
the congestion avoidance of TCP Reno ignoring time-outs. Pad-
hye et al. [22] provided a more complete approach by including
time-outs. Using their results and including initial slow-start in the
analysis Cardwell et al. [8] derived a model for estimating the la-
tency of an arbitrary size TCP Reno transfer. The model in [22] is
revisited by Goyal et al. in [12] and a revised version is proposed.
A different approach is taken by Misra et al. [20] where the steady
state behavior of TCP Reno is modeled using fluid analysis. Our
modeling approach is similar to that in [22], in that we analyze the
flow in a per-round basis. On the other hand, our approach differs
by analyzing the very different behavior of TCP Vegas, and also by
using a simpler approach to capture the TCP window size evolu-
tion.

The main goal of prior measurement studies of TCP Vegas has
been to compare Vegas with TCP Reno. Brakmo et al. [6], [7]
performed Internet experiments and simulation, reporting 40-70%
improvements in throughput, with 20-50% fewer retransmissions.
They also conclude that Vegas is at least as fair as Reno. Ahn et al.
[2] performed Internet measurements, and found 4-20% improve-
ment in throughput, fewer retransmissions, and lower average and
variance in the RTT. Hengartner et al. [14] isolate the different in-
novative mechanisms of Vegas. Using simulation, they find that
in the presence of more than 2% loss, Vegas outperforms Reno;
they conclude that the most effective mechanisms in TCP Vegas are
the 25% decrease of the window size and the use of non-duplicate
ACKs to identify losses. Mo et al. [21] use simulation with differ-
ent buffer sizes, and find that Vegas obtains more bandwidth than
Reno when the buffer size is very small.

To our knowledge, all of the analytic models developed for the
throughput of TCP Vegas to date, assume a loss-free operation of
the protocol. Using these models, several properties of the conges-

not mentioned in [6, 7] but are identified as parts of TCP Vegas in
[2] and [14].

Variable Definition
α, β Vegas throughput thresholds, measured in

packets
γ Threshold for exiting slow start,

γ = (α + β)/2
p Inverse of the average number of packets

transmitted between loss episodes
baseRTT The minimum round-trip-time observed

throughout the flow
RTT An arbitrary round trip time

R The average-round-trip time for the transfer
W The window size at an arbitrary point in time

Wmax The maximum window size advertised by
the receiver

W0 The average window size during stable-
backlog state

T0 The average duration of the first TO in a TO
series

Table 1: Model Notation

tion avoidance mechanism of Vegas have been investigated. Hasegawa
et al. [13] find that Vegas can be unfair if α 6= β, and that α = β
improves fairness. Boutremans et al. [5] use a simple analytic
model of one queue shared by a number of Vegas flows that ar-
rive at different times, showing that Vegas is unfair due to the inac-
curate measures of propagation delays and the difference between
α and β. Bonald [4] develops a fluid approximation, and proves
that (a) equilibrium is guaranteed to be reached if the available
buffers are large enough for the desired backlog of all Vegas flows,
(b) otherwise Vegas falls back to Reno, and (c) Vegas utilizes the
network more efficiently than Reno and avoids the bias of Reno
against flows with long propagation delays. Mo et al. [21] also
used a fluid approximation and also conclude that Vegas through-
put isn’t dependent on propagation delay. Low et al. [18] model
Vegas as a distributed optimization algorithm. They show that Ve-
gas uses queueing delay as a congestion measure and verify all the
above findings. Using a duality model in [16], Low finds that Vegas
achieves proportional fairness and that when Vegas and Reno flows
share a common network, their relative throughput mainly depends
on the network configuration.

Although several models have been proposed for the all-Vegas
no-loss environment, the impact of losses due to either buffer limi-
tations or interaction with other Internet traffic has not been studied.
As a result, there is no analytic characterization of the congestion
recovery mechanisms of Vegas, which were shown in [14] to sig-
nificantly contribute to increased performance. Our work bridges
the gap between the experimental studies of TCP Vegas in envi-
ronments where a wide range of loss rates is experienced, and the
analytical models proposed that address Vegas congestion avoid-
ance mechanism in an idealized loss-free environment.

3. THE MODEL
The model notation is summarized in Table 1. Model input pa-

rameters are R and p (as in previous TCP Reno models [8, 22, 12]),
baseRTT , Wmax, T0, α, and β.2

2Since TCP Vegas uses the measured RTT to compute the through-
put in each RTT, which in turn affects the number of packets sent in
the next RTT, one might imagine that an accurate throughput model
would require a description of the distribution of round-trip-times.

As in previous successful TCP Reno throughput models, we model
the TCP Vegas behavior in terms of rounds, where a window of data
is transmitted per round and the round duration is assumed to be
equal to the RTT and independent of the window size. We assume
that packet losses occurring in different rounds are independent, but
when a packet is lost, all the remaining packets in the same round
are also lost, constituting a loss episode.

One further assumption, namely that baseRTT is relatively sta-
ble throughout the flow, is needed so that the throughput of a ran-
domly selected interval is equal to the flow throughput. Exper-
iments in Section 4 show that this assumption holds under most
practical network conditions. If it does not hold, the throughput
model could be applied to each portion of the flow that has a differ-
ent value of baseRTT .

Below we first consider TCP Vegas throughput for flows that
experience no packet loss, followed by flows that experience no
timeouts, flows that experience only single timeout events, and fi-
nally flows that experience timeouts for consecutive packet trans-
missions. In each case, we model an expanded set of Vegas’ mech-
anisms and compute a closed form expression for throughput.

3.1 Model 1: No Packet Loss
The evolution of the expected TCP Vegas window size when no

packet loss occurs is illustrated in Figure 1. The flow begins in slow
start with window size equal to two, and the window size is doubled
every other RTT until diff exceeds γ (the common case), or until
the window size reaches Wmax. After that, the flow remains in
congestion avoidance.

Consider an arbitrary point after the slow start period. Let W no−loss

0

represent the expected size of the window at that point, W repre-
sent the actual window size and RTT be the most recently mea-
sured round trip time. Then the value of diff at this point in time is
given by equation 1.

We assume that the average value of diff is approximately β, for
two reasons. First, since α = β improves Vegas fairness and im-
plies that γ = β, the doubling of the window size during the initial
slow start period will tend to terminate when diff exceeds β. Fur-
thermore, due to absence of significant congestion in the network,
RTT does not fluctuate very much, and thus once diff decreases
to β, it tends to stay relatively constant, as observed during exten-
sive simulations of TCP Vegas with a wide variety of network cross
traffic. Second, in the no loss case, RTT will tend to fluctuate near
baseRTT , and thus the congestion avoidance algorithm will keep
the number of packets queued as high as possible.

Taking the expectation on both sides of equation (1), assuming
RTT has low variance and is independent of window size, solving
for W no−loss

0
= E[W], and accounting for the maximum window

size, Wmax, we get

W
no−loss
0 = min

�
β ×

R

R − baseRTT
, Wmax � . (3)

When computing the throughput of a bulk transfer, the through-

On the other hand, the maximum RTT is bounded by the sum of the
maximum delay at each node in the path traversed by the flow. Sim-
ulations of bulk transfers with bursty HTTP and other TCP cross
traffic described later in the paper, show that the throughput cal-
culated from the average RTT and packet loss rate is reasonably
accurate. This indicates that, to a first approximation for current
networks, the fluctuations in the RTT and packet loss rate do not
need to be captured in the throughput model. Modeling of the fluc-
tuations, which would more precisely characterize the conditions
under which the mean values alone determine throughput, is an in-
teresting topic for future work.

Time (Number of RTTs)

2

W

A
ve

ra
ge

 W
in

do
w

 S
iz

e
(p

kt
s)

0
no−loss

Figure 1: Evolution of Expected Window Size: No Loss

Time (Number of RTTs)

Wo

 3Wo/4

LFP

(a)

D

E F

 3W’/4

LFP

(b)

W’

A
ve

ra
ge

 W
in

do
w

 S
iz

e
(p

kt
s)

Time (Number of RTTs)

Figure 2: Evolution of Expected Window Size During a Loss
Free Period

put during the initial slow start phase is negligible. Thus, on aver-
age, TCP Vegas will transmit W no−loss

0
packets per round. When

W no−loss

0
< Wmax, this yields:

Λno−loss =
β

R − baseRTT
(4)

Whenever loss is negligible (e.g., in an all-Vegas environment [4])
the TCP Vegas throughput is estimated by the above formula. This
formula shows that the measure that Vegas uses to reduce through-
put, detect network congestion, or determine available bandwidth is
R− baseRTT (i.e., queueing delay) [16]. Estimated queueing de-
lay is expected to be approximately the same for flows sharing the
same bottleneck, assuming an accurate baseRTT for each flow.
Thus, as shown in equation (4), when loss is negligible TCP Vegas
does not have a bias against flows with large propagation delays, as
occurs in Reno. This agrees with the results in [21] and [4], and is
further verified in section 4.4.1.

3.2 Model 2: No Time-Outs
When a TCP Vegas flow shares a bottleneck link with Reno-like

TCP sources, or with uncontrolled cross traffic, losses will be ex-
perienced. In this section we assume that such losses occur, but
all loss episodes are identified by duplicate ACKs (any number be-
tween one and three), where a loss episode is a series of packet
losses during a single round. Given this assumption, when a loss
episode occurs, Vegas will react to the first detected loss in the
round by reducing the window size by 1/4. Further packets that
are lost in the same round cause no further reduction in the window
size (see section 2.1). Once the window size is reduced, Vegas con-
tinues congestion avoidance, regulating window size according to
equation (2).

We call the intervals between loss episodes Loss Free Periods
(LFPs). Ignoring the initial slow start period that has negligible im-
pact on the throughput of the bulk transfer, the flow consists of a
series of statistically identical LFPs. We consider two cases. First,
for small enough values of p, the flow reaches the “stable back-
log state” that characterizes the no-loss flow, as illustrated in Fig-
ure 2(a), in essentially every LFP. Second, for large p, the flow es-
sentially never reaches this state, as illustrated in Figure 2(b). Note
that as p decreases from case (b) to case (a), the expected maxi-
mum window size for the LFPs that do not reach stable backlog
tends toward W0. Thus, for simplicity in the analysis, we analyze
a random LFP assuming that Figure 2(a) represents the expected
window size evolution if the average number of packets that arrive
between loss episodes is sufficient for the window size to reach W0

from 3W0/4, i.e., “stable backlog is attainable, on average”. Oth-
erwise, we assume Figure 2(b) represents the expected window size
evolution of the random LFP. Sections 3.2.1 and 3.2.3 compute the
throughput of the random LFP for each of these cases, respectively.
More precise analysis of flows that are mixtures of both types of
LFPs could be pursued in future work, although the model valida-
tions later in this paper show that this approximate model is quite
accurate.

Section 3.2.2 derives a simple formula to determine from the
model inputs whether the LFP reaches the stable backlog state, on
average. This formula is used in the model, and could also be used
in equation-based rate control, to determine whether the throughput
formula from section 3.2.1 or the formula from section 3.2.3 should
be used to estimate the throughput from the measured model inputs.

3.2.1 Stable-Backlog is Attainable
The expected window size during the stable-backlog state (W0)

can be derived in a manner similar to the no loss case. However,
since the level of congestion in the network is fluctuating, Vegas
will adjust the backlog in the network between α and β, and thus
the expected value of diff is estimated as (α + β)/2 rather than β,
which yields

W0 = min

�
α + β

2
×

R

R − baseRTT
, Wmax � . (5)

To derive the throughput of the LFP we need to calculate the av-
erage number of packets transmitted during an LFP, PLFP , and the
expected duration of an LFP, DLFP . Using arguments analogous
to those in [22], the throughput of the LFP is the ratio of these two
expectations. PLFP can be expressed as the expected number of
packets transmitted between two loss episodes (i.e., 1/p), plus the
number of packets transmitted between the time the first lost packet
is sent and the time the sender identifies the loss [22]:

PLF P =
1

p
+ W0 − 1, (6)

To calculate DLFP , we use the notation in figure 2(a) and let
DLFP = DDE + DEF . During stage D to E, Vegas (ideally)
increases the window size by one in each round, for W0/4 rounds,
on average. Thus,

DDE =
W0

4
× R . (7)

During stage (E to F) Vegas transmits an average of W0 packets
per round. Thus, assuming low variance in the window size during
this stage, the expected number of rounds in this stage is equal to

the expected number of packets transmitted during the interval (i.e.,
PEF) over W0. Since PEF = PLFP − PDE , we have

DEF =
PLF P − PDE

W0

× R , (8)

where

PDE =

W0−1�
i=

3W0
4

i =
7W 2

0

32
−

W0

8
. (9)

Using equations (6) - (9) and simplifying, yields

DLF P =

�
1 − p

pW0

+
W0

32
+

9

8 � R. (10)

Finally, dividing equations (6) and (10) we find

Λstable
no T O =

1−p
p

+ W0�
1−p
pW0

+
W0
32 + 9

8 � R
, (11)

where W0 is given in equation (5). We note that this analysis has
yielded a fairly simple formula for TCP Vegas throughput. In this
case, substituting equation (5) in the throughput equation shows
that when packet loss occurs (e.g., due to other types of flows in
the network) there is some bias against connections with longer
average RTT. The bias doesn’t have a simple characterization, but
we explore this new insight further in the experiments in section
4.4.1.

3.2.2 Condition for Attainable Stable-Backlog
Equation (11) holds only if the loss episode happens (on average)

after W reaches W0; that is, PDE ≤ (1/p + W0 − 1), or using
equation (9),

p ≤
32

7W 2
0 − 36W0 + 32

(12)

If equation (12) together with (5) does not hold, we use the analysis
presented next.

3.2.3 Stable-Backlog is Not Attainable
When a loss episode occurs on average before stable backlog is

reached, the behavior of Vegas (depicted in Figure 2(b)) is similar
to that of Reno since the congestion avoidance mechanism reverts
to that of Reno; however, there are significant differences in the
congestion recovery mechanisms.

To compute W ′, we note that during the LFP, Vegas (ideally) in-
creases the window size by one in each round, and that the expected
number of packets transmitted (P ′

LFP) is 1/p + W ′ − 1. Thus,

W ′�
i= 3W ′

4

i =
1

p
+ W

′
− 1 = P

′

LF P ⇒ W
′ =

2 + 2 � 56
p

− 55

7
. (13)

Since the expected number of rounds in the LFP is W ′/4,

Λ
not−stable
no T O =

P ′

LF P

D′

LF P

=

1−p
p

+ W ′

W ′

4 R
=

4 � 56
p

− 55 + 14
p

− 10

(1 + � 56
p

− 55)R
(14)

Time (Number of RTTs)

2

Wo

 3Wo/4

 Wo/2

A
ve

ra
ge

 W
in

do
w

 S
iz

e
(p

kt
s)

. . .

B

F

 n LFPs

LFP LFP TOSSP TP

 SS2SS

C D

D

E

A

LFP

Figure 3: Example SS2SS Period

The above equation shows that if stable backlog is never reached,
Vegas throughput is inversely proportional to the average propaga-
tion delay (R), as is the case for TCP Reno. In general, the depen-
dence of TCP Vegas throughput on R is not as straightforward as
in Reno. There are two extremes, namely (1) the case where p = 0
and Vegas throughput does not depend on R, and (2) the case where
p is large enough that stable backlog is never reached and Vegas
throughput is inversely proportional to R. As p increases between
these two extremes, the dependence of throughput on R becomes
stronger until it reaches the inverse proportional dependence.

3.3 Model 3: Single Time-Outs Only
The next aspect of TCP Vegas flows to be represented in the

model is that of Time-Outs (TOs). In this case, loss episodes are
identified by duplicate ACKs or by TOs. A TO occurs if after a loss
episode, not enough duplicate ACKs return to the sender to trigger
lost packet retransmissions.

When the coarse-grain timer expires for a packet, Vegas remains
idle for a period of T0, and then sets the window to two and goes
into Slow-Start. T0, is calculated every RTT as two times the
smoothed RTT average plus four times the RTT variance.

Here, we will assume that all TO series consist of a single TO.
We first analyze the case where all loss episodes occur when Ve-
gas is in the stable-backlog state. Under this scenario, the behavior
of the flow can be partitioned into a sequence of adjacent statisti-
cally identical intervals that have expected window size evolution
as illustrated in Figure 3. We call each such interval a Slow-Start-
to-Slow-Start (SS2SS) period.

To derive the throughput in a random SS2SS period, we compute
the expected number of packets transmitted and the expected dura-
tion of such a period. To do this, we partition the SS2SS into the
following periods (see figure 3): (1) the Slow Start Period (SSP) in
which the window size starts at two and doubles every other round
until it reaches the slow start threshold (ssthres)3, (2) the Tran-
sition Period (TP) during which the window size increases by one
each round until stable-backlog state is reached, and then the flow
stays in stable-backlog state until a loss episode occurs, (3) if the
TP does not end with a TO, a series of n consecutive Loss Free Pe-
riods (LFPs) follows, with the first n − 1 LFPs ending with a loss
episode identified by a duplicate ACK, and the n-th LFP ending
with a loss episode identified by a TO, (4) a single time-out. Thus,

3ssthresh is on average equal to W0/2 since the expected win-
dow size when the TO occurs is W0.

ΛSS2SS =
PSSP + PT P + nPLF P + PT O

DSSP + DT P + nDLF P + DT O

. (15)

where PX denotes the average number of packets transmitted in pe-
riod X and DX denotes the average duration of the period. These
terms for each component of the SS2SS period are derived in each
of the next three sections, respectively.

3.3.1 Slow Start (SSP) and Transition Phase (TP)
The SSP and TP are illustrated in Figure 3 between points A and

B and points B and D, respectively. The period from A to D starts
and ends with consecutive loss episodes; thus,

PAD = PSSP + PT P =
1

p
+ W0 − 1 . (16)

Since slow start begins with a window size of two, and the win-
dow size is doubled every other RTT until the slow start threshold
(ssthresh = W0/2) is reached,

PSSP = 2(2 + 4 + . . . +
W0

4
) = 2

log
W0
4�

i=0

2i = 2logW0 − 4

and DSSP = 2(log
W0

4
)R = 2(logW0 − 2)R. (17)

The analysis of a random TP is similar to the analysis of an LFP
(section 3.2), except that the expected initial window size is W0/2.
Thus, for stage B to C in figure 3,

PBC =

W0−1�
i=

W0
2

i =
3W 2

0

8
−

W0

4
and DBC =

W0

2
R . (18)

The expected duration of stage (C to D) is (PCD/W0)R. Since
PCD = PAD − PSSP − PBC , using (16)-(18), we get

DT P = DBC + DCD =
W0

2
R +

PAD − PSSP − PBC

W0
R =

= � 1 − p

pW0

+
W0

8
+

5

4
+

4 − 2logW0

W0 � R . (19)

3.3.2 Series of Loss Free Periods (LFPs)
Equations (6) and (10) give the expected number of packets trans-

mitted in an LFP and its expected duration, respectively.
To derive an expression for n, the expected number of consecu-

tive LFPs during an SS2SS period, we note from Figure 3 that the
fraction of loss episodes that are identified by a TO, pTO , is given
by pTO = 1/(n + 1). Solving this for n,

n =
1 − pT O

pT O

. (20)

The probability pTO has been derived for TCP Reno [22] by an-
alyzing the probability that less than three duplicate-ACKs return
to the sender after a loss episode. Vegas has the key difference
that packets can be retransmitted with fewer than three duplicate
ACKs, which may significantly reduce the probability of getting a
time-out. In [14], it is claimed that this does not contribute greatly
to the gains in performance of TCP Vegas compared to Reno. How-
ever, our simulation results showed that out of the losses identified

by duplicate ACKs, the great majority are identified after one or
two duplicate ACKs, and for loss rates higher than 5% only one
duplicate ACK was needed to identify the loss in most cases. This
motivated the following fairly simple analysis of pTO , which as-
sumes that every loss identified by duplicate ACKs is identified by
the first duplicate ACK received.

Let A(w, k) denote the probability that k out of w packets are
acknowledged, given that there is a loss episode in a round with
window size w. Let C(w, k) denote the probability that exactly k
packets are received from a round of w. That is,

A(w, k) =
(1 − p)kp

1 − (1 − p)w
C(w, k) = � (1 − p)kp , k < w

(1 − p)w , k = w

Given a round of w packets that has a loss episode, the scenarios
that lead to no duplicate ACKs, and thus a TO in the round, are: 1)
the entire window is lost, or 2) i out of w packets reach the receiver,
the receiver sends i ACKs, the sender sends i new packets and all
i packets are lost. Recalling that W0 is the expected window size
when a loss episode occurs,

pT O(W0) = min �� 1 , A(W0, 0) +

W0−1�
i=1

A(W0, i)C(i, 0) �� =

= min � 1 ,
p + p(1 − p)(1 − (1 − p)W0−1)

1 − (1 − p)W0 � (21)

3.3.3 Time-Out (TO)
During the TO no packets are transmitted; thus,

PT O = 0 , DT O = T0. (22)

Substituting equations (6), (10), (16), (17), (19) and (22) into (15)
we get the following estimated throughput of a TCP Vegas flow for
the case that only single TOs occur:

ΛSS2SS =
(n + 1)

�
1−p

p
+ W0 �

NSS2TOR + T0
(23)

where,

NSS2TO = 2logW0 + (n + 1) 1−p
pW0

+ � 1 + n
4 � W0

8 + (24)

+ 9n
8 − 11

4 + 4−2logW0
W0

(25)

This expression is significantly more complex than the previous
formula for Vegas throughput that assumes no time-outs, but the
dependence on R is still as explained in section 3.2.3. The value of
n can be computed with equations (20), (21) and (5).

3.3.4 Stable-Backlog is Not Attainable
The constraint required in the above analysis, together with (12),

is that the flow will be able, on average, to fully recover from the
TO, reaching stable-backlog state before the next loss episode oc-
curs. That is, PAC ≤ (1/p + W0 − 1), or

p ≤
8

3W 2
0 − 10W0 + 16logW0 + 8

. (26)

In the case where either constraint (12) or (26) does not hold,
Vegas, on average, will not reach the stable-backlog state between

certain loss episodes. The window evolution in those cases is sim-
ilar to figure 3, with the TP and LFPs having sharp peaks. With a
few further simplifying assumptions, the following expression can
be used for the expected TCP Vegas throughput under those condi-
tions

Λ
not−stable
SS2SS =

P ′

SSP + P ′

T P + nP ′

LF P + PT O

D′

SSP
+ D′

T P
+ nD′

LF P
+ DT O

(27)

where P ′

LFP and D′

LFP where derived in section 3.2.3. The
analysis for SSP and TP is identical to that in section 3.3.1, with
the transition between the two phases taking place when the win-
dow size is W ′/2 instead of W0/2. The main assumption for this
analysis to hold is that the expected window size when a loss occurs
at the end of the TP is the same as in section 3.2.3 for the LFPs, i.e.,
W ′.

3.4 Model 4: Full Model
When a TO occurs, further TOs can occur back to back with the

first. Here we derive the expected number of packets transmitted
during a series of TOs and the expected duration of such a series
in order to provide more accurate estimates for the terms PTO and
DTO , in equation (15).

We identify three cases with respect to the round of two packets
following a TO: (A): Neither packet is lost, with probability P0 =
(1−p)2; (B): Only the second packet is lost, with probability P1 =
(1 − p)p; (C): Both packets are lost , with probability P2 = p
(given the first loss the second loss happens with probability 1).
Note that the probabilities sum to one. Case A signals the end of
the TO series, whereas C result in a new TO. Case B results in a
new TO only if the one extra packet transmitted as a response to
the single ACK sent back by the receiver is also lost. Here, in order
to simplify our analysis, we assume that this always happens, i.e.
case B always results in a further TO. Thus, immediately following
a TO round, the probability that a further TO will occur is P1 +P2.
Let M be the number of consecutive TOs in a random TO series.
Then, since the first TO is given,

P[M = k] = (P1 + P2)
k−1

× P0 = (2p − p
2)k−1(1 − p)2, (28)

and the expected number of consecutive TOs, E[M], is

E[M] =
∞�

k=1

kP[M = k] =
1

(1 − p)2
. (29)

Since the window size is 2 after each TO, PTO−series = 2(E[M]−
1). We exclude the 2 packets transmitted in the round right after the
last TO, since that round is included in the next SSP (see equation
(17)). Finally, the expected number of packets transmitted during a
random TO series, is

PT O−series =
2p(2 − p)

(1 − p)2
. (30)

The duration of the first TO is T0, and for each new TO the du-
ration is doubled until the duration reaches 64T0. For further TOs
the duration remains constant. The duration of a series of k TOs is
thus:

Dk = � (2k − 1)T0 , k < 6
(63 + 64(k − 6))T0 , k ≥ 6

The expected duration of a random TO series, DTO−series is
given by

DT O−series =
∞�

k=1

DkP[M = k] =

= � 64

(1 − p)2
− 321 + (1 − p)2

6�
k=1

(2k
− 64k + 320)(2p − p

2))k−1 � T0

(31)

We will refer to the quantity in parentheses in the above equation
as d(p); i.e., DTO−series = d(p)T0.

In equation (15) we replace PTO and DTO which refer to a sin-
gle TO with the more accurate estimates PTO−series and DTO−series.
The analysis for the rest of the SS2SS period is exactly as it was de-
scribed in the previous section. Thus, in equation (15), we get

Λloss =
(n + 1)

�
1−p

p
+ W0 � + 2p(2−p)

(1−p)2

NSS2TOR + d(p)T0

(32)

Variable n can be computed from equations (20)-(21), NSS2TO

is given in equation (25) and W0 is given in (5).
The set of equations (4) and (32) constitute a complete through-

put model for TCP Vegas, including both the loss and the no-loss
scenario, given that constraints (12) and (26) are met.

4. RESULTS
We were unable to find an implementation of TCP Vegas that

would compile on the systems available to us at various sites. Thus,
instead we conducted many experiments using the ns-2 simula-
tor [1] to validate the throughput model developed in section 3,
to examine some of the new qualitative insights obtained from the
model, and to reevaluate the results in the literature concerning the
relative performance of TCP Vegas and TCP Reno and New-Reno.

Most previous simulation comparisons of TCP Vegas and TCP
Reno performance have assumed a small buffer at the shared bot-
tleneck link; for example, the buffer size is 4-16KB in [2], and
in [6, 7, 14] it is 10-20KB. This assumption affects the relative per-
formance of the protocols, and in particular favors Vegas, as has
been shown in a simple environment with two flows [21] and [16].
In the experiments below, we assume larger finite buffers at the
shared bottleneck (e.g., 50 - 200 packets for a T3 bottleneck link),
unequal propagation delays in the flows that share the link, and a
rich mixture of background traffic.

We perform experiments for the simple dumb-bell network topol-
ogy, in which each source transmits through its own non-shared
incoming path to a shared bottleneck link and then to its own non-
shared outgoing path. The flows sharing the bottleneck are a spec-
ified mix of Vegas, New-Reno, and Reno bulk TCP transfers, and
bursty ON/OFF HTTP flows. Multihop link configurations are also
of interest; however, there are many parameters to vary in this
dumb-bell topology with rich traffic mixtures and finite buffer on
the shared link. We obtain insights and understanding from this
representation of the principal bottleneck for the flow of interest;
deferring study of more complex systems to future work.

For the cross traffic in our experiments we use round-trip prop-
agation delays ranging from 20 to 460 milliseconds [3, 15, 11].
To compare the different TCP variants, we distinguish three mon-
itored flows, one Vegas, one New-Reno and one Reno, which are
configured with the same path delay. We analyze the performance
of these “foreground” flows in a variety of network settings. All
other flows are called “background” flows.

Packet size 1KB
Buffer size 200 pkts
Bottleneck link capacity T3 (44.736 Mbps)
Incoming/Outgoing link capacity 100 Mbps
Bottleneck link propagation delay 10ms
Path delay for background flows uniform(20,460) ms
Queue management scheme Drop Tail
α, β 6 pkts
TCP maximum window size 64 pkts

Table 2: Default System Configuration

Each ON/OFF HTTP background flow is configured similarly to
the one in [17]. That is, each HTTP client sends a single packet re-
quest across the reverse bottleneck link (shared with the acknowl-
edgment traffic for the TCP flows) to a non-shared server. The
HTTP server, upon receiving the request, uses TCP-New Reno to
send a file to the client of size exponentially distributed with mean
50KB. After the client receives the entire file, the client waits for a
time that is exponentially distributed with mean 500 milliseconds
and then sends another request to the server.

While verifying that all the Vegas mechanisms described in sec-
tion 2.1 are present in the ns implementation, and through compar-
isons with the analytic model predictions, we discovered and fixed
several bugs in the Vegas implementation of ns. The most impor-
tant was a mistaken calculation that computed artificially large RTT
values for retransmitted packets.

We derive the model inputs from the measured foreground Ve-
gas flow. Specifically, we use the measured packet loss rate as an
approximation of the parameter p in the model, the average RTT
of the flow over the duration of the connection as R, and the mini-
mum RTT measured during the flow as baseRTT . We also obtain
the average duration of the first TO in a TO series, T0, from the
simulation, although we experimented with T0 = 2R and found
that this value gave similar model accuracy. The inputs α, β and
Wmax are configuration settings in the simulations.

We use equal values for the two thresholds α and β in most ex-
periments since it has been shown that such a configuration leads to
fair allocation of bandwidth between competing Vegas flows [13].
To extensively validate the throughput model, we varied the bot-
tleneck link speed, buffer size, incoming/outgoing link capacities,
path delay distributions, the TCP Vegas configuration parameters α
and β, and the number and mix of background sources. These ex-
periments also yield new insights about TCP Vegas performance.
Below are representative results that unless otherwise noted were
based on the parameters shown in Table 2. Note that the given bot-
tleneck buffer size, 200 packets (four times the delay-bandwidth
product for the link) does not favor TCP Vegas performance.

4.1 Varying cross traffic
In our first set of experiments, we varied the total number of

background flows (e.g., from 30 to 300 over a T3 bottleneck link),
while keeping the relative mix of background flows fixed (e.g., half
New Reno and half HTTP). The goals are to compare the protocols
under a range of cross traffic loads and network configurations, and
to validate the model against a wide range of loss rates and cross
traffic behavior.

Figure 4 shows the throughput of each of the three foreground
flows as a function of the total number of background flows, for
the case that the background sources are an equal mix of TCP New
Reno, TCP Vegas, and HTTP, and the path delay of the foreground

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
�
�
�
�

�
�
�
�

0

100

200

300

400

0 50 100 150 200 250 300

Number of Background Sources
(33% Vegas - 33% newReno - 33% HTTP)

T
h

ro
u

g
h

p
u

t
(p

kt
s/

s)

��� newReno
Vegas
Reno

Figure 4: Throughput for Varying Cross Traffic (monitored
flow path delay = 80 ms)

0

100

200

300

400

500

0 0.02 0.04 0.06 0.08

Loss Rate
T

h
ro

u
g

h
p

u
t

(p
kt

s/
s)

no-loss model
no-TOs model
full/single TOs model
simulated

Figure 5: Model Accuracy for Varying Cross Traffic

flows is set to 80 milliseconds. For given path delay, α and β, the
relative throughput of the protocols depends on the buffer size as
well as the fractions of flows that use Vegas and Reno, a result that
agrees with the theoretical analysis in [16]. For a small number of
background flows (relative to the link speed and buffer size) there
is very little congestion in the network. The flows spend most of
their time in congestion avoidance where, in the given example, the
New-Reno flows are more aggressive, using a larger fraction of the
available buffer space than the Vegas flows. The result is that the
New-Reno flow has higher throughput and also suffers more losses.
As the number of background sources increases, the Vegas and New
Reno flows have similar performance, both in throughput and loss
rate. (That is, the Vegas sources cannot attain the specified number
of buffers and their behavior becomes Reno-like.) Finally, when
congestion becomes heavier Vegas outperforms New-Reno since it
employs more aggressive congestion recovery mechanisms. The
Reno flow has consistently worse performance than the other two,
mainly due to the increased number of TOs that it experiences.

Note that the relative aggressiveness of each New Reno flow dur-
ing congestion avoidance depends on the path propagation delay,
whereas the relative aggressiveness of Vegas depends on the frac-
tion of flows that use TCP Vegas as well as on the values of the
parameters α and β. Higher fraction of Vegas flows or higher val-
ues of α and β result in Vegas being more aggressive. However,
for larger α an β there may not be enough space for a large number
of Vegas sources to attain their stable backlog. A similar argument
applies for the relative performance of Vegas and Reno with re-
spect to buffer size. That is, for a smaller buffer size, Vegas will
be more aggressive relative to Reno, but for fixed α and β, fewer
Vegas sources can share the buffer and attain their target backlog.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

0

50

100

150

200

250

0 100 200 300 400

Path delay of foreground flows (ms)

T
h

ro
u

g
h

p
u

t
(p

kt
s/

s)

��� NewReno

Vegas

Reno

Figure 6: Throughput for Varying Propagation Delay

A possible topic for future research is to investigate variants of Ve-
gas that set these thresholds dynamically, possibly making use of
equation (12) to determine when to adjust the thresholds.

Figure 5 provides a representative comparison of the analytic
model throughput estimates compared with the simulation results.
For each experiment shown in Figure 4, the simulation and ana-
lytic throughputs are plotted against the packet loss rate of the sim-
ulated the Vegas flow. Both the full model and the ’Single-TOs’
model agree well with the throughputs measured in the simulations,
having an average error of 6.8% and a worst case error near 15%.
This model accuracy is typical among all experiments we have con-
ducted. Notably, the ’single-TOs’ model estimate is indistinguish-
able from the full model, for all the experiments. This suggests the
rare occurrence of back to back TO events in Vegas, even for fairly
large loss rates. Consequently, it appears that equation (23) can be
used instead of the more complex equation (32) without any appre-
ciable loss of accuracy. On the other hand the ’no-TOs’ model that
ignores TOs is significantly less accurate in the majority of cases.

4.2 Varying propagation delay
The previous section validated the model for varying cross traf-

fic, which in turn varied the loss rate p. In this section, we explicitly
vary a different key model input, namely baseRTT .

In a representative experiment, we set the number of background
sources to 120 (40 Vegas, 40 New-Reno and 40 HTTP), and vary
the path delay of the foreground flows from 40 ms to 400 ms, keep-
ing the rest of the network configuration parameters the same as in
the previous experiment.

The throughputs of the three foreground flows can be seen in
figure 6. As before, the relative throughputs of the different proto-
cols is due to the factors that affect their respective relative levels
of aggressiveness. The model accuracy is shown in figure 7 and is
similar to the previous experiment.

4.3 Varying Bottleneck Link Speed and
Buffer Size

One further step in validating the model is to vary two of the most
important network configuration parameters, namely the buffer size
and the bottleneck link bandwidth. Again, we present representa-
tive results from among the many different experiments we con-
ducted by varying these parameters.

The initial configuration has buffer size 50, bottleneck link speed
of 5 Mb/s and 30 background sources (10 Vegas, 10 New-Reno and
10 HTTP ON/OFF clients). We vary these parameters simultane-
ously, in each new experiment increasing buffer size by 50, link
speed by 5 Mb/s and number of background sources by 15 (five of
each type). We stop at a link speed of 100 Mb/s. The path delay of

0

50

100

150

200

250

300

350

400

0 100 200 300 400
Path delay of foreground flows

T
h

ro
u

g
h

p
u

t
(p

kt
s/

s)

no-loss
no-TOs
full/single-TOs
simulated

Figure 7: Model Accuracy for Varying Propagation Delay

0

20

40

60

80

100

120

140

160

0 30 60 90 120
Bottleneck Link Capacity (Mbps)

T
h

ro
u

g
h

p
u

t
(p

kt
s/

s)

no-loss
no-TOs
full/single-TOs
simulated

Figure 8: Model Accuracy for Varying Bottleneck Capacity

the foreground flows is set to 40 ms. The achieved Vegas through-
put together with the model estimates are shown in figure 8. The
full and the ’single-TOs’ models perform equally well for the entire
range of network configurations, with maximum error around 20%.

4.4 Fairness of TCP Vegas
The two main findings from previous investigations of TCP Ve-

gas fairness, reviewed in 2.2, are: (1) Vegas removes Reno’s bias
against flows with large propagation delays [4, 18, 21] , and (2)
Vegas creates persistent congestion which causes unfair distribu-
tion of the throughput due to inaccurate measures of baseRTT [5,
18]. However, these issues have primarily been analyzed in envi-
ronments where the Vegas sources experience no loss. Our ana-
lytic models suggest that Vegas has some bias against flows with
larger propagation delay when packet loss is not negligible. In sec-
tion 4.4.1 we obtain insight into the magnitude of this bias. In
section 4.4.2 we provide results from our simulation experiments
regarding the accuracy of the baseRTT measures for network con-
figurations in which packet losses occur.

4.4.1 Propagation Delay Bias
To compare bias against the connections with larger propaga-

tion delays, we compare two separate network environments: one
has an equal number of TCP-Vegas sources and HTTP ON/OFF
sources; the other has an equal number of TCP-New Reno sources
and HTTP ON/OFF sources. In each environment, the bottleneck is
a T1 (1.544 Mbps) link, the propagation delays of the TCP sources
are uniformly distributed between 20 and 460 ms, and the number
of TCP sources is varied from 6 to 60.

For each number of TCP sources, Figure 9 plots the average
of the packet loss rates observed by the TCP flows in each envi-

�
�
�
�
�
�
�

�
�
��
�
�
�

�
�
�
��
�
�
�
�

�
�
�
�
��
�
�

�
�
��
�
�
�
�

�
�
�
�
��
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 10 20 30 40 50 60 70

Number of TCP flows

L
o

ss
 r

at
e

o
f

m
o

n
it

o
re

d
 f

lo
w

s

� NewReno

Vegas

Figure 9: Average Packet Loss Rate (50% Vegas & 50% HTTP;
or 50% New-Reno & 50% HTTP)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
���
�
�
�
�

�
�
�
�
�
�
�
�
���

0

100

200

300

400

0 10 20 30 40 50 60 70
Number of flows

T
h

ro
u

g
h

p
u

t
(p

kt
s/

se
c)

�
�
�
�

NewReno max
Vegas max

��� Vegas min
NewReno min

Figure 10: Minimum and Maximum Throughput of Vegas and
New-Reno Flows

ronment,4 whereas Figure 10 shows the maximum and minimum
throughput obtained by the TCP flows in each environment. For
up to 18 sources sharing the T1 link there is no loss, and all Vegas
flows achieve approximately the same throughput, whereas there
is considerable variation in the TCP New Reno throughputs. As
packet loss increases, the difference between minimum and maxi-
mum Vegas throughput increases. For 60 background sources (5-
6% packet loss), the ratio of maximum to minimum throughput is
2.3 for the Vegas flows and over 3 for the New Reno flows. We con-
clude that in the presence of low packet loss (i.e., a few percent),
Vegas greatly reduces the bias against flows with larger propagation
delays, but does not eliminate the bias.

4.4.2 Bias due to inaccurate baseRTT
If a new TCP Vegas connection experiences persistent queueing

delay, it may constantly overestimate baseRTT . This situation
results in a higher bandwidth share for a flow that begins when its
bottleneck is busy [5, 14].

Results from our model validation experiments provide some
new insights into this issue. Here we present results when a num-
ber of long-lived Vegas sources, ranging from 1 to 10, share a com-
mon T2 (6.132 Mbps) bottleneck link. The propagation delay of
each connection is 40 ms, to avoid propagation delay bias, thus

4Note that while both TCP protocols experience similar loss rate
when there is a mix of Vegas and New Reno bulk transfer flows,
they experience quite different loss rates in an environment that
contains only TCP flows of the one type, together with ON/OFF
flows. The 50% Vegas/50% HTTP environment shows the advan-
tages of the Vegas congestion avoidance mechanism.

���������������������������������

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 3 6 9 12

Number of Vegas Sources

b
as

eR
T

T
 e

st
im

at
e

(s
ec

) all-Vegas
� Vegas+2

Figure 11: baseRTT Estimate of the Last Flow to Start (All-
Vegas; Vegas + 1 NewReno & 1 HTTP ON/OFF)

isolating unfairness due to inaccurate estimates of baseRTT . A
low value of propagation delay is used, so that overestimation of
baseRTT , if any, is significant compared to the actual propagation
delay, creating a greater fairness challenge for the TCP Vegas pro-
tocol. Furthermore, with a buffer size of 200 packets, fairly large
queue lengths can potentially be observed. The connections are
started one after the other with one second intervals between their
start times. These settings, particularly with ten Vegas sources,
highly favor the creation of persistent congestion.

The curve labelled ’all-Vegas’ in Figure 11 shows the baseRTT
estimate obtained by the last flow to join the network, for each dif-
ferent total number of Vegas flows. This curve shows that baseRTT
is increasingly overestimated as a flow finds more flows already op-
erating in the network. Note that there are no packet losses in this
all-Vegas environment.

In practice, the problem only arises in cases where the buffer
never empties. Under realistic scenarios with a variety of propaga-
tion delays and at least a small amount of bursty or TCP Reno cross
traffic, the buffer occasionally empties and Vegas flows are able to
get an accurate estimate of their propagation delays. To illustrate
this point we repeat the experiment above with two changes. First,
instead of fixing all propagation delays at 40 ms, the propagation
delay of the last flow to join is 40 ms and the other flows have prop-
agation delays uniformly distributed between 20 and 460 ms. Sec-
ond and more importantly, for each number of Vegas sources from
1 to 10, we add two additional sources: one New-Reno bulk trans-
fer and one HTTP source. Curve ’Vegas+2’ in Figure 11 shows the
baseRTT estimates of the last flow to join the network for each
different total number of Vegas flows. The estimates, unlike the
original experiment (curve ’all-Vegas’), are perfectly accurate in
this case.

5. CONCLUSIONS
This paper has developed a simple and accurate model to esti-

mate the throughput of a Vegas flow as a function of packet loss
rate, average round trip time, minimum observed round trip time,
and protocol parameters α, β. The model provides two closed-
form analytic throughput estimates, respectively for the cases that
the network conditions do and do not permit to the TCP Vegas flow
to acquire its target backlog in the connection path. A simple con-
straint on packet loss rate was developed to determine which of the
two expressions should be used.

The model elucidates the dependence of TCP Vegas throughput
on the model inputs, and provides insights for the protocol perfor-
mance and characteristics. For example, when the flow is able to es-

tablish the target backlog, the throughput expression shows the ab-
sence of bias against flows with larger propagation delays in a loss
free environment (as shown in previous work), and a weaker bias
than that of Reno if losses occur. The expression for the non-stable
backlog state is similar to expressions developed for the through-
put of TCP Reno, which shows that throughput is inversely propor-
tional to average round trip time, since under such conditions Vegas
congestion avoidance falls back to that of Reno.

The model was found to be quite accurate over many different
network settings that exercised both cases of the model and pro-
vided extensive variation in the three key model inputs, namely
loss rate, average round-trip time and path propagation delay. The
worst case error in the model throughput estimates was near 25%,
but typical error is within 10-15%. The validations revealed that
the ’single-TO’ model is as accurate as the full model, indicating
that timeouts for consecutive packets are rare in TCP Vegas flows.

The experiments that validate the model, also provided further
insights into the performance of key innovative mechanisms in TCP
Vegas and the relative performance of TCP Vegas, New-Reno and
Reno. These results agree with previous observations that Vegas
flows sharing the network with flows employing Reno-like conges-
tion control can get a smaller or larger share of the available band-
width, depending on the buffer size at the bottleneck router, the mix
of flows sharing the buffer, the flow path delays, and the values of
the thresholds α and β. Furthermore, the experiments show that
setting the α and β thresholds statically is sub-optimal for the TCP
Vegas flow. The simulation experiments also showed that one of
the main concerns about the deployment of TCP Vegas, namely the
potentially inaccurate estimates of propagation delay that can lead
to unfair bandwidth allocation, does not occur in practical configu-
rations that include even a very small number of bursty or Reno-like
flows as well as variable propagation delays for the TCP flows that
share the bottleneck link.

Fruitful avenues for future research include investigating: (1) the
use of the expression that determines whether the Vegas flow can
attain its target backlog to dynamically set α and β, and (2) use of
the TCP Vegas throughput model for rate control of UDP streams
in the Internet.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Foun-

dation under grant ANI 0117810. The authors thank Derek Eager
for his insights into modeling TCP Vegas throughput, Paul Barford
for his valuable comments concerning TCP Vegas and the ns2 sim-
ulator, and Armageddon Brown for his help in conducting an initial
set of ns2 simulation experiments.

6. REFERENCES
[1] Ns-2 simulator, http://www.isi.edu/nsnam/ns.
[2] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of

TCP Vegas: Emulation and experiment. In SIGCOMM 95,
Cambridge, MA, August 1995.

[3] M. Allman. A web server’s view of the transport layer. ACM
Computer Communication Review, 30(5), Oct. 2000.

[4] T. Bonald. Comparison of TCP Reno and TCP Vegas via
fluid approximation. Technical Report RR-3563, 1998.

[5] C. Boutremans and J. Y. L. Boudec. A note on the fairness of
TCP Vegas. In International Zurich Seminar on Broadband
Communications, Zurich, Switzerland, February 2000.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and
avoidance. In SIGCOMM 94, London, UK, Sept. 1994.

[7] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end
congestion avoidance on a global internet. IEEE Journal on
Selected Areas in Communications, 13(8), 1995.

[8] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In INFOCOM 00, Tel Aviv, March 2000.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applications.
In SIGCOMM 00, Stockholm, Sweden, August 2000.

[10] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 2582, 1999.

[11] S. Floyd and E. Kohler. Interent reasearch needs better
models. In Hotnets I, Princeton, NJ, October 2002.

[12] M. Goyal, R. Guerin, and R. Rajan. Predicting TCP
throughput from non-invasive network sampling. In
INFOCOM 02, New York, NY, June 2002.

[13] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and
stability of congestion control mechanisms. In Globecom,
Rio de Janeiro, Brazil, December 1999.

[14] U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas
revisited. In INFOCOM 00, Tel Aviv, March 2000.

[15] H. Jiang and C. Dovrolis. Passive estimation of TCP
round-trip times. ACM Computer Communications Review,
July 2002.

[16] S. Low. A duality model of TCP and queue management
algorithms. In ITC Specialist Seminar on IP Traffic
Measurement, Modeling and Management 00, Monterey,
CA, September 2000.

[17] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle.
Dynamics of TCP/RED and a scalable control. In INFOCOM
02, New York, NY, June 2002.

[18] S. H. Low, L. L. Peterson, and L. Wang. Understanding TCP
Vegas: A duality model. In SIGMETRICS/Performance 01,
pages 226–235, Cambridge, MA, June 2001.

[19] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic
behavior of the TCP congestion avoidance algorithm.
Computer Communications Review, 27(3), 1997.

[20] V. Misra, W. Gong, and D. Towsley. Stochastic differential
equation modeling and analysis of TCP-windowsize
behavior. In Performance, Istanbul, Turkey, October 1999.

[21] J. Mo, R. J. La, V. Anantharam, and J. C. Walrand. Analysis
and comparison of TCP Reno and Vegas. In INFOCOM 99,
New York, NY, March 1999.

[22] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling
TCP throughput: A simple model and its empirical
validation. In SIGCOMM 98, Vancouver, CA, September
1998.

[23] M. Vojnovic and J.-Y. L. Boudec. On the long-run behavior
of equation-based rate control. In SIGCOMM 02, Pittsburgh,
PA, August 2002.

