Improving Multirate Congestion Control Using a TCP Vegas
Throughput Model®

Anirban Mahanti Derek L. Eager Mary K. Vernon
Dept. of Computer Science Dept. of Computer Science Computer Sciences Dept.
University of Calgary University of Saskatchewan University of Wisconsin, Madison
2500 University Dr. N.W. 57 Campus Dr. 1210 West Dayton Street
Calgary, AB T2N 1N4 Canada Saskatoon, SK S7N 5A9 Canada Madison, WI USA 53706-1685
mahanti@cpsc.ucalgary.ca eager@cs.usask.ca vernon@cs.wisc.edu
Abstract

This paper describes Adaptive Vegas Multicast Rate Control (AVMRC), an equation-based mul-
tirate congestion control protocol that uses a recently proposed TCP Vegas throughput model. The
AVMRC protocol exhibits TCP Vegas-like behavior and has the key advantage of operating without
inducing packet losses when the bottleneck link is lightly loaded.

The AVMRC protocol incorporates a new technique for dynamically adjusting the Vegas threshold
parameters based on measured characteristics of the network. This technique implements fair sharing
of network resources with widely deployed versions of TCP such as TCP Reno and might be fruitfully
incorporated in TCP Vegas itself to aid in its incremental deployment.

To evaluate the benefits of Vegas-like congestion control, the performance of AVMRC is compared
using simulations to that of an analogous protocol that is based on a TCP Reno throughput model.
Additional design choices in AVMRC are evaluated along four primary dimensions, namely synchro-
nization policy, delay measurement, data transmission policy, and protocol reactivity.

Keywords: multirate congestion control, equation-based protocols, TCP Vegas, performance evalu-
ation

1 Introduction

In a bulk data or streaming media delivery application using (IP or application layer) multicast, different
clients may experience different loss rates, packet delays, and available bandwidth to the server. To
provide the best feasible service to each client, the server may transmit data using multiple multicast
channels, thus allowing each client to adjust its reception rate by varying the set of channels it receives.
For example, a streaming media server can use a cumulative layered encoding, in which a base layer and
a number of enhancement layers are each delivered on a different multicast channel. Each client receives
the base layer and a number of enhancement layers that depends on its sustainable reception rate.
Protocols that determine each client’s (dynamic) reception rate are known as multirate congestion
control protocols. Note that the set of possible reception rates is constrained by the limited number
of multicast channels and the (typically fixed) transmission rate on each channel. In the context of
streaming media delivery, for example, the number of channels and their rates are determined by the

*To appear in the Computer Networks Journal. This work was partially supported by the Natural Sciences and
Engineering Research Council of Canada, and by the National Science Foundation under grant ANI-0117810.

media encoding. Within this constraint, the goal of a “TCP-friendly” multirate congestion control
protocol is that each client have reception rate similar to that of a TCP connection under similar
conditions [4].

A number of TCP-friendly multirate congestion control protocols have been proposed [7, 8, 14, 16,
18, 23, 29, 31, 32]. In the earliest such protocol, Receiver-driven Layered Multicast (RLM) [23], each
client attempts to determine an appropriate reception rate through experimentation, as follows. When
congestion is observed, as evidenced by packet loss, a layer is dropped. When there is no observed
congestion, the client attempts to increase its reception rate by adding a layer, with the frequency of
such “join experiments” tuned according to the specific layer and the client’s history of past attempts
to add that layer. A “shared learning” mechanism is used, in which other clients are notified of join
experiments so as to enable them to determine in some cases that a layer subscription is unsustainable
without having to attempt the experiment themselves.

RLM has been found to result in TCP unfairness and instability in some scenarios [15]. Several
subsequent protocols, including RLC [32], FLID-DL [7], and STAIR [8], attempt to improve fairness by
more closely emulating conventional TCP’s additive increase, multiplicative decrease congestion control
algorithm. A potential disadvantage of this approach, however, is that it can result in highly variable
reception rates, which may be undesirable for applications such as streaming media delivery.

FEquation-based congestion control protocols use a TCP throughput model that predicts the through-
put a TCP connection would achieve as a function of parameters such as round trip time and packet
loss rate. Each client applies the throughput model with measured values of the model parameters to
compute its target reception rate. Such protocols have the potential to be TCP-friendly and yet provide
clients with smoother reception rates than with an additive increase, multiplicative decrease approach.

Previously proposed equation-based multirate congestion control protocols have used a TCP Reno
throughput model [14, 18, 29, 30, 31]. Since TCP Reno relies exclusively on packet loss to signal
congestion, a characteristic that is reflected in the throughput model, these previous equation-based
protocols have the disadvantage that they will ramp up a client’s reception rate until packet loss is
induced. An alternative approach, based on use of a “packet pair” technique to estimate the available
bandwidth on the path between the server and client, is used in the PLM protocol [16]. Although this
protocol does not require packet loss to determine an appropriate target client reception rate, the packet
pair technique does require that the routers on the path between the server and the client implement a
fair queuing scheduling discipline.

This paper develops a new equation-based multirate congestion control protocol, called Adaptive
Vegas Multicast Rate Control (AVMRC). A key goal is to estimate the available reception bandwidth at
each client without inducing packet loss, and thus to reduce the packet loss rate as well as the variation
in the reception rate of each client. To this end, each AVMRC client uses a recently proposed TCP Vegas
throughput model [28] to compute its bandwidth share. Another key goal is to share bandwidth fairly
with widely deployed versions of TCP such as TCP Reno. The previously defined TCP Vegas protocol
uses two static threshold parameters (o and) that determine the target number of packets queued in
the network for a TCP Vegas flow [5, 6]. Depending on the values of these static parameters and the
network conditions, the Vegas protocol is generally either too aggressive or not aggressive enough when
operating in a network that also has some TCP Reno flows [28]. The AVMRC protocol dynamically
varies the values of the Vegas threshold parameters that it uses in the Vegas throughput model, based
on the network conditions that are reflected in the measured packet loss rate and queuing delay. With
the adaptive parameters, an AVMRC flow shares bandwidth fairly with other types of flows, including
TCP Reno flows and other rate-controlled flows, over a wide range of network conditions. This new
technique for adapting the threshold parameters might be fruitfully incorporated in TCP Vegas itself to
aid in its incremental deployment.

To evaluate the benefits of using the Vegas throughput model for congestion control, the perfor-

mance of AVMRC is compared with that of an analogous protocol that uses a TCP Reno throughput
model. Other key design choices in AVMRC are also evaluated, along the four dimensions of synchro-
nization policy, delay measurement, packet pacing policy, and protocol reactivity. The main results of
the performance study are:

e AVMRC has significant advantages in some common scenarios, in comparison to TCP Reno-based
protocols, including operation without inducing packet losses when the bottleneck link is lightly
loaded.

e Dynamically varying the Vegas « and 8 parameters greatly enhances the TCP fairness of AVMRC.

e Coherency among clients behind a common bottleneck link can be achieved using a “weak syn-
chronization” approach in which the times at which clients can add layers are coordinated, but in
contrast to previously proposed schemes [7, 32], the layers that may be added at these times are
not. Clients thus have greater freedom in matching their reception rate to the target rate computed
from the throughput model.

e Parameterizing the throughput model using the sum of the measured average queuing delay along
the path from the server and a fixed “aggressiveness constant”, rather than measured round trip
times, can yield an attractive combination of fairness, reactivity, and efficiency.

e Explicitly tracking both short-term and long-term averages of loss rate and delay can enable clients
to achieve both good reactivity and good stability in their channel subscriptions.

The remainder of this paper is organized as follows. Section 2 presents a brief overview of the
foundations of equation-based congestion control. The AVMRC protocol is presented in Section 3.
Section 4 outlines our performance evaluation methodology. Section 5 presents performance comparisons
between AVMRC, the corresponding protocol based on a Reno throughput model (RMRC), and AVMRC
without adaptive choice of the o and 8 parameters (VMRC). Section 6 evaluates other design choices in
AVMRC. Conclusions are presented in Section 7.

2 Foundations of Equation-Based Congestion Control

A number of equation-based congestion control protocols have been proposed [9, 14, 18, 29, 30, 31].
These prior protocols have utilized a TCP Reno throughput model. The most commonly employed
Reno throughput model, and the TCP Vegas throughput model on which the proposed AVMRC protocol
is based, are reviewed in Section 2.1. Prior techniques for online estimation of model parameters are
discussed in Section 2.2.

2.1 TCP Throughput Models

Several models have been proposed that predict the steady state throughput of a long duration TCP
Reno flow [12, 22, 25]. In a commonly used model [25], an approximation Ayen, for the throughput of a
long duration TCP Reno flow, in packets per second, is given by

1
RTT\/?% + TOmin (1,3 %’) p (1 + 32p?)

; (1)

Areno =

where RT'T is the average round trip time in seconds, T'O is the TCP retransmission timeout value, and
p is the steady state loss event rate. Here it is assumed that the receiver’s buffer space advertisements

are not sufficiently restrictive to limit the congestion window size, and that an acknowledgment is sent
for each received packet. These assumptions can be relaxed at the cost of a somewhat more complex
model [25].

Unlike TCP Reno, which induces losses to estimate available bandwidth, the TCP Vegas congestion
control mechanism attempts to detect congestion in the network before packet loss occurs. TCP Vegas
uses increases in queuing delay to detect congestion and attempts to maintain, on average, between «
and B unacknowledged packets queued in the network, where o and 3 are the “threshold” parameters
of the protocol. For the case in which packet losses are negligible, an approximation Agggjjgss for the
throughput of a long duration TCP Vegas flow, in packets per second, is given by

_ B B
A0 loss _ - = 2
vegas RTT — baseRTT A’ (2)

where baseRTT is the minimum observed round trip time for the flow and A = RTT — baseRTT [28].
Note that in this case of negligible packet loss, TCP Vegas throughput (at least, as predicted by the
above throughput model) does not have any round trip time bias, in the sense that it depends only on
the average queuing delay observed along the path from the sender.

For the case in which packet losses (and possibly timeouts) are significant, an approximation A
for the throughput of a long duration TCP Vegas flow, in packets per second, is given by

loss
vegas

s _ (0 (52 +W) o)
veges = NRTT+TO '’

where W — RTJ;(g-l-ﬂ), n— 1*pto’ Pro = min(1, p‘f‘p(l*p)(lf(lfp)wfl))’ and N = 2logW + (n+ 1);;Wp e

Pto 1-(1-p)W
) % + %” — 14—1 + 4_21,[[;9W [28]. Note that in this case, the throughput model predicts some degree of round

trip time bias. Previous studies have found the bias to be lower than with TCP Reno, however [24, 28|.

2.2 Online Estimation of Throughput Model Parameters

Prior equation-based congestion control methods are based on a TCP Reno throughput model, and thus
need to obtain estimates of the average round trip time (RT'T), the loss event rate (p), and (for the model
of equation 1), the TCP retransmission timeout value (7°0). The latter quantity is typically estimated
as a fixed multiple of RTT.

Although obtaining round trip time measurements is relatively straightforward in the context of a
two-way packet flow between a single pair of systems, this task is more difficult to accomplish in a scalable
fashion in the multicast context. Several schemes involving control packet feedback to the server have
been proposed [29, 30, 31]. Other protocols have used a fixed value in place of a measured average round
trip time [7, 32]. This approach has the disadvantage of being either aggressive or not as aggressive as
a TCP flow under similar conditions, depending on the round trip times being witnessed by the TCP
flow.

The Exponential Weighted Moving Average (EWMA) technique is widely used for obtaining estimates
of average round trip time. After each round trip time measurement, an updated estimate of the average
round trip time (RTTyey) is computed as a weighted average of the previous estimate (RTT,;4) and the
new measurement (RT'T;),

RTThew = aRTTyq + (1 — @) RTT;, (4)

where « is a parameter of the technique. Note that with EWMA, the weight given to a round trip time
measurement decays exponentially with the age of that measurement.

Estimates of the loss event rate p at a client can be obtained using the Average Loss Interval (ALI)
method [9]. This method computes p as the inverse of the average length in number of packets of a
loss free interval (i.e., interval between loss events). The latter quantity is estimated using a weighted
average of the sizes of recent loss free intervals, specifically as max(5, Spey), Where

n n—1

D wis; i wis;

s=20—— Snew = —pT, — (5)
i=1 Wi i=0 Wi

Here s; denotes the number of packets received in the i most recent loss free interval, sy denotes the
number of packets received since the most recent loss event, and the weights w; are chosen such that
the most recent loss free intervals receive equal weight while the weights of older intervals gradually
decrease to zero. Previous work has used n = 8, with weights 1,1,1,1,0.8,0.6,0.4,0.2 [9]. Note that the
number of packets received since the most recent loss event impacts the estimated loss rate only when
this number is relatively large and would decrease the estimated loss rate.

An important issue with both ALI and EWMA concerns the weights that are given to the most
recent samples. Better noise attenuation can be achieved by using a high value for the parameter « in
EWMA and by using a large n and/or more balanced weights in ALI, but at the cost of diminished
reactivity. Placing greater weight on the most recent samples can yield better reactivity, but may result
in oscillatory target reception rates when the resulting values are used in a TCP throughput model for
equation-based congestion control.

3 The AVMRC Protocol

The main innovation in AVMRC is its use of the TCP Vegas throughput model described in Section 2.1
to compute the target reception rate at each client, with the values of the Vegas threshold parameters
a and B dynamically varied so as to achieve fair bandwidth sharing with other types of flows.

Other innovations in AVMRC concern the rules by which clients change their channel subscriptions.
First, AVMRC uses both short-term and long-term averages of delay and loss event rate measures when
computing target reception rates using the TCP Vegas throughput model. This is motivated by the
observation that clients should generally be cautious in changing their reception rate (i.e., their set of
subscribed channels), so as not to overreact to transient changes in network conditions and to avoid
oscillation, and yet be quick to react when an increase in their reception rate causes congestion.

Second, rather than using an average of measured round trip time values for the RTT parameter
in the TCP Vegas throughput model, AVMRC uses the sum of the measured average queuing delay
along the path from the server and a fixed “aggressiveness constant” (so named since it has some modest
impact on the aggressiveness of the protocol). Using measured round trip times has the disadvantage that
clients behind the same bottleneck link, but at differing network distances from the server, may compute
significantly different target reception rates and sets of channels to listen to, resulting in somewhat
inefficient use of the bottleneck link bandwidth. At the other extreme, using a simple fixed value can
result in poorer fairness and reactivity.

Third, AVMRC uses a light-weight approach to coordinate clients behind a common bottleneck,
termed here weak synchronization. Coordination is desirable so as to limit the churn in channel sub-
scriptions that might result as failed attempts by one client to increase its reception rate causes congestion
at the bottleneck that prompts other clients to unnecessarily drop their reception rates. Prior protocols
have used more complex mechanisms to achieve this coordination [7, 23, 32].

The technique used in AVMRC to adaptively set the Vegas threshold parameters «: and 3 is described
in Section 3.1. Section 3.2 describes the delay and loss event rate measurements employed in AVMRC
and the method by which short-term and long-term averages are calculated. The rules for changing

Table 1: AVMRC Protocol Notation

Description Name Default Value
Time slot duration (protocol activation granularity) T 0.1 seconds
Minimum time slots between channel additions Nadd 20 slots
Threshold for quick drop Ndrop 20 slots
Start-up phase duration Nstartup 50 slots
Add hysteresis parameter Y1 0.5
Drop hysteresis parameter Y2 0.5
Aggressiveness constant R 0.1 seconds
Range of TCP Vegas threshold parameters [Bmin, Bmaz)

Short-term average one-way queuing delay Ost

Long-term average one-way queuing delay Ot

Short-term average loss event rate Dst

Long-term average loss event rate yun

Average reception rate Breep

Expected reception rate Beyrr

channel subscriptions are described in Section 3.3. Additional protocol rules are needed for use when a
client first joins a multicast session. These are outlined in Section 3.4. Required notation is summarized
in Table 1.

3.1 Adaptive Setting of the TCP Vegas Threshold Parameters

Depending on the choice of the TCP Vegas threshold parameters o and 8, TCP Vegas can be either too
aggressive, or not aggressive enough, when competing against TCP Reno flows for network bandwidth
share [28]. The AVMRC protocol attempts to achieve fair sharing by adaptively setting these parameters
to the most aggressive values that would still allow a TCP Vegas flow to achieve stable backlog; i.e., to
reach a stable throughput between loss events. The stable throughput value is a function of 8 and can be
computed from equation 2. An analytic condition for stable backlog to be achievable has been derived
as [28]:

32
<
P=9we 36w + 32

(6)

where W is the congestion window size (in packets) that corresponds to the stable throughput value
(e, W = %RTT). AVMRC adaptively chooses the value of 8 so that equality is achieved in relation 6,
when feasible. The value of « is simply chosen equal to (3, as has been suggested in prior work [28].

More precisely, each AVMRC client initializes 8 to a parameter Bp,in. Each client times its activation
of the AVMRC protocol according to a “time slot” of duration 7 (not only for computation of new
values, but also for other operations described subsequently). Every 7 seconds, the client computes a 3
value such that equality is achieved in relation 6, using its long-term averages of delay and loss event rate.
The client then updates its 8 value using a weighted average of the computed and the old values, within
the constraints of the minimum value S,,;, and a maximum value B;,4,. The simulation implementation
for which results are reported here uses 0.05 as the weight for the computed value of 8 and 0.95 as the
weight for the old value, and somewhat arbitrarily sets the values of Bnn and By to the number of
packets transmitted during a time 7 on the channels received by a client with the minimum possible
reception rate (channel subscription), and the maximum possible reception rate, respectively.

3.2 Estimating Average Delay and Loss Event Rate

TCP throughput models (including the TCP Vegas model) typically define the loss event rate such that
multiple packet losses from a single window of packet transmissions correspond to a single loss event, as
the TCP sender will usually only reduce its congestion window size once in reaction to these losses. Thus,
in AVMRGC, closely-spaced packet losses should also constitute only a single loss event. Experimental
results suggest that this notion can be made precise using the same time scale used elsewhere in the
protocol. The simulation implementation for which results are reported here considers any packet loss
that is observed at the client within time 7 of the first loss of a loss event to be part of the same loss
event. The long-term average loss event rate pj; is computed using the ALI technique with n value and
weights as used in [9], and with a loss free interval defined as the period from the last packet loss of one
loss event, until the first packet loss of the next loss event. The short-term average loss event rate pg;
is simply taken as the inverse of the number of packets received in the most recent loss free interval, sy
(with pg set to 1 when syg = 0).

The delay parameters required by the TCP Vegas throughput model used in AVMRC are RTT, TO,
and A, where RT'T is the average round trip time, T'O is the TCP retransmission timeout duration, and
A is the portion of the average round trip time due to packet queuing delay. As in prior work [9], T'O is
approximated by 4RTT, so only RTT and A need be determined. The AVMRC client does not attempt
to estimate either of these quantities as defined. Instead, in place of A, AVMRC uses an estimate of the
average one-way queuing delay from the server to the client, denoted here by §. Assuming that it is most
important to react to congestion along the path from server to client, rather than also on the reverse
path, this choice should yield reasonable behavior, and has the advantage of being readily measured at
the client, as described below. In place of RTT, AVMRC uses the sum of § and a fixed value R, thus
facilitating the computation of a common target reception rate by clients behind a common bottleneck,
while also retaining the TCP Vegas throughput sensitivity to congestion along the forward path.

The short-term and long-term average one-way queuing delays, ds; and dj;, are computed from short-
term and long-term averages, respectively, of the time stamp difference (T'SD). For each packet received
by a client, TSD is defined as the difference between the value of a timestamp inserted in the packet
by the server, reflecting the (server’s clock) time at which the packet was transmitted, and the (client’s
clock) time at which the packet was received. A short-term average T'SD is computed using the EWMA
technique. In the simulation implementation for which results are reported here, weights of 0.25 and
0.75 are used for the most recent sample and for the previous value of the average, respectively. A
long-term average TSD is computed by applying EWMA to the values of the short-term average, once
every 7 seconds. For the results reported here, weights of 0.05 and 0.95 are used for the current short-
term average TSD and for the previous long-term average value, respectively. Values for d5 and d;; are
computed by taking the difference between the short-term average and long-term average T'SD values,
respectively, and the minimum 7'SD observed by the client over all packets. Note that any difference
between the server and client clocks is canceled out when this subtraction is taken, at least under the
assumption that these clocks have constant difference. To ameliorate the impact of changing clock skew
as well as of topology changes in the path between server and client, for long-duration sessions it may
be desirable to compute the minimum 7°SD over a moving window.

3.3 Changing Channel Subscriptions

Three key issues in AVMRC concern 1) the frequency with which clients should be able to add/drop
channels, 2) coordination of the channel subscription changes of clients behind a common bottleneck,
and 3) the conditions under which channel subscription changes should occur.

With respect to the first of these issues, the objective is to achieve both good responsiveness and

good stability.

In AVMRC, a client can add at most one channel every m,qq time slots, except during a start-up
phase as described in Section 3.4. To retain quick responsiveness to increases in congestion, channel
drops are allowed to take place at every time slot. Allowing frequent changes in channel subscriptions
may result in oscillation, particularly since only coarse-grained reception rate changes are possible, and
therefore only an approximate match can be achieved between the target and actual reception rates. The
AVMRC protocol uses a weak synchronization approach to address the second issue of coordination of
clients behind a common bottleneck. Specifically, the server inserts markers in the data stream, or uses
a packet field, so as to identify each time slot, and, in particular, the time slots (every n,44’th) at which
channel additions are permitted. Note that in general different clients will not receive a time slot marker
at exactly the same time, owing to varying network delays. As long as n,qq7 is relatively large compared
to the likely network delay variations, however, additions of channels will be clustered relatively closely
together in time. In previously proposed schemes that also use a time slotting mechanism, each channel
has a different, statically determined frequency of time slots at which a client can add the channel [7, 32].
In AVMRG, in contrast, a client can add any channel at each of the ngyg4’th time slots. This design choice
decouples the issue of how frequently clients should be able to change their channel subscriptions, from
the issue of how subscription changes should be constrained so as to ensure TCP-friendly behavior, with
the latter issue being handled in AVMRC solely using the target reception rates computed from the TCP
Vegas throughput model.

Specifically, clients determine target reception rates Ag and Ay by using the TCP Vegas throughput
model with the short-term and long-term averages, respectively, of delay and loss event rate. Assume
a cumulative subscription approach wherein a client subscribes to a channel ¢ only if the client also
subscribes to all channels j for 1 < j < 4. Let B; denote the bandwidth required to support subscription
to channels 1 through . When channel additions are permitted, a client subscribed to channels 1 through
i adds a subscription to channel 7 + 1 if min[Ag, Ay] > Bjt1 + v1(Bit1 — Bj). Using the minimum of
the target reception rates allows channel additions only when there is a high probability of the addition
being successful. That is, the target reception rate computed using the long-term averages indicates that
there is available bandwidth, and that computed using the short-term averages indicates that no new
congestion has been observed recently.

The rule for decreasing the subscription level is designed to allow early channel drops following
a channel addition that is deemed unsustainable, and/or if the network parameters reflect persistent
congestion. Ascertaining whether or not an increase in the subscription level results in congestion is
particularly important due to the coarse granularity of the possible bandwidth changes. Therefore, if
the client added a new channel in the recent ng.o, time slots without an intervening channel drop, the
subscription level is dropped to 7 — 1 if min[Ag, Ay] < B; — vy2(B; — Bj—1); otherwise, the condition for
dropping a channel is max[Ag, Ay] < B; — vy2(B; — Bi—1). The hysteresis parameters -y, and -2 are used
to further decrease or eliminate oscillations in the subscription level.

An important design criterion for the add/drop rules is that all clients behind the same bottleneck
should use the same information when making changes in their channel subscriptions, to the extent
possible, particularly with respect to channel additions, and when dropping a channel that the client has
not recently added. Mechanisms based heavily on use of local information can impede and even prohibit
coherency among clients behind a common bottleneck link, as clients may invoke them at widely differing
times. An example of a mechanism based on local information is the previously proposed use of a dead
period following a channel drop, during which time a client does not make any further subscription
changes in an attempt to avoid unnecessary multiple drops [32].

3.4 Start-up Behavior

When a client first joins a multicast session, reliable estimates of average delay and loss event rate are
not initially available, and the throughput model cannot be used to determine a target reception rate.
Instead, AVMRC uses a slow start approach analogous to that used in TCP. Assuming again a cumulative
subscription approach, a client initially listens only to channel 1. The client is permitted to increase its
subscription level by adding one channel per time slot provided the previous channel addition appears
to be sustainable; specifically, provided that the average reception rate in the previous time slot, By,
is at least 95% of the total rate of the current subscribed channels, Beypr.

Slow start is terminated when the above test fails (Byecp is less than 95% of Beyyr), or when packet
loss is observed, or when the maximum subscription level is reached. In either of the former two cases,
the reception rate is reduced by dropping the highest subscribed multicast channel. When slow start is
terminated prior to packet loss, a reliable estimate of the average loss event rate is not available, and,
therefore, equation (2) is used to obtain target rate estimates, until packet loss is observed.

Recall that during steady state, a client may attempt channel additions only once every ng,qq time
slots. Thus, if the slow start phase is terminated before a client reaches its optimal subscription level,
there may be a long delay before it can reach this level. To alleviate this potential problem, a start-up
phase is defined covering the first nssqr44p slots after a client has joined a multicast session, during which
the above restriction is not enforced. f

4 Performance Evaluation Methodology

Performance evaluation of AVMRC and its various design choices is carried out using the ns-2 network
simulator [27]. To determine the benefits, if any, of using a TCP Vegas throughput model, the perfor-
mance of AVMRC is compared with that of a protocol essentially identical to AVMRC excepting for its
use of a TCP Reno throughput model instead of a TCP Vegas model. This Reno Multicast Rate Control
(RMRC) protocol is summarized in Section 4.1. The performance of AVMRC is also compared with that
of the protocol (VMRC) identical to AVMRC excepting for its use of static, rather than adaptive, values
of the TCP Vegas threshold parameters in the throughput model. Sections 4.2, 4.3, and 4.4 describe the
application model, network models, and the performance evaluation metrics, respectively, both for the
AVMRC/RMRC/VMRC comparison, and for the subsequent evaluation of AVMRC along its other key
design dimensions.

4.1 The RMRC Protocol

RMRC uses the same protocol rules as AVMRC, excepting for the throughput model used, and an
additional mechanism for computing an average loss event rate to use in the TCP Reno throughput
model when a client exits slow start prior to packet loss being observed. In AVMRC, such a client uses
equation 2 to compute its target reception rate until the first packet loss is observed and thus an estimate
of the average loss event rate can be computed. The RMRC protocol, however, requires an estimate of
the average loss event rate immediately upon termination of slow start, as there is no variant of the TCP
Reno throughput model that does not require a measure of the loss event rate. Therefore, in RMRC the
client computes an average loss event rate that is consistent with the current reception rate, by solving
for p in equation 1 with the current reception rate substituted on the left-hand side of this equation (i.e.,
the rate after slow start is terminated). The inverse of this average loss event rate value is then used to
seed the loss interval length history used in the ALI method.!

Tn the simulations, this computed loss interval is assigned to s1 and n is set to 1. The values assigned to the loss history
array s and the number of loss events considered for the loss event rate computation n are updated as loss events occur.

Note that as in AVMRC, in place of the RTT parameter in its throughput model, RMRC uses
the sum of the measured average one-way queuing delay J and a fixed value R that determines the
aggressiveness of the protocol.

4.2 Application Model

An application with cumulative channel subscription is assumed, such as layered video multicast. The
number of channels is fixed at nine, with the data rate of channel 1 fixed at 256 Kbps and the rate of
channel 7 for ¢ > 1 fixed so that the total reception rate when subscribed to channels 1 through ¢ is equal
to 1.5 times that when subscribed to channels 1 through 7 — 1, yielding possible total reception rates of
256, 384, 576, 864, 1296, 1944, 2916, 4374, and 6561 Kbps.

Server transmissions of packets carrying the application data are scheduled periodically, with a default
period as used in most experiments of 100 milliseconds. A bursty packet transmission process such as
that assumed here is likely to be used by real servers owing to timer, scheduling, and other overheads.
A maximum packet size of 1 KB is used, but smaller packets are also transmitted depending on the
amount of data that needs to be sent on each channel, as determined by the data rate of the channel
and the scheduling period duration.

4.3 Network Models

The simulations whose results are reported here use a simple dumbbell network topology with a common
bottleneck link between all sources and sinks. Each source/sink is connected to the bottleneck link by a
high bandwidth access link. The propagation delays of the access links are varied to obtain the desired
round trip propagation delay between each source/sink pair. The routers use FIFO queuing with drop-
tail queue management. Our experiments generally used a buffer size at the bottleneck router that would
allow a maximum of between 50 and 250 milliseconds queuing time. This simple network topology clearly
does not capture the complexity of the Internet, but is sufficient to enable the performance comparisons
of most interest here. Consistent with the recommendations in [11, 26], a wide spectrum of scenarios
with varying types and amounts of background traffic are considered.

Congestion in the Internet can occur at low bandwidth low multiplexing links, such as access links,
as well as at relatively high bandwidth high multiplexing interior links, such as at the connection points
between Internet access providers. To reflect these cases, both the bottleneck link capacity and the
intensity /type of background traffic are varied. For the case in which the bottleneck link is close to the
client, a low bandwidth bottleneck link (usually at most 6 Mbps in our experiments) with little or no
background traffic is simulated. For the case of interior link bottlenecks, a relatively high bandwidth
link (usually at least 10 Mbps in our experiments) with varying intensities of background load consisting
of a mix of long duration FTP and on/off HT'TP sessions is simulated.

The simulated HTTP sessions use a model similar to that used in previous studies [17, 28]. Each
HTTP client sends single packet requests to a dedicated HTTP server. After the requested Web object
is received from the server, the client delays for a think time that is exponentially distributed with a
mean of 500 milliseconds, and then generates another request. The HTTP response sizes are drawn from
a Pareto distribution with mean 48KB and shape 1.2, consistent with the heavy-tailed size distribution
of HTTP responses that has been observed in measurement studies [2, 3, 19, 21].

Both HT'TP and FTP sessions use the NewReno variant of TCP with a default maximum congestion
window size of 64 packets. The maximum packets size is 1 KB, with smaller packets used only for the
HTTP requests and potentially for the last packet of each HTTP response. Unless stated otherwise,
the round trip propagation delays of the background sessions are uniformly distributed between 20 and
460 milliseconds, consistent with previous studies [1, 11, 13, 28].

10

In simulations in which multiple long duration flows share a single bottleneck link, systematic dis-
crimination against some connections has been observed [10]. Such phase effects rarely occur in the real
Internet and are usually considered to be an artifact of unrealistic simulation scenarios, such as having
only long duration flows, identical length packets, and no reverse direction traffic [11]. Simulations that
include a mix of long and short duration flows with heterogeneous round trip propagation delays, such as
those in this study, seldom experience this problem. As an additional precautionary measure, however,
all flows are started at slightly different times.

The ns-2 simulator does not model multicast group join/leave latencies. Thus, clients are able
to add/drop channel subscriptions instantaneously. This is not expected to impact the results of the
performance comparisons in this paper. Note that the dynamic layering scheme of FLID-DL [7] could
be added to AVMRC to cope with large multicast group leave latencies.

4.4 Evaluation Metrics

A multirate congestion control protocol can be assessed on the basis of several criteria such as fairness, use
of the available bandwidth, smoothness of the reception rate at each client, induced packet loss, coherency
of clients behind a common bottleneck link, and responsiveness to changes in network conditions. Seven
performance metrics are used to evaluate the considered protocols with respect to the above criteria:

e Convergence time: For clients behind a common bottleneck link that join a multicast session at
close to the same time, convergence time is computed as the difference between the time at which
the last client joined the session and the time at which all clients reach and sustain the optimal
channel subscription level. A longer convergence time implies less efficient use of the available
bandwidth.

e Transient packet loss: The congestion control protocols considered here allow clients to add a
channel once every time slot when operating in the start-up phase. This allows clients to quickly
attain the optimal subscription level. The transient packet loss for a multicast session is defined as
the percentage of session packets dropped at the bottleneck link, as measured from when a client
(or the first of a closely-spaced group of clients) joins a multicast session, until the client(s) exit
the start-up phase. This metric quantifies the impact of the protocol start-up behavior on network
congestion.

e Steady state packet loss: The steady state packet loss of a traffic source is defined as the
percentage of packets from that source that are dropped at the bottleneck link, as measured from
when all multicast clients have exited their start-up phase. For a multicast session, this metric
together with the achieved subscription level and its variability over time is an indicator of the
client perceived steady state performance.

e Average session throughput: The average session throughput is defined as the average total
bandwidth obtained by a multicast session at the bottleneck link as measured from when all clients
of the session have exited their start-up phase. This metric can be used to assess fairness as well
as the ability of a protocol to exploit the available bandwidth.

e Average client reception rate: This metric is used in experiments in which multicast session
clients attain differing subscription levels, and is defined as the average reception rate of a client
as measured from when the client has exited its start-up phase.

e Session throughput over time: For this metric, the average total bandwidth obtained by a
multicast session at the bottleneck link is calculated over a moving window of size one second for

11

the entire simulation run. This metric is used to judge the variability in the subscription level
at each client in simulations in which all clients converge to the same subscriptions, and also to
illustrate protocol responsiveness to sudden changes in network conditions.

e Session packet loss over time: The percentage of session packets dropped at the bottleneck
link over a moving window of size one second is calculated for the entire simulation run. This
metric can yield insight into the burstiness of packet loss.

With the exception of the last two metrics, which show performance as a function of time over a
single simulation run, unless stated otherwise the graphed results for each metric include the average
from 10 simulation runs, each using a different seed for the random number generator, along with the
observed minimum and maximum values (shown using a vertical bar centered on the mean).

5 Performance Comparisons of AVMRC, RMRC, and VMRC

The AVMRC and RMRC protocols are compared using a sequence of increasingly complex scenarios,
beginning in Section 5.1 with the simplest case of a single multicast session and no competing background
traffic. Section 5.2 considers the case of multiple multicast sessions each using the same protocol (either
AVMRC or RMRC), but no competing traffic of other types. Sections 5.3 and 5.4 compare the perfor-
mance of these protocols when there is competing UDP traffic, and competing TCP traffic, respectively.
Section 5.4 also includes comparative results for VMRC.

5.1 No Background Traffic

Protocol performance when there is no competing traffic is important both because it may be indicative
of actual performance in low contention environments, and because it can yield insights into protocol
behavior that are more difficult to obtain using more complex scenarios.

The workload used in the first experiment consists only of a single multicast session with a single
client. The bottleneck link has a capacity of 3 Mbps and router buffer size of 80 packets. The round trip
propagation delay between the client and the server is 100 milliseconds. Results from a representative
simulation run are shown in Figure 1. With both AVMRC and RMRGC, the single client quickly attains the
highest sustainable subscription level, and maintains this subscription for the duration of the simulation
excepting for periodic attempts to add a channel. The AVMRC controlled session only experiences
packet loss at the end of slow start; otherwise, the ability of AVMRC to quickly detect congestion when
an attempt is made to increase the reception rate beyond the bottleneck link capacity allows it to operate
without inducing packet losses. The RMRC controlled session, however, periodically experiences episodes
of high packet loss in which as many as 16% of the packets transmitted over a one second interval are
dropped. This is due to the fact that an unsustainable reception rate can only be recognized in RMRC
through packet loss.

The next experiment studies performance with varying numbers of clients. The bottleneck link
capacity and router buffers are configured as in the previous experiment. The round trip propagation
delay from the server to each client is uniformly distributed between 40 and 100 milliseconds. This is
a smaller range than is used by default for the background traffic of later experiments, and models a
scenario in which the multicast session clients are moderately clustered rather than spread out across
the Internet. Clients join the multicast session at uniformly distributed random times between 0 and
5 seconds. All clients attain the highest subscription level possible given the bottleneck link capacity.
Figure 2 shows the average, minimum, and maximum convergence times, transient loss rate, and steady
state loss rate, from 10 simulation runs, as functions of the number of clients.

12

3 Mt e e e Yo et por el K S I AV
@ @
Q. Q.
S 2 S 2
5 5
Q. Q.
< <
o o
> >
o 1 o 1
e e
= =
0 1 1 1 1 1 0 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)
20 20
— 15+ i 15t
I I
@ @
3 10t 3 10t :
@ ©
X X H H i
[[] H H H
& & i
0 0 5 " . i § =S
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)
(a) AVMRC (b) RMRC

Figure 1: Throughput and Packet Loss of a Single Client Multicast Session (no background traffic,
bottleneck link of capacity 3 Mbps with a router buffer of 80 packets, round trip propagation delay of
100 milliseconds)

As shown in Figure 2(a), the convergence time with AVMRC is about a third of that with RMRC.
When slow start is terminated prior to the first observed packet loss, with AVMRC the throughput
model of equation (2) is applied with delay estimates that should be similar for clients behind a common
bottleneck link. In contrast, in RMRC an estimate of the loss event rate is required, and clients behind
a common bottleneck link may use quite different estimates since an estimate is computed based on the
client’s subscription level at the time slow start was terminated. The ability of AVMRC to more quickly
detect when an increase in reception rate is unsustainable, owing to the impact of increased queuing
delay on the target reception rate as computed from the TCP Vegas throughput model, also helps reduce
convergence time. Note that although the convergence time initially increases with both protocols with
increasing numbers of clients, it eventually stabilizes, since multiple clients adding the same channel at
roughly the same point in time has much the same impact as a single client adding that channel.

Figure 2(b) shows that the transient packet loss is similar with both AVMRC and RMRC. However,
with AVMRC the steady state loss percentage is zero (i.e., once all clients have exited the start-up phase,
no packet loss is experienced), while with RMRC there is a steady state loss percentage of about 0.6%,
independent of the number of clients. As in the single client experiment, the non-zero steady state loss
with RMRC reflects the fact that in this protocol an unsustainable reception rate can be recognized only

13

100 w w w w w w w 100

RMRC -a-
3
2 — 10
2 &
= 2
9 it 1
Q =
o ©
g & 01]
3 AVMRC, Transient —e—
RMRC, Transient -@-
1 L L L L L L 0.01 L \RMR\C’ Ste\ady State \”
1 2 4 8 16 32 64 128 256 T 2 4 8 16 32 64 128 256
Number of Clients Number of Clients
(a) Convergence Time (b) Packet Loss

Figure 2: Scalability of a Single Multicast Session with Increase in the Number of Clients (no background
traffic, bottleneck link of capacity 3 Mbps with a router buffer of 80 packets, round trip propagation
delay of clients uniformly distributed between 40 and 100 milliseconds)

once packet loss occurs.

A variety of other experiments with no background traffic have yielded results similar to those de-
scribed above, including experiments with higher bandwidth bottleneck links [20]. One such experiment
scales up the bottleneck link capacity in increments of 1 Mbps, increasing the buffer size by 30 packets
with each increment. The multicast channel rates are correspondingly scaled up. The steady state
loss percentage with AVMRC remains zero (i.e., no packet loss once all clients have exited the start-up
phase), while that with RMRC decreases with increasing transmission rates as can be predicted from the
TCP Reno throughput model. Again, all clients reach the optimal subscription level with both protocols,
although the convergence is faster with AVMRC than with RMRC.

5.2 Multiple Multicast Sessions

Experiments with multiple multicast sessions with no other traffic provide insight into how AVMRC
and RMRC controlled sessions share bandwidth with other such sessions, and the impact of competition
among multiple sessions on packet loss rates. In the experiment for which results are shown here, the
number of competing multicast sessions is scaled up in increments of two, with the bottleneck link capac-
ity and buffer size increasing by 3 Mbps and 80 packets, respectively, with each increment. The initial
configuration has two multicast sessions sharing a bottleneck link of capacity 3 Mbps with a buffer size
of 80 packets. Each multicast session has a single client, which joins its respective session at a uniformly
distributed random time within the first 5 seconds of the simulation. The round trip propagation delay
between each client and its server is uniformly distributed between 40 and 440 milliseconds.

With both AVMRC and RMRC, a fair division of bandwidth is achieved between the competing
multicast sessions, with the average throughput of a session being within a factor of two of the average
throughput of the other competing sessions [20]. Figure 3 shows the overall average steady state loss
percentage as well as that of each session. Unlike in the previous single session experiments, the steady
state packet loss with AVMRC is non-zero. This may be mostly due to the bursty data transmission
policy used by the servers. However, with AVMRC the packet loss percentage is about a factor of two
less than with RMRC.

14

© o
— 1 o 8 o |
X . g éé é lllllllll E
2 g e B ;
5 a g £l = o
2 ’ T 8Ty ¢ 0§ &
o) o © S el
(o]
(xﬁé 01 F o o 5 0 g]
* ° . RMRC, Average
RMRC Session ©
AVMRC, Average —
0.01 . AVMRC Session ©

0 4 8 12 16
Number of Multicast Sessions

Figure 3: Steady State Packet Loss with Competing Multicast Sessions (no background traffic, bot-
tleneck link of capacity 1.5n with a router buffer size of 40n packets shared by n multicast sessions,
round trip propagation delay between each client and its server is uniformly distributed between 40 and
440 milliseconds)

@ @
Q. Q.
Ko} Ko}
s =}
5 5
Q. Q.
< <
o o
>3 >3
o 1 o
e <
= 5 =
/ UDP Rate = 1 Mbps — UDP Rate = 1 Mbps —
0 ‘ . UDP Rate = 2 Mbps - 0 ‘ . UDP Rate = 2 Mbps -
0 100 200 300 400 500 0 100 200 300 400 500
Time (sec) Time (sec)
(a) AVMRC (b) RMRC

Figure 4: Single Multicast Session with a Single Uncontrolled UDP Flow (UDP background traffic,
bottleneck link of capacity 3 Mbps with a router buffer of 80 packets, two multicast clients with round
trip propagation delay of 50 and 150 milliseconds)

5.3 UDP Background Traffic

In the previous scenarios, all traffic is controlled by the same congestion control protocol, either AVMRC
or RMRC. A simple scenario in which this is not the case is that of a single multicast session sharing
the bottleneck link with a single UDP flow operating without congestion control.

The first experiment of this type uses a 3 Mbps bottleneck link with an 80 packet buffer. The
multicast session has two clients, each of which joins the session at a uniformly distributed random
time within the first 5 seconds of the simulation. The round trip propagation delays between the server
and the two clients are 50 and 150 milliseconds. The competing UDP flows begin at time 200 seconds,
and continues for 100 seconds until time 300 seconds. Figure 4 shows the throughput attained by the
multicast session as a function of time, for two different values of the rate of the UDP flow, from one

15

100

10

Packet Loss (%)

0 0.2 0.4 0.6 0.8 1
Fraction of Link Bandwidth Used by UDP

Figure 5: Single Multicast Session Sharing Link
with Uncontrolled UDP Flow of Varying Rates
(UDP background traffic, bottleneck link of ca-
pacity 3 Mbps with a router buffer of 80 packets,
round trip propagation delay of clients uniformly
distributed between 40 and 100 milliseconds)

10

RMRC @
AVMRC =
g 1F o1, T 4
2 S T we— #g
] [L FE ol Y
o %
| 50
o %
¥ &
& 01} [
[a o
001 1 1 1 1 1 1
0 01 02 03 04 05 06 07

Fraction of Link Bandwidth Used by FTP

Figure 6: Single Multicast Session with a Single
FTP Flow (TCP background traffic, bottleneck
link of capacity 3 Mbps with a router buffer of
80 packets, round trip propagation delay of clients
uniformly distributed between 40 and 100 millisec-
onds)

representative simulation run. Although not shown in the figure, both clients of the multicast session
are almost always subscribed to the same channels, so the session throughput shown in the figure also
indicates the reception rate at each client.

The results illustrate that both AVMRC and RMRC can quickly respond to changes in network
conditions. The AVMRC protocol is somewhat more sensitive to such changes since it reacts to both
packet loss rate and queuing delay changes. Although queuing delays also impact the target reception
rate computed by the TCP Reno throughput model used in RMRC, the impact is much smaller.

A second experiment considers the impact on AVMRC and RMRC performance of the fraction of the
bottleneck link bandwidth used by the UDP flow. The bottleneck link is configured as in the previous
experiment, and in this case the multicast session has 16 clients each with a round trip propagation
delay uniformly distributed between 40 and 100 milliseconds. Each client joins the multicast session at
a uniformly distributed random time within the first 5 seconds of the simulation.

With both AVMRC and RMRC, clients successfully achieve the highest reception rate possible given
the bandwidth used by the UDP flow [20]. Figure 5 shows the steady state packet loss percentage of
the multicast session as a function of the fraction of the bottleneck link bandwidth used by the UDP
flow. The curves are quite ragged owing to the coarse granularity of the possible reception rates of the
multicast clients. A key observation from this figure is that the steady state packet loss experienced
with AVMRC is substantially lower than that with RMRC when the UDP flow is using less than 50%
of the bottleneck link bandwidth. In fact, when the UDP flow is using less than 30% of the bottleneck
link bandwidth, with AVMRC the multicast session experiences no steady state packet loss. In general,
the lower the fraction of the bandwidth used by the UDP flow, the more similar this scenario becomes
to that with a single multicast flow and no background traffic as considered in Section 5.1.

5.4 TCP Background Traffic

Most traffic in the Internet is from applications using TCP. A simple scenario with TCP background
traffic is the same as that of Figure 5, but with the UDP flow replaced by a single long duration

16

FTP mam
RMRC -@-
St AVMRC -e- L3
@ VMRC(30) wm —
S 4l VMRC(6) i e
=)
= [%2} 1 L
) 2 7
= 2
8 20 wewe. TR 1 8 -t]
= a ooty . 7 | PRMRC -m
1L H T | T | AVMRC =-e-
[VMRC(30) =
P VMRC(6)
0 1 1 1 1 0001 1 | 1 1 1
0 10 20 30 40 0 10 20 30 40
Number of Background HTTP Sessions Number of Background HTTP Sessions
(a) Throughput Share (b) Packet Loss

Figure 7: Single Multicast Session Sharing a Low Bandwidth Bottleneck Link with Background HTTP
Traffic (background HT'TP traffic, bottleneck link of capacity 6 Mbps with a router buffer of 100 packets,
round trip propagation delay of FTP client is 80 milliseconds and that of multicast clients is uniformly
distributed between 20 and 460 milliseconds)

FTP session (i.e., TCP flow). The TCP flow has a round trip propagation delay of 100 milliseconds.
Figure 6 shows the packet loss percentage of the multicast session as a function of the fraction of the
bottleneck link bandwidth used by the TCP flow. This fraction is controlled by adjusting the TCP
receiver-imposed maximum congestion window size. Only results up to a fraction of 0.6 are shown, since
the TCP flow does not obtain a larger share of the bottleneck link bandwidth even with no limit placed
on the maximum congestion window size. Note that with AVMRC, unlike with RMRC, the multicast
session has no packet loss in a majority of the simulations, as clients are able to quickly detect when a
reception rate is unsustainable. In the cases in which the multicast session does experience packet loss
when using AVMRC, the packet loss appears to be due to some form of synchronization between the
bursty transmissions of the TCP source and those of the multicast source.

Figure 7 explores the performance of AVMRC, RMRC, and also VMRC, when there are multiple
TCP flows that start and complete during the simulation run. In this experiment the background traffic
consists of on/off HT'TP sessions as described in Section 4.3. In each simulation run, in addition to the
HTTP traffic there is either one long duration FTP session, or one multicast session with 16 clients using
either AVMRC, RMRC, or VMRC with the Vegas threshold parameters both statically set to either 6 or
30. In this and subsequent simulations, background HTTP/FTP sessions begin at uniformly distributed
random times within the first 2 seconds of the start of the simulation. The foreground flows begin after a
“warm up” period consisting of the first 5 seconds of the simulation. Client(s) of the foreground multicast
or FTP session begin at uniformly distributed random times within the 5 seconds following the end of the
warm up period. This design allows assessment of the bandwidth share obtained by a multicast session
in comparison to that obtained by a long duration TCP flow, when competing against the same HTTP
traffic, using the different multicast congestion control algorithms. VMRC is considered as well in this
scenario, and in the subsequent two experiments, as these have sufficient background traffic to enable
study of the impact of statically setting the threshold parameters. The round trip propagation delay
between the FTP sender and receiver is fixed at 80 milliseconds, and each multicast session client has
a round trip propagation delay uniformly distributed between 20 and 460 milliseconds. The bottleneck
link is of capacity 6 Mbps with a 150 packet buffer.

Figure 7(a) shows the throughput obtained by the foreground session as a function of the number

17

of on/off HTTP sessions, while Figure 7(b) shows the packet loss percentage. Note that the multicast
session achieves a similar throughput with both AVMRC and RMRC, although the packet loss is lower
with AVMRC than with RMRC when the bottleneck link is lightly loaded (less than 20 HTTP sessions
in this simulation). The achieved throughput is similar to that with a long duration FTP session in
place of the multicast session, indicating that both AVMRC and RMRC can be TCP friendly across a
range of background traffic loads. With VMRC and a static TCP Vegas threshold parameter value of
30, again the multicast session achieves a throughput similar to that of a long duration FTP session,
but with a value of 6 the multicast session obtains less than one half of its fair share of the bottleneck
link bandwidth. In contrast, in the subsequent two experiments (results shown in Figures 8 and 9), a
value of 6 yields much more equitable behavior than a value of 30, illustrating the difficulty of statically
choosing appropriate values for the TCP Vegas threshold parameters.

The remaining two experiments in this section concern scenarios with more complex background
traffic consisting of a mix of long duration FTP and on/off HTTP sessions. All background flows have
round trip propagation delays uniformly distributed between 20 and 460 milliseconds. As in the previous
experiment, in addition to the background traffic there is either one long duration FTP session, or one
multicast session with 16 clients using either AVMRC, RMRC, or VMRC with the Vegas threshold
parameters both statically set to either 6 or 30, and round trip propagation delays set as in previous
experiments.

Figure 8 shows the average throughput obtained by the foreground session as a function of the total
number of background flows for a bottleneck link of capacity 45 Mbps with a 250 packet buffer. The
background traffic consists of a mix of 90% HTTP and 10% FTP sessions. Note that for less than 50
background flows, there is very little congestion in the network, and the multicast or FTP session obtains
its maximum possible throughput (for the multicast session, as determined by the sum of the rates of
all channels, and for the FTP session, as determined by the maximum congestion window size of 64
packets). Larger numbers of background flows enable assessment of fairness, and it can be seen that the
multicast session obtains a similar bandwidth share as the FTP session, with either AVMRC or RMRC.
With VMRC, a TCP Vegas threshold parameter value of 6 yields fairer behavior than a value of 30 over
the range of background traffic loads considered in the figure, but results in the multicast flow obtaining
substantially less than its fair share of the bottleneck link bandwidth for numbers of background flows in
the 70-150 range. The packet loss behavior is similar to that observed in the previous experiment [20].

Figure 9 shows the average throughput achieved by the foreground session as the bottleneck link
bandwidth is scaled up from 10 Mbps to 100 Mbps. In this initial configuration, there is a 100 packet
buffer at the bottleneck link and 30 background flows. The bottleneck link bandwidth is scaled up in
increments of 10 Mbps, with the bottleneck link buffer size increasing by 100 packets and the number of
background flows increasing by 30, with each increment. As in the previous experiment, the background
traffic consists of a mix of 90% HTTP and 10% FTP sessions. Note that both AVMRC and RMRC
achieve reasonably fair share of the bottleneck link bandwidth. With VMRC, although a value of 6 for
the TCP Vegas threshold parameters yields better results than a value of 30 for high bottleneck link
bandwidths, neither value yields uniformly good results over the entire bandwidth range. In contrast, the
adaptive setting of the TCP Vegas threshold parameter value in AVMRC appears to be quite effective.

6 Performance Evaluation of AVMRC along Key Design Dimensions

AVMRC performance depends on a number of other key system design features in addition to its through-
put model, including its use of weak synchronization, the approach used for determining the round trip
time parameter RTT', the degree of burstiness of packet transmissions at the multicast server, and the
time scale of protocol operation (the parameter 7).

18

o o B o
61 VMRC(30) -
- VMRC(6)
g 5r AVMRC -e— 7 ‘
S 4t FTP —= 6| ~ VMRC(30) ~=- 1
2 . FTP =
g 3 2 5| AVMRC -o- |
S 8 RMRC &
2 2 =
4t
£ =
..... =
. g .l
(@)
>
0 ‘ ‘ ‘ ‘ ‘ 2 2
0 50 100 150 200 250 [: g : : :
Number of Background Flows 1r . - :)
Figure 8: Single Multicast Session Sharing a 0 0 1‘0 éo éo 4;0 éo éo %o éo éo 160
High Bandwidth Bottleneck Link with Back- Bottleneck Bandwidth (Mbps)

ground HTTP & FTP Traffic (background traf-

fic consists of 90% HTTP and 10% FTP sessions, Figure 9: Effect of System Scaling (background
bottleneck link of capacity 45 Mbps with a router traffic consists of 90% HTTP and 10% FTP ses-
buffer of 250 packets, round trip propagation de- sions)

lay of FTP client is 80 milliseconds and that of

multicast clients is uniformly distributed between

20 and 460 milliseconds)

Section 6.1 compares the performance of AVMRC with weak synchronization (i.e., the server period-
ically signals when clients can attempt channel additions), to that of a variant of AVMRC with no such
synchronization. Section 6.2 compares three methods for determining a value for the RTT throughput
model parameter: the AVMRC approach of using the sum of the estimated queuing delay in the path
from the server to the client and a fixed value, using measured round trip times, and using only a fixed
value. The performance impact of the frequency at which packet transmissions are scheduled at the
multicast server, and thus of the burstiness of multicast packet transmissions, is studied in Section 6.3.
Section 6.4 considers the impact on protocol performance of the time slot duration 7.

6.1 Synchronization Approach

In AVMRC, channel additions are permitted only once every nqqq time slots. The server signals the time
slots and in particular signals every ng,qq’th time slot, so as long as ngqq7 is relatively large compared to
the network delay variations among clients, channel additions will be relatively closely clustered together
in time. Figure 10 shows sample results comparing this weak synchronization approach to that of an
“unsynchronized” approach in which channel additions are still only permitted every n,44 time slots, but
in which clients time the slots independently (i.e., the server does not signal the time slot boundaries,
nor every ngqq'th slot in particular). The scenario considered in the figure includes a single multicast
session with no competing traffic. The round trip propagation delay between the server and each client
is uniformly distributed between 40 and 100 milliseconds. The bottleneck link has capacity 3 Mbps
and an 80 packet buffer. The clients join the multicast session at uniformly distributed random times
between 0 and 5 seconds. As shown in Figure 10(a), for less than 16 clients the convergence times with
the unsynchronized and the weak synchronization approaches are similar. For larger numbers of clients,
however, the convergence time with the unsynchronized approach is significantly longer than that with

19

100

100

Unsynchronized ~@-

. Synchronized —e— i
[S PP - TRYRTIIITY - CLILIIIILE
2 ... 10
o | e n‘ X
L : - I
e e 3 1 L
g 10 g - 16 | Synchronized, Transient —e= 1
& 2 Unsynchronized, Transient -@-
g S Unsynchronized, Steady State
g & o T
S |]
(@] o g

1 1 1 1 1 001 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Number of Clients Number of Clients

(a) Convergence Time (b) Packet Loss

Figure 10: Impact of the Synchronization Approach with Varying Numbers of Clients (no background
traffic, bottleneck link of capacity 3 Mbps with a router buffer of 80 packets, round trip propagation
delay of clients uniformly distributed between 40 and 100 milliseconds)

weak synchronization. Also, as seen in Figure 10(b), with the unsynchronized approach there is a non-
zero steady state packet loss percentage that increases with the number of clients. These results can be
explained by the increased duration of time that at least one client is subscribed to too many channels,
with the unsynchronized approach, owing to the fact that the attempts of clients to subscribe to an
additional channel are spread out over time rather than being clustered as with weak synchronization.?

Other experiments have investigated the impact of the synchronization approach in environments
with competing traffic, and have found little difference in performance [20]. It appears that use of weak
synchronization can yield substantive performance benefits over the unsynchronized approach only in
low contention environments, in which the dynamics of the packet queue at the bottleneck link are
dominated by the multicast session dynamics.

6.2 Determination of the RTT Parameter

Sample results illustrating the performance impact of the method of determining a value for the RTT
parameter in the TCP Vegas throughput model are given in Figures 11 through 13. Each of these figures
considers one or more of three methods, as applied with all other protocol features as in AVMRC. The
“fixed R 4+ one-way queuing” method is the AVMRC approach, while the “fixed R” method is to simply
use a fixed value R for the RTT parameter. In the “measured round trip time” method, each client is
assumed to measure the round trip time during an initial exchange with the multicast server, as well
as the value of TSD (the difference between the server’s clock time at which a packet was transmitted
and the client’s clock time at which that packet was received) for that initial exchange. Subsequent
round trip time estimates are computed from observed changes in 7'SD. These are then averaged using
the EWMA technique as is done in the AVMRC protocol for obtaining the average one-way queuing
delay 0. Note that this method yields accurate estimates of the average round trip time assuming that
congestion is on the forward path only, or more generally, that the delay on the path back from the client

2For small numbers of clients, including the case of just a single client, the small steady state packet loss percentage
that is observed with the unsynchronized approach can be explained as follows. With the synchronized approach as
implemented here, all packets from a single transmission burst by the server are marked as belonging to the same time slot.
With the unsynchronized approach, in contrast, reception of packets from the same transmission burst may overlap the
client-determined time slot boundary, potentially slowing the client’s reactivity to increased queuing delay and packet loss.

20

2 7 ‘ ‘

Q Client1 —+—

2 5l Client 2] 3 :

% Client 2 wmu

E 5t 25 | 1

S @

2 4l g ol :

3 b= H a n -

[0} : m— ""I L \ B 8

o 37 3_ 15 F ¥ i

= 2 ; [T

S 2t 2 ¢ T T 1

O ol o 1+ 1

o 1t = FTP =%

o 05 | Measured round trip time i

2 o0 ‘ : : ‘ Fixed R @

< 0 10 20 30 40 0 Fixed R + One-way queuing —e- ‘
Number of Background HTTP Sessions 16 32 64 128 256 512

Round Trip Propagation Delay of Foreground Flow
Figure 11: Average Client Reception Rate with

the Measured Round Trip Time Method (HTTP Figure 12: TCP Fairness with Different RTT De-
background traffic, bottleneck link of capacity termination Methods (90 HTTP background ses-
10 Mbps with a router buffer of 150 packets, three sions, bottleneck link of capacity 10 Mbps with a
clients with round trip propagation delays of 20, router buffer of 150 packets)

200, 400 milliseconds, respectively)

to the multicast server is similar to that observed during the initial exchange throughout the client’s
participation in the session.?

For Figure 11, a multicast session with three clients and varying numbers of HTTP sessions share
a bottleneck link with capacity 10 Mbps and a 150 packet buffer. The round trip propagation delays
between the multicast server and the three clients are 20, 200, and 400 milliseconds, respectively. The
clients use the measured round trip time method for determining RTT. Note how the clients attain
differing average reception rates, since they use differing average round trip time values for the RTT
parameter in the TCP Vegas throughput model. This makes less efficient use of the bottleneck link than
if all clients attained the same reception rate.

Figure 12 studies TCP fairness. A similar scenario is considered as for the previous figure, but with a
fixed number (90) of HT'TP sessions and one of four possible foreground sessions: a single client multicast
session using one of the three methods for determining RTT, or a long duration FTP session. The figure
graphs the achieved foreground session throughput as a function of the round trip propagation delay
between the client and server.

Note that the TCP Vegas throughput model is less sensitive to round trip time than the TCP Reno
throughput model, and thus even with the measured round trip time method for determining RT'T, the
achieved throughput of the multicast session is less sensitive to round trip propagation delay than is that
of the FTP session. Qualitatively similar results are obtained for other background traffic loads [20].
Both the method utilizing a fixed value, and the AVMRC method of using a fixed value plus the average
one-way queuing delay, display little or no sensitivity to round trip propagation delay. Thus, with these
methods, a multicast session can be less “fair” in the sense that there can be greater discrepancy between
the reception rate achieved by a multicast session client, and the throughput of a TCP session passing
through the same bottleneck link and with the same round trip propagation delay between client and
server. This is the cost of achieving common reception rates among clients behind a common bottleneck,
but with differing round trip propagation delays.

3In the ns-2 simulations, this method is simulated without using an initial exchange between server and client, using for
the reverse path delay the known delay when there is no queuing.

21

Fixed R »m
6L Fixed R + One-way queuing —e— |
2 5]
Q
=
= 47 1
>
&
5 3| 1
=}
o
s 2+r 1
|_
1 L 4
0 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160
Number of Background HTTP Sessions

Figure 13: Impact of the RT'T Determination Method on Responsiveness to Increased Congestion (HT'TP
background traffic, bottleneck link of capacity 10 Mbps with a router buffer of 150 packets, round trip
propagation delays of clients uniformly distributed between 20 and 420 milliseconds)

100

25ms ~@- 100 ms —e—
50 ms X 3 g
100 ms —e—

50 ms
25ms

10

10
1(

Convergence Time (sec)
Transient Packet Loss (%)

1 R 0.1 oo e
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of Clients Number of Clients
(a) Convergence Time (b) Packet Loss

Figure 14: Impact of the Frequency of Packet Transmission Scheduling with Varying Numbers of Clients
(no background traffic, bottleneck capacity of 3 Mbps with a router buffer of 80 packets, round trip
propagation delay of clients uniformly distributed between 40 and 100 milliseconds)

As illustrated in Figure 13, a key advantage of the “fixed R 4+ one-way queuing” method in comparison
to the “fixed R” method is that it provides greater responsiveness to changes in congestion. Here the
bottleneck link has a capacity of 10 Mbps and a 150 packet buffer, and the single multicast session has
16 clients with round trip propagation delays uniformly distributed between 20 and 420 milliseconds.
Note that with the “fixed R” method, the multicast session retains a larger throughput share (i.e., is
less responsive) as the background traffic load increases, in comparison to with the “fixed R + one-way
queuing” method.

6.3 Frequency of Packet Transmission Scheduling

The frequency at which packet transmissions are scheduled at the multicast server determines the bursti-
ness of multicast packet transmissions, which can impact queuing behavior in the network, and thus the

22

Packet Loss (%)

001 L —

0O 20 40 60 80 100 120 140 160
Number of Background HTTP Sessions

Figure 15: Impact of the Frequency of Packet Transmission Scheduling with Background Traffic (HTTP

background traffic, bottleneck link of capacity 10 Mbps with a router buffer of 150 packets, round trip
propagation delays of clients uniformly distributed between 20 and 420 milliseconds)

performance properties of a congestion control protocol. Figure 14 shows the convergence time and
transient packet loss percentage for three values of the scheduling period (25, 50, and 100 milliseconds),
for the same scenario used for Figure 10. In all cases, there are no packet losses in the steady state. The
impact of the scheduling period on the steady state packet loss percentage in scenarios with background
traffic is illustrated in Figure 15, for the same scenario as used for Figure 13. The steady state packet loss
rate is similarly impacted by the scheduling period in scenarios with background traffic, as illustrated
in Figure 15, for the same scenario used for Figure 13. At least for the range of values considered here,
the scheduling period appears to have minimal impact on fairness [20]. In general, the best tradeoff
among packet loss, convergence time, and system scheduling overhead, would be system and application
specific.

6.4 Time Slot Duration

The time scale at which the AVMRC protocol operates (i.e., the frequency with which channel sub-
scription decisions are made, and the speed with which the protocol can react to changes in network
conditions), is controlled by the time slot duration 7. Figure 16 illustrates the impact of the time slot
duration on convergence time and packet loss, for the same scenario as considered in Figures 10 and 14.
For small numbers of clients (for the results shown in the figure, four or less), a longer time slot du-
ration yields a longer convergence time, while for larger numbers of clients, it appears that there is
some intermediate time slot duration that minimizes the convergence time. With respect to packet loss,
the default time slot duration of 100 milliseconds yields zero steady state packet loss, in contrast to a
steady state loss percentage of approximately 0.4% for time slot durations of 200 to 400 milliseconds.
Evidently, these longer time slot durations do not allow the protocol to react to increasing queuing delays
sufficiently quickly to completely avoid packet loss, following a client’s attempt to increase its reception
rate to an unsustainable level. The results for transient packet loss require some care in interpretation.
Note that as the time slot duration increases, so does the length of the start-up phase at each client that
defines the time period over which the transient packet loss percentage is computed. Specifically, for
values of 7 of 100, 200, and 400 milliseconds, the client start-up phase length is 5, 10, and 20 seconds,
respectively. Thus, although the transient packet loss rate appears to decrease in Figure 16(b) as the
time slot duration is increased, in fact this is an artifact of the increasing length of the start-up phase.

23

100 ‘ ‘ 100

400 ms @+
. 200 ms
3 100 ms —e—
2 —
2 &
= B T S, e 2
3 10 LR 3 a
c —
S - ¥
s & 100 ms, Transient —e—
c 01} 200 ms, Transient ~@&-
3 400 ms, Transient wm

200 ms, Steady State
1 ‘ ‘ ‘ ‘ 0.01 7 ‘ 400 ms, Steady State -
1 2 4 8 16 32 64 128 256 T 2 4 8 16 32 64 128 256
Number of Clients Number of Clients
(a) Convergence Time (b) Packet Loss

Figure 16: Impact of the Time Slot Duration with Varying Numbers of Clients (no background traffic,
bottleneck link of capacity 3 Mbps and a router buffer of 80 packets, round trip propagation delay of
clients uniformly distributed between 40 and 100 milliseconds)

400 ms ~@- 400 Ms
6L 200 ms , 200 ms
100 ms —e— 100 ms —e—
’(},\ | . 1 [
é_ 5 9\-o/
S 4 2
3 3
2 | -
2 ° 2 o1}
= ©
c 2 o
l_
1+
0 1 1 1 1 1 1 1 001 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Number of Background HTTP Sessions Number of Background HTTP Sessions
(a) Throughput Share (b) Packet Loss

Figure 17: Impact of the Time Slot Duration with Background Traffic (HTTP background traffic,
bottleneck link of capacity 10 Mbps with a router buffer of 150 packets, round trip propagation delays
of clients uniformly distributed between 20 and 420 milliseconds)

For example, for large numbers of clients, the transient packet loss with 7 = 100 milliseconds is approx-
imately 10%, and with 7 = 400 milliseconds is approximately 4%. Since the time period over which the
transient loss is computed is approximately four times as long with 7 = 400 milliseconds, however, the
total number of packet losses is actually higher (by about 60%) with 7 = 400 milliseconds than with
7 = 100 milliseconds.

Figure 17 shows the impact of the time slot duration when there is background HTTP traffic, for
the same scenario considered in Figure 13 and 15. In this case, the choice of time slot duration, at least
among the values considered in the figure, has little impact on the achieved average throughput and
packet loss rate. It may be that the aggressiveness of the AVMRC protocol when competing against
background traffic remains roughly constant as the time slot duration is increased, since although the
increased time slot duration may cause clients to attempt additions of channels less frequently, it may

24

also delay channel drops.

7 Conclusions

This paper has proposed and evaluated AVMRC, a simple equation-based multirate congestion control
protocol that employs a recently proposed TCP Vegas throughput model. AVMRC requires no feedback
to the source, no explicit coordination among clients, and places no constraints on the data transmission
policy or the spacings between the feasible client reception rates. Our performance study shows that
AVMRC exhibits TCP Vegas-like behavior, and in the event that the bottleneck link is lightly loaded,
AVMRC can operate without inducing packet losses.

AVMRC incorporates a new technique for dynamically adjusting the TCP Vegas threshold param-
eters, so as to achieve fair sharing of network resources with other types of congestion-controlled flows
including the widely deployed versions of TCP. Our future research goals include application of this idea
in TCP Vegas itself.

References

[1] M. Allman. A Web Server’s View of the Transport Layer. ACM Computer Communication Review,
30(5):10-20, October 2000.

[2] M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup Web Site. IEEE Networtk,
14(3):30-37, May/June 2000.

[3] M. Arlitt and C. Williamson. Internet Web Servers: Workload Characterization and Performance
Implications. IEEE/ACM Trans. on Networking, 5(5):631-645, October 1997.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davis, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Patridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recom-
mmendations on Queue Management and Congestion Avoidance in the Internet. RFC 2309, April
1998.

[6] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New Techniques for Congestion Detection
and Avoidance. In Proc. ACM SIGCOMM °’94, London, UK, September 1994.

[6] L. Bramko and L. Peterson. TCP Vegas: End-to-End Congestion Avoidance on a Global Internet.
IEEE Journal on Selected Areas in Communications, 13(8):1465-1480, October 1995.

[7] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter, and W. Shaver. FLID-DL:
Congestion Control for Layered Multicast. In Proc. NGC ’00, Stanford, CA, November 2000.

[8] J. Byers and G. Kwon. STAIR: A Practical AIMD Multirate Multicast Congestion Control. In
Proc. NGC ’01, London, UK, November 2001.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based Congestion Control for Unicast
Applications. In Proc. ACM SIGCOMM ’00, Stockholm, Sweden, August 2000.

[10] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gateways. Internetworking:
Research and Ezperience, 3(3):115-156, September 1992.

[11] S. Floyd and E. Kohler. Internet Research Needs Better Models. In Proc. of First Workshop on
Hot Topics in Networking, Princeton, NJ, October 2002.

25

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

M. Goyal, R. Guerin, and R. Rajan. Predicting TCP Throughput from Non-Invasive Network
Sampling. In Proc. IEEE INFOCOM ’02, Hiroshima, Japan, March 2002.

H. Jiang and C. Dovorolis. Passive Estimation of TCP Round-trip Times. ACM Computer Com-
munication Review, 32(3):75-88, July 2002.

G. Kwon and J. Byers. Smooth multirate multicast congestion control. In Proc. IEEE INFO-
COM’03, San Francisco, CA, April 2003.

A. Legout and E. Biersack. Pathological Behaviors for RLM and RLC. In Proc. NOSSDAV’00,
Chapel Hill, NC, June 2000.

A. Legout and E. Biersack. PLM: Fast Convergence for Cumulative Layered Multicast Transmission
Schemes. In Proc. ACM SIGMETRICS ’00, Santa Clara, CA, June 2000.

S. Low, F. Paganini, J. Wang, S. Adlakha, and J. Doyle. Dynamics of TCP/RED and a Scalable
Control. In Proc. IEEE INFOCOM 02, New York, NY, June 2002.

M. Luby, V. Goyal, S. Skaria, and G. Horn. Wave and Equation Based Rate Control Using Multicast
Round Trip Time. In Proc. ACM SIGCOMM ’02, Pittsburgh, PA, September 2002.

A. Mahanti. Web Proxy Workload Characterisation and Modelling. Master’s thesis, Department of
Computer Science, University of Saskatchewan, September 1999.

A. Mahanti. Scalable Reliable On-demand Media Streaming Protocols. PhD thesis, Department of
Computer Science, University of Saskatchewan, March 2004.

A. Mahanti, C. Williamson, and D. Eager. Traffic Analysis of a Web Proxy Caching Hierarchy.
IEEFE Network, 14(3):16-23, May/June 2000.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behaviour of the TCP Congestion
Avoidance Algorithm. ACM Computer Communication Review, 27(3):67-82, July 1997.

S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. In Proc. ACM
SIGCOMM ’96, Stanford, CA, September 1996.

J. Mo, R. La, V. Anantharam, and J. Walrand. Analysis and Comparison of TCP Reno and Vegas.
In Proc. IEEE INFOCOM ’99, New York, NY, March 1999.

J. Padhye, V. Firioiu, D. Towsley, and J. Kurose. Modelling TCP Throughput: A Simple Model
and its Empirical Validation. In Proc. ACM SIGCOMM ’98, Vancouver, Canada, September 1998.

V. Paxson and S. Floyd. Difficulties in Simulating the Internet. IEEE/ACM Trans. on Networking,
9(4):392-403, August 2001.

NS Project. The Network Simulator: ns-2 (Web site). http://www.isi.edu/nsnam/ns.

B. Samois and M. Vernon. Modeling the Throughput of TCP Vegas. In Proc. ACM SIGMETRICS
’03, San Diego, CA, June 2003.

D. Sisalem and A. Wolisz. MLDA: A TCP-friendly Congestion Control Framework for Heterogeneous
Multicast Environments. In Proc. 8" Int’l. Workshop on QoS, Pittsburg, PA, June 2000.

W. Tan and A. Zakhor. Multicast Transmission of Scalable Video using Receiver-driven Hierarchical
FEC. In Packet Video Workshop, New York, NY, April 1999.

26

[31] T. Turletti, S. Parisis, and J. Bolot. Experiments with a Layered Transmission Scheme over the
Internet. INRIA Tech. Report 3296, November 1997.

[32] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like Congestion Control for Layered Video Multicast
Data Transfer. In Proc. IEEE INFOCOM ’98, San Francisco, CA, April 1998.

27

