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Abstract. This paper investigates a new technique called Bayesian-Block-
Analysis (BBA) for analyzing the time varying rate of events. The first goal is 
to evaluate the accuracy of BBA in identifying the rate changes in synthetic 
traces that have a given interevent times distribution, and known rate change 
points. We find that BBA is highly accurate on traces with exponential 
interevent times and known rate changes, and reasonably accurate with more 
heavier-tailed interevent times. The second goal is to apply BBA to actual 
network event traces. And for request arrivals or loss rate traces, BBA identifies 
significant stationary-rate periods which are qualitatively consistent with 
previous results obtained with less efficient or less accurate techniques. For 
packet arrivals to gateways, BBA identifies stationary rate periods that are 
corroborated by binning the data on a new timescale. Finally, we also show BB-
online rate estimation is accurate for synthetic as well as actual system traces.  

Keywords: Network Traffic Characterization, Bayesian Analysis, EWMA, 
Rate Estimation, Stationary Rate Period, Loss Rate, Packet Arrival Rate. 

1   Introduction 

An important problem in analyzing various types of network traffic events – such as 
request arrivals to a web server, packet losses in a packet flow, or packet arrivals to a 
gateway – is to determine how the average event rate varies with time. A related 
question is how the inter-event times are distributed during a period in which the 
average event rate is stationary. Accurate methods for obtaining such results can yield 
insight into how traffic varies at different points in the network as well as how to 
generalize the measured behavior at a given point to create representative workloads 
for system design.  How frequently the event rate varies, for example, may impact the 
stability of various traffic control algorithms such as the control algorithms in the 
proposed new RCP [4] and XCP [7] transport protocols.  On the other hand, obtaining 
accurate results for the average event rate vs time is challenging since the inter-event 
times are highly bursty (even in the case that the arrival process is Poisson), and 
changes in rate occur at unpredictable times.  

For packet arrivals, previous studies [10, 11] showed evidence of burstiness on 
different time scales. For such arrivals, the self-similar and multifractal models [1, 6, 12] 
are developed to match the statistical properties of the observed network traffic at both 
small and large timescales. But those models are not easy to apply because there is very 
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little intuition about how to modify the parameters to represent a range of workloads 
that the system should be designed to handle. Recent papers [8] show that packet 
arrivals on high bandwidth links tend towards Poisson because of the quickly increased 
multiplexing of the traffic on the network links. But a key question is how to identify 
the periods in which the event rate is stationary.  

A widely used method for estimating arrival rate as a function of time on-line – that is, 
as each new arrival event occurs – is the exponential weighted mean average (EWMA).  
This is a weighted sum of the estimated rate at the previous arrival event and the inverse 
of the most recent inter-arrival time.  Recent work by Kim and Noble [9] shows that the 
EWMA estimates can be agile in detecting rate changes or stable during periods of fixed 
average rate, but not both simultaneously.  They propose several alternative ad hoc filters 
which improve on EWMA, but still have the same general problem.    

Recent studies have used several off-line methods to determine average event rate 
as a function of time for various traffic traces.  Zhang et al. [14] use two change point 
detection methods, known as “bootstrap” and “rank order” to study, for example, loss 
event rate vs. time for packet streams.  These methods are computationally expensive 
and require a relatively large sample size, and as noted in their paper, are known to 
have non-negligible errors in terms of missed change points and false positives, 
respectively.  Other recent work has used ad hoc binning to characterize request 
arrival rate to Internet media servers [2] and job arrivals to a large Internet compute 
server [3]. Such binning methods [11, 2, 3] are based on an ad hoc bin size and have 
two substantial drawbacks.  First, periods of fixed rate are only identified by visual 
inspection and the endpoints are at the predefined bin boundaries.  Second, each bin 
must have a good statistical sample and rate changes that occur within a bin cannot be 
identified.  Finally, [8] apply the Canny Edge Detector algorithm [15] to the curve of 
cumulative event count versus time for packet arrivals to a high bandwidth (OC-48) 
Internet link. However, the accuracy of this method is very sensitive to the time unit 
used for updating the cumulative event count, and the time unit that yields accurate 
results for a given trace is unknown. 

This paper evaluates a possible new approach to determining the periods of stationary 
network event rate, namely a recently proposed highly efficient Bayesian analysis 
technique called Bayesian Blocks (BB), which was developed for characterizing the 
periods of constant brightness in photon counting data [13].  Key advantages of the BB 
analysis are, (1) it is computationally efficient, (2) the time unit and other input parameter 
values that yield accurate results are relatively easy to determine, and (3) it can be applied 
to a small sample size.  These properties are particularly useful for on-line use of the 
technique.  The BB analysis assumes a non-stationary Poisson event process, but there 
are intuitive reasons that it might also be successfully applied to more general arrival 
processes.  Specifically, we make the following contributions:  

• We quantify the accuracy of the offline BB analysis by applying it to a large 
number of synthetic event traces with exponential or heavier-tailed distributions 
of inter-event times and known rate changes.  To our knowledge, the accuracy of 
the BBA technique has not been assessed previously.   

• The BB technique was developed for off-line data analysis, but we also apply it 
on-line, to estimate that rate at each new arrival event (without knowledge of 
future arrival events). 
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• The synthetic trace results show that 80-90% of the off-line BB rate estimates are 
within 30% of the actual rates in synthetic traces, even if the inter-event times 
have a heavy tail.  The on-line BB rate estimation is less accurate than the off-
line analysis, but is still significantly more accurate than previous on-line rate 
estimation methods.   

• We apply the BB analysis to a variety of measured network event traces, 
including packet arrivals to a gateway, request arrivals to Internet servers, and 
loss events in long Internet packet streams, and illustrate the insights that can be 
obtained.   

• We find that the BB analysis can analyze a trace with over 106 events and over 
5000 change points in just a couple of minutes on a modern desktop (Pentium M 
1.66HZ). 

Section II provides a brief description of the BB analysis technique. Section III 
presents the accuracy assessment of the BB analysis technique using synthetic traces. 
Section IV applies both off-line and on-line BB analysis to loss events in long Internet 
flows as well as Internet server request arrivals. Section V applies the BB analysis to 
characterize network gateway traffic. Section VI concludes the paper. 

2   Background 

The BB analysis algorithm is both conceptually simple and computationally efficient, 
and is described very well in [13].  The interested reader is referred to that paper to 
understand how the algorithm works.  A key feature of the algorithm is that for each 
interval beginning with the full trace of event times, it considers each possible 
partitioning of the interval into two intervals with different event rates, using an input 
parameter called the “odds threshold” (OT) and statistical maximum likelihood 
measures to decide whether the interval should be partitioned at the point with the 
highest likelihood of a change point.  In addition to the OT parameter, there is a 
Minimum Interval (MI) parameter that defines the minimum number of events per 
period of fixed average arrival rate.  

3   Accuracy Assessment 

3.1   Synthetic Traces 

Each synthetic trace contains event times that are generated with one of the following 
distributions of time between events during each period of fixed average event rate: 
exponential, lognormal (logn), or 2-stage hyperexponential (h2).  The absolute value 
of average event rate is immaterial because during the BBA we define the time unit 
for the event times to achieve an average of one event every 25 time units. This time 
unit is defined such that it is small enough so the probability that multiple arrivals will 
occur in the same time unit is negligible, since the calculations assume this will never  
 



 Offline and Online Network Traffic Characterization 915 

 

occur, and it is as large as possible so the factorials from the number of time units in 
the interval do not dominate the calculated likelihood. Hence, the key parameter of 
the logn and h2 distributions is the coefficient of variation (CV) during each period of 
fixed average rate. We consider logn and h2 distributions with CV of 1.2, 2, and 3, 
motivated by results to date for actual event traces which are summarized in Section 
4, 5. We expect that BBA accuracy will decrease as CV of the inter-event times 
increases, and also note that h2 inter-event times with CV=3 have a heavy tail.  

Each synthetic trace has the following further parameters: 1) number of changes in 
average rate (n), 2) number of events (m) between adjacent changes in rate, and 3) the 
rate change factor (rcf), which is the magnitude of the each change in rate. We consider 
values of n ranging from 1 to 64, and find  that the BBA accuracy is independent of n, 
as might be expected. We vary m from 200 to 2000 when  CV ≤ 1.2 , and otherwise 
from 1000 to 4000, and find as expected that accuracy increases as m increases (benefit 
from larger sample sizes). Similarly, we expect accuracy to increase as rcf increases, 
and we consider values of rcf  ≥ 1.5.  In each trace, each rate change is a rate increase 
with probability 0.5 and is otherwise a rate decrease.  For each combination of inter-
event time distribution and values of m and rcf, we generate 10,000 traces for 
evaluating BBA accuracy. 

Results for a representative trace with n = 2, m=200, and Poisson inter-event times 
are shown in Figure 2; results for a trace with n = 7, m = 4000, and h2 inter-event 
times with CV=3 are given in Figure 3.  Unless stated otherwise, the synthetic traces 
contain abrupt rate changes.  Figure 2(d) provides results for a trace with gradual rate 
change for comparison. 

3.2   Accuracy Measures 

The traditional accuracy measures for rate change point detection algorithms (e.g., 
[9]) are: (1) fraction of known rate changes that are detected within a pre-defined 
distance of the actual rate change, and (2) rate of false positives.  However, these 
measures do not account for predicted rate changes that occur just before or just after 
the pre-defined distance, nor do they measure the accuracy of the magnitude of a 
correctly or falsely predicted rate change.  Hence, we choose a more comprehensive 
measure, fe where e=15 or e=30, such that fe is equal to the fraction of actual event 
times at which the predicted rate is within e% of the actual event rate immediately 
prior to that event.  Note that an undetected rate change will yield incorrectly 
predicted rate values for each event in the next period of average rate. 

3.3   Parameter Value Selection 

BBA has two parameters other than the inter-event time unit which we define such 
that on average an event occurs every 25 time units. The two parameters, Odds 
Threshold and Minimum Interval (OT and MI), are such that increasing either value 
decreases the number of falsely predicted rate changes but also decreases the number 
of correctly predicted  rate changes.  We use BBA of the synthetic traces to determine 
which values of these BBA parameters leads to the highest overall fe accuracy.   
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Fig. 1. Accuracy V.S. Odd Threshold (OT) 
 

To conserve space, we omit the experimental results which show that for interevent 
time distributions with CV ≤ 1.2, the fraction of accurate rate estimates improves 
slightly as MI increases from 2 to 10 (close to the assumption, not much false 
positives), but does not improve for larger values of MI. Similarly, for inter-event 
time distributions with CV = 3, the overall accuracy on the synthetic traces improves 
as MI increases to 80 (because most false positive periods <80), but does not improve 
for larger values of MI.  Hence, for all further results in this paper, we use MI=10 
when CV ≤ 1.2 and MI = 80 when CV=3.  

Figure 1 shows the average f15 for traces with rcf  = 1.5 and CV ≤ 1.2. The four 
curves in the figure correspond to different values of m.  These results show that a 
smaller OT produces a higher overall accuracy, as measured by the fraction of the 
BBA rate estimates that are within 15% of the actual rate. Omitted due to space 
constraints are results for traces with CV = 3 where for each m ≥ 1000, average 
accuracy improves gradually as OT increases from 5 to 10,000 and then accuracy 
decreases for larger values of OT. For the higher CV, a larger OT is needed to avoid 
false positives.  For the further BBA results in this paper, we use OT = 4 when CV < 
2, and OT = 1000 for CV ≥ 2. 

3.4   BBA Accuracy Results 

Figures 2, 3 provide results for particular traces that illustrate the typical accuracy of 
the BB analysis for different types of traces.  The results in figures 2 (a, b, c) is for a 
trace with exponential interevent times (CV = 1), n = 2, m=200, and rcf = 2.  The 
actual rate (equal to 10 for the first 200 events) is shown with a gray diamond symbol 
at selected points, while the predicted rate at each event is plotted with the solid black 
curve.  Figure 2(a) shows that the BBA predictions closely match with the actual 
event rates throughout the trace.  Figure 2(b) shows that a simulated BBA “on-line”  
that is at each event time BBA predicts the rate using all of the prior event times, most 
predicted rates still match fairly closely with the actual rate.  In particular, the BBA-
online is significantly better at predicting the location of rate changes and has overall 
more stable estimates than EWMA estimates which are illustrated in Figure 2(c). A  
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Fig. 2. Representative Accuracy (CV=1, m=200, RCF=2 for a, b, c) 

 
key result of our experiments is that BBA-online is significantly more accurate than 
EWMA, over all possible values of the EWMA weight parameter.  

Figure 2(d) provides results for a trace similar to previous ones in Figure 2, but 
with one gradual rate change instead of two abrupt rate changes.  Again BBA is quite 
accurate, and BBA online estimates (omitted to conserve space) are significantly 
more stable than EWMA.   

Figure 3 shows that BBA is also reasonably accurate for most of the time when the 
inter-event time distribution has CV=3 and m = 4000.  However, the BBA estimates 
for such traces have a reasonably high number of falsely predicted rate “spikes”, 
having width less than 100 events and rcf >2.  Since those rate spikes can easily be 
“erased”, we consider measures of fe both with the spikes included and with them 
erased and replaced by the higher of the two rates before and after the spike.  
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Fig. 4. Quantitative Accuracy 

Figure 4 summarizes the overall average values of f15 and f30 as a function of  CV, 
m, rcf, and e. The higher value in each pair of bars is for the case that e=30 and the 
“spikes” are erased.  Note that for traces with CV ≤ 1.2 and rcf ≥ 2,  f30  > 90% when 
m ≥ 400 and f30 > 80% when m ≥ 200.  For traces with CV = 3 and rcf ≥ 2,  f30  > 90% 
when m ≥ 4000 and f30 > 80% when m ≥ 1000.  Under these conditions, we can use 
BBA to achieve fairly accurate analysis of the event rate in the actual event traces, 
with the understanding that 10-20% of the BBA rate estimates have error greater than 
30%. In the next section we analyze several actual event traces and interpret the 
results in light of these accuracy results for the synthetic traces. 

4   Media Server Arrivals 

4.1   Off-Line Characterization of Media Server Load 

In this section we apply the BB offline analysis to characterize client session arrivals 
to a media server (called BIBS), which were previously found to be Poisson [2], and 
to characterize the client interactive requests to a different media server (called 
eTeach), which were found to have a Pareto inter-arrival time distribution during 
periods of approximately stable arrival rate.  In the previous work, stationary periods 
were determined (approximately) by visual inspection of binned request arrival 
counts. Figure 5 (a) shows the result of BBA applied to a BIBS one day trace with 
highest load.   

We observe that the stationary periods identified by the BB analysis agree with the 
binned measures of number of arrivals in each hour, yet are significantly more 
precise. In particular, the BB analysis (a) clearly identifies the (most likely) endpoints 
of the stationary periods, (b) reveals longer intervals of constant rate than is apparent 
in the binned data, and (c) more precisely identifies the peak rates (e.g. at 9pm in  
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Figure 5(a)) which can be obscured by other analysis techniques and may be 
important for system design or configuration. The precise stationary periods also 
delineate the samples that can be used to obtain more detailed measures of the client 
arrival process. Further more, the BB results provide a simple global characterization 
of the observed client session requests as a time varying Poisson process with 
relatively infrequent, abrupt rate changes. The stationary intervals that have the 
highest rate, lowest rate, and largest duration are potentially of greatest significance 
for system design, configuration and optimization.  

Figure 5(b) shows the typical results for the request interarrival time distribution in 
each of the twenty highest rate periods found in the high rate days for the BIBS 
server.  Similar results were obtained for the ten highest rate periods on the high rate 
days for the eTeach server. In both cases, 97-98% of the measured interarrival times 
fit the exponential distribution. On the other hand, the full distribution is more 
precisely modeled by a two-stage hyperexponential with a slightly heavier tail than 
the exponential.  For both servers, this characterization is more precise than in the 
previous ad hoc analysis [2] because the periods of stationary rate could not be 
precisely delineated in the ad hoc analysis. The results for the eTeach server are also 
somewhat significant because several previous ad hoc characterizations of interactive 
client requests to Web servers (e.g. [2] and citations therein) have found the 
interarrival distributions to deviate significantly from the Poisson. Thus, the BB 
analysis provides a substantially new characterization of the interactive client requests 
to a Web media server, namely that these requests are nearly Poisson during the 
stationary periods, with a relatively small number of rate changes per day.   

4.2   On-Line Estimation of Media Request Rate 

In this section we evaluate the BB analysis as a technique for estimating the media 
server request arrival rate during system operation. Such arrival rate estimates might 
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be needed by media caching algorithms or by the Patching streaming protocol to 
compute the maximum duration of the patch streams. For the BIBS request trace that 
was characterized off-line in Figure 5(a), Figures 5(c) provides the on-line rate 
estimation at each client arrival using the BB analysis.. 

The key result is that, generally, the BB online analysis provides significantly more 
stable and accurate online estimates than EWMA (EWMA results are similar as in 
Figure 2(c)). Very short transient spikes in the online rate estimate are due to local 
fluctuations in the interevent time. In some cases, it may be useful to take action in 
response to the high rate estimate. For example, the spikes could indicate that the file 
should be temporarily cached in memory, since disk bandwidth is limited and the file 
need not be cached for long.  In other cases, it may be appropriate to ignore a 
temporary spike in estimated arrival rate, pending further evidence that the new rate 
will be sustained. We note that distinguishing the temporary spikes from the 
stationary rate estimates may be easier in the BB estimates than in the EWMA 
estimates, since the BB rate estimates are significantly more stable before and after 
the spikes.  Thus, this BB-online analysis shows promise for online rate estimation. 

5   Internet Packet Traffic and Loss Rate 

5.1   Loss Events in UDP Flows 

We use the off-line BB analysis to characterize the loss events observed during two 
different 24-hour UDP packet flows. Figure 6 provides results for a flow which was 
transmitted between two sites in a metropolitan area network. We have similar 
observations on loss event traces as in media server analysis. Especially we identified 
up to 1.5 hours stationary loss rate period which could be well modeled by a Poisson 
process. And BB-online also is generally significantly more stable and accurate than 
previous rate estimation methods (e.g. ALI(8)). 
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5.2   Packet Arrivals to the IPEX Gateway 

In this section, we apply the off-line BB analysis to characterize packet arrivals in an 
IPEX gateway [5] trace (32 hours) and a heavily multiplexed OC48 trace studied by 
[8] (1 hour). 

In Figure 7(a) we provide the BBA results including a 5-second interval with the 
largest number of packet arrivals (8699). The BBA result is commensurate with 
measured rate from binned packet arrival counts during each 250 milliseconds 
interval. Notably, the BB analysis finds intervals of several seconds in duration during 
which the packet arrival rate is estimated to be stationary, punctuated by abrupt (and 
large) rate changes.  

Figure 7(b) shows the packet arrival counts in 10 milliseconds for the same period 
in 7(a). In contrary to (a), the stationary intervals are not evident. And the highly 
variable measures are similar to what previous work showed using same binning 
method. This result suggested that previous binning results could not reveal the 
stationary rate periods because (1) It is highly dependent on the choice of the bin size. 
Too small bins cause high variability due to statistical fluctuations in the small 
samples and too coarse bins make the bin boundaries not likely aligning with 
endpoints of the stationary periods. (2) Also many bins plotted tightly causes visual 
effect of high variability. In contrast we selected the 250 msec as the bin size in 8(a) 
based on the estimated rate from BBA which reveals multi-second stationary rate 
periods.   

Figure 7(c) shows that the packet interarrival times during a stationary period are 
well modeled by a two-stage hyperexponential distribution, rather than by a Pareto or 
lognormal distribution. 

5.3   Packet Arrivals to OC48 Trace 

We further analyzed the OC48 trace which does not have as highly variable packet 
arrivals as IPEX trace due to the heavy multiplexing. Figure 8(a) shows the BBA 
result from 1 minute interval with most number of arrivals in one hour. BBA reveals  
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stationary rate period as long as 8 seconds with binned data commensurate with its 
result. This result is contrast to the findings of sub-second intervals from [8]. This is 
probably due to the limitations of Canny Edge Detection used in [8] which is sensitive 
to the choice to the parameter.  

Also the packet inter-arrival times during the stationary rate period we found in 
OC48 traces could be modeled approximately by Poisson as shown in Figure 8(b).   

Further research is needed, including analysis of packet traces for other sites before 
definitive conclusions can be drawn, but it appears that overall, the BB analysis 
results provide significant new insights into the local and medium timescale behavior 
of the packet arrival process that are relevant for creating network traffic workloads 
for system design. 

6   Conclusion 

This paper has investigated a recently proposed efficient technique, called Bayesian 
Blocks (BB), for characterizing the time-varying rate in a bursty event stream. Key 
properties of the BB analysis are that it is simple to apply, computationally efficient, 
and requires a relatively small sample size. The accuracy of off-line BB analysis was 
assessed by applying the technique to a variety of synthetic traces with known rate 
changes.  Off-line BB analysis was found to be able to accurately identify each period 
of constant rate as well as each period of stationary average rate during which the 
interevent times have a heavy-tailed distribution. BB analysis was applied to a variety 
of measured event traces of interest and all of the event traces we analyzed were 
found to have significant periods of stationary rate. Finally, we found BB-online to be 
significantly more accurate than previous on-line rate estimation methods.  

Future work includes applying the BB method to further traces such as TCP 
connection arrivals and FTP data connection arrivals. We are also interested in 
evaluating BB and other methods for detecting changes in the average round trip 
times and changes in the available bandwidth for network flows, which are needed for 

(a) OC48, BBA, 30see with most arrivals
 starting at 9:20AM, 8/14/2002

(b) Interarrival Distribution 
for Period 38.2-49 sec 
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high performance rate control. Finally, further development of the BB-online 
algorithm is a topic of our current research. 
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