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Abstract

Recent congestion control protocols such as XCP and RCP achieve fair bandwidth sharing, high utilization, small queue sizes
and nearly zero packet loss by implementing an explicit bandwidth share mechanism in the network routers. This paper develops
new quantitative techniques for achieving the same results using only end-host measures. We develop new methods of computing
bottleneck link characteristics, a new technique for sharing bandwidth fairly with Reno flows, and a new approach for rapidly
converging to bandwidth share. A new transport protocol, TCP-Madison, that employs the new bandwidth sharing techniques
is also defined in the paper. Experiments comparing TCP-Madison with FAST TCP, BIC-TCP and TCP-Reno over hundreds of
PlanetLab and other live Internet paths show that the new protocol achieves the stated bandwidth sharing properties, is easily
configured for near-optimal performance over all paths, and significantly outperforms the previous protocols.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

TCP-Reno has been the most widely used Internet transport protocol since the mid 1990s. However, Reno’s small
additive increase in throughput for each successful packet transmission, and multiplicative decrease in throughput for
each packet loss event leads to suboptimal throughput over long high bandwidth network paths. This has led to the
design of a number of new transport protocols with improved performance [5,9,10,12,14,15,21]. The key advantages
and drawbacks of these recent protocols are outlined in Section 2.

This paper develops a new simple protocol, TCP-Madison, that is designed to meet the following goals over any
network path:

(1) high total bottleneck link utilization
(2) low average backlog at the bottleneck link
(3) equal sharing of the bottleneck bandwidth among all Madison flows,
(4) fair sharing of the bottleneck bandwidth with Reno flows,
(5) during flow start up and whenever the cross-traffic load on the bottleneck link changes, converge as quickly as

possible to the correct bandwidth share while maintaining low average network backlog,
(6) require minimum router support,
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(7) use a simple set of protocol parameters that are easy to configure
(8) interoperate with existing widely deployed TCP protocols.

To achieve the goals, we first develop a new method for computing a target average backlog from the measured
packet loss rate (p) so as to achieve the stated high bottleneck utilization, low average backlog, and fair bandwidth
sharing goals.

We then develop new quantitative methods for computing several key bottleneck link characteristics from the basic
sending host measures of minimum and average round trip time and estimated bottleneck link capacity. The bottleneck
measures, computed adaptively as average RTT changes, include: average total backlog, the bottleneck buffer size,
link utilization, cross traffic throughput, and the number of equivalent flows sharing the link. These measures may
also be useful in other network applications, and are one key contribution of this paper.

Finally, we develop a method for computing the packet sending rate (S) that will achieve the target average network
backlog.

We develop the new TCP-Madison protocol, which implements the fair bandwidth sharing using the new
quantitative methods and requires five simple parameters. Since target average backlog is small under zero loss,
and since increase in packet loss rate leads to a decrease in target average backlog which in turn leads to lower target
sending rate, the new Madison protocol avoids congestion changes in target backlog without the need for additive
increase or multiplicative decrease functions.

We have implemented TCP-Madison, as well as FAST TCP [12], BIC-TCP [21] and TCP-Africa [16]. We provide
experimental performance comparisons of these protocols and TCP-Reno over a large number of live Internet paths
with widely varying characteristics. The performance comparisons include protocol throughput as a function of time,
average backlog, and loss rate. To our knowledge, these are the first experimental protocol comparisons to date that:
(1) compare Reno, BIC-TCP, and TCP-Africa as well as our new protocol over actual Internet paths, (2) use wide-
area dumbbell topologies to examine protocol bandwidth sharing in the presence of live Internet cross traffic, and (3)
provide measures of live cross-traffic load as well as the protocol throughput as a function of time.

Experiments over congested as well as lightly loaded wide-area dumbbell topologies validate that the Madison
protocol achieves rapid convergence to bandwidth share, high bottleneck link utilization, and low network backlog.
The results also show that Madison greatly outperforms FAST TCP as well as Reno on congested and lightly loaded
paths with RTT >70 ms, due to Madison’s quick convergence to bandwidth share, rapid adaptation to changes in
cross-traffic, and tolerance of packet loss while transmitting at bandwidth share. Regarding network backlog, the
results show that with parameter settings that ensure fair sharing with Reno, the Madison flows have lower average
backlog than Reno and FAST TCP on congested paths, and average network backlog up to seven or eight packets on
lightly loaded links.

The remainder of the paper is organized as follows. Section 2 reviews related previous work in transport protocol
design. Section 3 develops the new quantitative techniques, Section 4 defines the new TCP-Madison protocol, and
Section 5 presents the experimental evaluations and comparisons of Madison, TCP-Reno, FAST TCP, and BIC-TCP.
Section 6 concludes the paper.

2. Related work

In this section we review the previous protocols, and point out the key similarities and differences between those
protocols and the approach taken in this paper.

Unlike Reno and other widely deployed TCP protocols, TCP-Vegas [3] and FAST TCP [12] detect new network
congestion when network delay increases, and reduce throughput before inducing packet loss. Vegas computes the
average network backlog for a flow from the average and minimum RTT or the path, and halts the additive increase in
window size when the average backlog exceeds a given specified threshold (α). A recent analytic throughput model
for Vegas [19] quantifies the RTT unfairness in Vegas and provides the path conditions under which the Vegas protocol
cannot attain average backlog equal to α. FAST TCP further improves on Reno by implementing a more aggressive
additive increase mechanism when the average network backlog for the flow is below the target, and by using paced
packets (which are also considered in recent improvements to Reno [7]). The more aggressive additive increase in
FAST TCP also reduces the RTT unfairness compared with Reno and Vegas. FAST TCP also changes the window
size every other RTT, thus obtaining smoother estimates of RTTavg. These features lead to improved performance
over high speed long delay paths. On the other hand, FAST TCP’s additive increase function is at most four-fold
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more aggressive than Reno (for recommended protocol settings) and thus FAST TCP has relatively slow convergence
to bandwidth share over lightly loaded paths with long RTT. Due to its use of the Reno multiplicative decrease on
packet loss, FAST TCP also may not reach bandwidth share on a long path with moderate to high congestion. We
show evidence of these problems in the experimental protocol comparisons in Section 5 of this paper. A further
significant drawback of the Vegas and FAST TCP protocols is that the target backlog parameter α is set independently
for each protocol implementation. Two flows sharing the same bottleneck will attain unequal shares of the bottleneck
bandwidth if they have different values of the target backlog, even if they each have a similar RTT.

Like FAST TCP, the Madison protocol makes use of the Vegas method of computing the observed average backlog
for the flow. However, unlike FAST TCP and Vegas which perform additive throughput adjustments when average
backlog is below or above a fixed threshold, and multiplicative throughput decrease when a packet loss event occurs,
Madison (a) responds to increase or decrease in packet loss rate by adjusting the target average backlog, and (b)
directly computes the sending rate needed to achieve the target average backlog. New quantitative methods, not defined
in the Vegas protocol, are needed to implement the new Madison mechanisms.

Another class of protocols, including BIC-TCP [21], STCP [15], HSTCP [9], and the recent E-TCP [10], use a
significantly more aggressive additive increase function than Reno, as well as a significantly less aggressive decrease
function. These protocols tolerate relatively high loss rate (e.g., 1%) in order to gain significantly better utilization of
high speed bottleneck links. The major drawback of these protocols is that they induce significant loss for other flows,
leading for example to significant throughput degradation for TCP-Reno flows that share the same bottleneck. Results
in Section 5 illustrate this problem for the BIC-TCP protocol.

Unlike these more aggressive protocols, Madison does not induce packet loss when efficiently utilizing a high
speed link. Also unlike these protocols, Madison computes a sending rate that will achieve fair and efficient bandwidth
sharing without inducing packet loss. Like the E-TCP protocol, Madison can implement fair bandwidth sharing for
flows that don’t need reliable packet delivery by not retransmitting lost packets.

XCP [14] and RCP [5] use router feedback to achieve high performance bottleneck bandwidth sharing. In particular,
each router estimates spare link capacity as well as the persistent queue size of the outgoing link. The protocol
uses these values to compute desired change in aggregate throughput in order to maintain both high link utilization
and low persistent queue size. RCP also estimates the number of active flows that are sharing the link (n), divides
desired change in aggregate throughput by n, and sends the desired rate change back to the sending host. XCP instead
translates the desired change in aggregate throughput to a desired additive increase or multiplicative decrease in the
window for each flow. In both RCP and XCP, the rate-limiting link provides feedback to the sending host via fields
in the packet header. Katabi et al. [14] have shown that for particular settings of the XCP parameters, XCP has stable
convergence for any number of sources.

A key disadvantage of RCP and XCP is that more complex routers must be developed and widely deployed.
Interoperability with existing widely deployed TCP protocols further increases the complexity of the router
algorithms [14]. The protocol developed in this paper achieves the same goals as XCP and RCP. However, unlike RCP
and XCP, we devise methods to achieve the fair bandwidth sharing, high bottleneck utilization, and low persistent
queue size based on sender-based calculations rather than new network router support. Furthermore, XCP implements
Reno multiplicative decrease packet loss recovery, whereas TCP-Madison implements congestion avoidance by
reducing the target average network backlog when loss rate increases. Like XCP and RCP, Madison has a parameter
that defines the control interval, but Madison does not require weights to determine the relative influence of persistent
queue size and spare link capacity on changes in flow sending rate. Like XCP and RCP, Madison can also be modified
to implement differentiated service instead of equal bandwidth sharing. Such modifications are left to future work.

3. New quantitative techniques

In this section, we develop the quantitative techniques that are used by the new TCP-Madison protocol to achieve
the goals of fair bandwidth sharing, high bottleneck link utilization, low network backlog, and rapid convergence to
bandwidth share. The input parameters for these techniques are the first four measures in Table 1. We comment further
on how we obtain these four measures, adaptively as cross-traffic load changes, in Section 4.

Section 3.1 develops a new technique for computing a target average backlog (btarget) as a function of packet loss
event rate (p) that will achieve high bottleneck link utilization, low network backlog, and fair bandwidth sharing
with Reno. Section 3.2 discusses two key assumptions that are used to develop a few of the further calculations in
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Table 1
Notation for path characteristics

Measure Definition

C Capacity of the bottleneck link (in Mb/s)
RTTavg Average round trip time for packets in a flow (in ms)
RTTmin Minimum observed round trip time (in ms)
p Packet loss event rate
d̄ Average network queuing delay (RTTavg − RTTmin) (in ms)
b̄ Average network backlog (in 1500-byte packets)
B̄ Average total backlog at the bottleneck link (in 1500-byte packets)
Bsize Router buffer size for the bottleneck link (in 1500-byte packets)
U Utilization of the bottleneck link
Xx traffic Cross-traffic throughput at the bottleneck link
n Number of “equivalent flows” sharing the bottleneck link

the section. Section 3.3 develops new methods for computing the four bottleneck link characteristics at the bottom
of Table 1. Finally, Section 3.4 develops new techniques for computing the sending rate that will achieve the target
backlog. A key theme throughout this section is the use of quantitative methods to achieve near-optimal system design
and operation.

3.1. Computing btarget

The goal is to derive a target average backlog b̄target that (a) can be computed from packet loss rate ‘p’ and thus by
all flows that share the bottleneck, and (b) shares bottleneck capacity fairly with Reno cross-traffic.

We begin by deriving the average backlog that a TCP-Reno flow achieves as a function of RTTavg, RTTmin, and p.
We derive this result based on a key insight about a recent TCP-Vegas throughput model [19], described below.

The Vegas model provides the following upper bound on the packet loss rate (p) in order for Vegas to be able to
attain average backlog equal to α (see Eq. (12) in [19]):

p ≤
32

7W 2 − 36W + 32
, (1)

where W = αRTTavg/d̄ .
By solving inequality (1) for α we obtain an upper bound on the α that is attainable for the path. For larger α,

packet loss occurs before the average backlog grows to α, in which case Vegas reverts to Reno.
We make the following key observation. Since the upper bound on α is the point at which Vegas reverts to Reno

behavior, the average backlog of a Reno flow over the same path is this upper bound on the feasible α. We obtain the
average Reno backlog by solving inequality (1) for α:

αReno =
2
7

d̄
RTTavg

(9 +
√

25 + 56/p). (2)

Note that the equation quantifies how the path characteristics impact the average Reno backlog, which in turn
impacts the target average backlog that will achieve fair sharing.

We have experimentally verified that Reno flows achieve average backlog as given by the above equation. Those
results (omitted to conserve space) also show that the average backlog of the Reno flows can vary from less than 0.25
packets to over 64 packets depending on the path characteristics.

We use Eq. (2) as a starting point for deriving an adaptive target backlog for a flow, btarget that (a) is a function
only of p and d̄, so that all flows sharing the bottleneck can independently compute the same value, (b) will achieve
fair bandwidth sharing with TCP-Reno flows that share the same bottleneck link, and (c) will achieve low persistent
bottleneck queue size yet high bottleneck utilization (U ). To our knowledge, there are no other previously proposed
adaptive values of target backlog that achieve these properties.

One drawback of Eq. (2) is that αReno is dependent on RTTavg. That is, Reno’s RTT average backlog, which equals
throughput times d̄, is inversely proportional to average RTT.
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Fig. 1. Average Reno backlog vs p.

A key further observation is that the cause of the problem is also the solution to the problem. That is, since RTT
unfairness is inherent in Reno flows, a flow that computes its own target backlog will be fair to Reno if it uses
Eq. (2) with any feasible value of average RTT. In particular, a normalized RTT value that can be computed by all
flows sharing a bottleneck, and that yields a suitably low value of average backlog, will provide all of the needed
functionality. We further observe that if we let the normalized RTT value be proportional to d̄, then d̄ divided by
normalized RTT becomes a constant. This has the advantage that the average backlog calculation in Eq. (2) depends
only on this constant and p.

We further observe that letting the normalized RTT be proportional to d̄, for a suitable proportionality constant can
yield a small target backlog. The approach is intuitive because the normalized RTT will be smaller when the measured
network delay d̄ is smaller. This approach is also simple because for a suitable proportionality constant d̄/RTTnorm,
Eq. (2) shows that the average Reno backlog will be a function of the proportionality constant and p. What remains is
to define the constant.

Fig. 1 plots the average Reno backlog as a function of packet loss rate for three possible fixed values of d̄/RTTavg.
Note that the normalized ratio of 0.0235 yields a target backlog of 16 when the loss rate is 10−5, 4.33 when the loss
rate is 10−4, and decreasing target average backlog as loss rate increases above 10−4. Since average total backlog of
4.33 leads to high bottleneck link utilization for a paced flow, per-flow average backlog should only grow beyond that
if loss rate is extremely low. For these reasons, 0.0235 is a normalized ratio that achieves a desirable trade-off between
high link utilization and small persistent per-flow backlog. For this ratio, if average bottleneck delay d̄ is 0.235 ms,
the normalized RTTavg is 10 ms, and so forth.

We note that this is not the only possible choice for normalized RTT. Other functional dependences between
d̄ and normalized RTT are possible or other values of d̄/RTTavg could be selected. However, the curve for
d̄/RTTavg = 0.0235 also reflects a range of average backlog as a function of p that corresponds well with the range of
average backlog measured for Reno flows over a wide range of paths on today’s Internet, noted above. This provides
further motivation that this choice of normalized RTT will have an appropriate level of aggressiveness for incremental
deployment in networks that use the widely deployed Reno protocol. The target average backlog calculation for this
choice of normalized average RTT is thus given by:

btarget =
2
7

0.0235(9 +
√

25 + 56/p). (3)

All flows sharing a given bottleneck link should have the same value of the d̄/RTTavg ratio. When a flow achieves the
computed btarget it will (a) interfere with other Reno flows as if it were a Reno flow with a normalized average RTT
equal to d̄/0.0235 = 42.55d̄ , and also (b) share bottleneck bandwidth equally with other flows that have computed
the same target average backlog.

3.2. Key assumptions

To develop a few of the further calculations of interest in the next two sections, we make two key assumptions.
One key assumption is that a non-negligible average network delay or backlog for an Internet flow is primarily due

to queuing at the most congested link in the path. We make this assumption for three reasons. First, non-negligible
queuing delays generally occur at lower-bandwidth access links and peering links, rather than in high speed LANs at
the endpoints or at high speed backbone links. Second, if the two or more lowest bandwidth links in the path have
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the same capacity (C), it is unlikely that those links have exactly the same cross-traffic load. If there is even a modest
inequity in the cross-traffic load at the lowest capacity links, most of the average total queuing delay in the path will
occur at the most congested node. Finally, if the average network delay is due to queuing at more than one node in
the network, the impact of assuming that it occurs primarily at the bottleneck link is that the flow will conservatively
estimate somewhat higher than actual congestion at the bottleneck, and thus the flow may use somewhat less than
its fair share of the bandwidth. We have not observed that problem over any of the paths used in our experimental
protocol comparisons.

In a few calculations, noted in the sections below, we make the assumption that the bottleneck link can be modeled
approximately as an M /D/1 queue. We note that the goal is to enable design of the system from first principles as
well as near-optimal functionality during system operation, yet also to develop a protocol that is tolerant of the error
that may exist in the model calculations. Key functionality enabled by the model includes the capability to compute a
target sending rate for rapid convergence to the computed target average backlog.

In support of the approximate model, we note that prior work has provided experimental evidence as well as
theoretical justification that as network links carry flows from larger and larger aggregations of sources, the packet
arrival process for the link tends toward the Poisson [4,13]. Bottleneck links with high aggregation are increasingly
common as Internet bandwidths increase. We also note that large flows dominate the load on network paths, that such
flows have large packet sizes, and hence the overall coefficient of variation in the packet sizes that arrive to the link is
very small. We thus model the bottleneck link as an M /D/1 queue with customers that are packet of size 1500 bytes.
We thus assume that a packet that measure d = RTT−RTTmin is measuring delay due to 1500-byte service times that
generally do not coincide with packet boundaries.

Links with lower flow aggregations are known to have packet arrivals that are more bursty than Poisson. On the
other hand, if protocols increasingly use packet pacing, packet arrivals in some network paths could be somewhat less
bursty than Poisson. We keep in mind the qualitative direction of the error in the estimates calculated for the M /D/1
queue, and take suitable precautions when applying the results of the model in the protocol.

We apply the M /D/1 model, for example, in Section 3.4 to compute an estimate of the sending rate that will achieve
a given target average backlog. We provide experimental results in that section, and again in Section 5 that show the
computed sending rate achieves very close to the intended target average backlog, which we found over the wide
range of Internet paths we’ve examined.

3.3. Computing bottleneck measures

Previous work [3] has shown that it is possible to compute the average network delay for the packets in a flow,
d̄ = RTTavg − RTTmin. Assuming the flow has been sending at rate S, that work also uses Little’s result to compute
the average network backlog for the flow, in units of 1500-byte packets, as follows:

b̄ = Sd̄. (4)

We compute the average total backlog for all flows that share the bottleneck link, B̄ measured in units of 1500-byte
packets, by first observing that the time to transmit an MTU on a link with bandwidth C Mb/s or kb/ms is equal to:

1.5 kb/packet × 8 bits/byte
C kb/ms

=
12
C

ms/packet. (5)

If RTTavg is measured using randomly arriving probe packets (as defined in Section 4), then the total average queue
size in units of 1500-byte packets is

B̄ =
d̄
12
C

= d̄
C
12

. (6)

To obtain the bottleneck link buffer size, Bsize, we note that the Madison protocol will attain high link utilization
(e.g., greater than 90%) in order to maximize flow throughput and thus minimize average flow transmission time. In
case of p > 0 and cross-traffic that induces loss, we can expect that some fraction of the arriving packets will observe
queue length close to the maximum possible, and thus we use the maximum observed value of B̄ as an estimate of
Bsize. We also obtain this value for the BIC protocol, which induces loss on most paths. Note that TCP-Madison does
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not use Bsize but we report this value as a useful path characteristic in our experimental results in Section 5. We have
found that the BIC estimate in particular is reproducible in experiments over the same path.

The next goals are to compute bottleneck link utilization, cross-traffic throughput, and number of equivalent flows
that share the bottleneck.

To compute bottleneck utilization, we use the approximate M /D/1 queue for the bottleneck, in which case we can
compute the average total delay in the queue as follows:

d̄ ≈
U12/C

2(1 − U )
. (7)

Solving this equation for U yields

U ≈
2B̄

2B̄ + 1
. (8)

We note that the above is an overestimate of U if the actual packet arrival process is more bursty than the Poisson.
That is, a higher U is needed to observe the measured d̄ if the arrivals are Poisson than if they are more heavy tailed,
for the same mean interarrival time.

By Little’s result, the link utilization by a flow that has been sending at rate S, where S is in units of 1500-byte
packets/ms is

Uflow = S × 12/C. (9)

Finally, we compute the desired cross-traffic throughput by Little’s result,

Xxt =
Uxt

12/C
= [U − Uflow] × C/12. (10)

Using the average network backlog for the flow (b̄) and the average total bottleneck backlog, we define the following
average number of “equivalent flows” that share the bottleneck link:

n =
B̄
b̄

=
C × U

12S
. (11)

Thus, by “equivalent flow” we mean another flow, or portion of another flow, or possibly an aggregation of flows
that produces the same average backlog at the bottleneck. We use this and other quantities derived above in the next
section. These formulas might also prove useful in other network applications.

3.4. Target sending rate

In this section we use the M /D/1 queue approximation for the bottleneck link to derive a target sending rate
for rapidly converging to a specified new target average backlog (btarget) during flow start up or when cross-traffic
load changes. After deriving the new Starget we point out that it is an underestimate of the actual sending rate that
will achieve the target backlog if packet arrivals are more bursty than Poisson. We note that computing the sending
rate without router support and in this manner is a new approach. Section 4 provides the reasons to believe that the
approach is sound, including the key idea that the calculated sending rate will be used in a way that tolerates error in
the estimate.

By Little’s result, the desired Starget times the new average delay at the bottleneck link after one or more flows
transmit at the new target rate, will be equal to btarget. Using the M /D/1 formula for the average delay, we have:

Starget
12/C

2(1 − Unew)
= btarget (12)

where Unew is the predicted new utilization of the link after the changes in sending rate, derived below.
Note that to simplify the calculation of Starget, we have omitted the factor of Unew in the numerator of the formula

for average delay. If the target link utilization is on the order of 0.9 or higher, omitting this factor will not greatly
impact the accuracy of the approximate value for Starget. On the other hand, the factor of Unew can easily be included
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(a) (Uxt < 20%) C = 98 Mb/s, RTT = 144 ms WI
to Dortmund, Germany.

(b) Uxt ≈ 99% C = 155 Mb/s, RTT = 127 ms WI
to Tubingen, Germany.

(c) Uxt ≈ 80% C = 98 Mb/s, RTT = 103 ms WI
to Paris, France.

Fig. 2. Average backlog achieved by Starget.

in the future if the additional accuracy is desired. For the results obtained in over a wide range of Internet paths,
reported in Section 5, this simpler formula has proved to be sufficient.

To compute the predicted value of Unew, we consider two cases. First, when a flow starts and has not yet achieved
within 20% of its first target backlog (computed for an initial loss rate parameter as defined in the next section), we
assume that no other flows have yet measured the impact of the new flow and thus the only flow changing its sending
rate is the new flow. Assume this flow has been sending packets at rate S, where S = 0 at the very beginning of the
flow. In this case,

Unew = max
(

0, U − S
12
C

)
+ Starget

12
C

. (13)

Substituting the above equation in Eq. (12) and solving for Starget yields the desired estimate of the target sending rate.
Note that since U is overestimated when the actual packet arrivals are more bursty than Poisson, Unew will also be
overestimated in that case, and Starget is likely to be a conservative value.

The second case occurs after a flow has achieved within 20% of its first target backlog. In this case, it computes the
number of “equivalent flows” sharing the bottleneck link, n, as defined in Eq. (11).

Let nD , initially equal to n, be the number of those flows that will compute a new target backlog and/or a new
target sending rate if p or d̄ changes. We assume the other n − nD flows make gradual changes in their sending rate,
and thus we estimate Unew as follows:

Unew =
[
max(0, Xxt − (nD − 1)S) + nD Starget

]
12/C. (14)

When Eq. (14) for Unew is substituted in Eq. (12), the sender can solve for Starget and get the new rate. If the desired
backlog is not achieved, it could be that the value of nD is incorrect. The sending host can compute a new value of nD
by (a) substituting the achieved target backlog in place of btarget in Eq. (12) and (b) back calculate the value of nD to
determine how many flows changed in order to achieve the observed backlog.

Fig. 2 provide typical results of actual backlog achieved by a new flow that measures the path characteristics (d̄,
RTTavg, and C), computes the sending rate to achieve a target average backlog using the above formulas, and transmits
packets at that calculated rate for ten seconds. The average backlog achieved by the computed sending rate is plotted
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Table 2
TCP-Madison protocol parameters

Parameter Definition Value

d̄
RTTnorm

Normalized d̄/RTTavg 0.0235
pmin Minimum loss rate for btarget calculation 2.55 × 10−5

pinit Initial loss rate estimate 10−4

T Minimum time between rate adjustment 200 ms
tProbe∗ Minimum spacing between probe packets 32 packet service times

as a function of time, as is the target average backlog and the average backlog due to the cross traffic. Note the different
scales on the y-axis in each figure, and note that the path in Fig. 2(c) has high variability in the average cross-traffic
backlog over time. As can be seen in the figure, over live Internet paths with substantial RTTs and different cross-
traffic loads, the M /D/1 formula computes a value of the sending rate that enables the new flow to achieve the desired
average backlog.

4. The TCP-Madison protocol

In this section, we develop the TCP-Madison protocol that uses the methods developed in the previous section to
achieve rapid and efficient convergence to fair bandwidth share as well as low average backlog and high bottleneck
link utilization.

We first describe the protocol parameters and measures (Section 4.1) and then outline the protocol operation during
Flow Start-up (Section 4.2) and the remainder of the flow (Section 4.3).

4.1. Protocol parameters and measures

Table 2 summarizes the five parameters of the TCP-Madison protocol. Recall from Eq. (3) and Fig. 1 that the first
parameter (d̄/RTTnorm = 0.0235) determines a desirable target average backlog (btarget) as a function of measured
packet loss rate (p). The second parameter, pmin, is the minimum loss rate that will be used to compute btarget. Note
that btarget = 10 for pmin = 2.555 × 10−5. These parameters should have the same values in all implementations of
TCP-Madison, in order to achieve equal bandwidth sharing among Madison flows that share the same bottleneck link.

The third parameter pinit is the initial value of loss rate assumed for the path. Note that btarget = 4.33 for
pinit = 10−4. This value has the desirable properties of relatively high initial utilization of a lightly loaded bottleneck
link, relatively low increase in total backlog for a congested link, and enough perturbation in the total backlog by the
new flow for other Madison flows to observe the impact of the new flow and recompute their bandwidth share, as
described in Section 4.3 below. Hence, this parameter should also be set to the specified value in all implementations
of TCP-Madison.

The fourth parameter, T = 200 ms, is the minimum spacing between changes in the sending rate. This parameter
achieves a trade-off between responsiveness to changing path conditions on the one hand, and ensuring that the flow
has enough opportunity to observe the new bottleneck characteristics including impact due to changes in sending rate
by other Madison flows before making another change in its own sending rate.

The fifth and final parameter, tProbe∗ is the desired minimum average time between “probe packets”, where probe
packets are data packets that will be used to measure RTT. These packets have a new “ACK request” bit in the header
set to one. All other data packets have the ACK request bit set to zero.

The specified value of tProbe∗ is 32, in units of a packet service time on the bottleneck link. The principal reason
for the desired minimum average probe packet spacing is to obtain relatively independent samples of RTT − RTTmin.
We have derived the distribution of the M /D/1 busy period with server utilization equal to 90% from results in [2], and
assuming (approximate) exponential spacing between probe packets, we have calculated that if average probe spacing
is equal to tProbe∗

= 32, then 84% of the probes will arrive in different busy periods on the bottleneck link. Such
probes will generate relatively independent samples of observed backlog. We have further experimentally verified that
such probe spacings work well in the protocol specified below. A more detailed study of probe packet spacing is left
for future work.
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Since packet loss events are relatively rare and aren’t detected until the ACK for a subsequent packet reaches the
sender, it is also safe to use only the ACKs from probe packets to determine whether a packet loss event has occurred.
In other words, for recomputing p, btarget, and retransmitting packets for reliable flows, the delay due to probe packet
spacing has the same impact on loss responsiveness as increasing the round trip time by the probe packet spacing. A
TCP-Madison sender can interoperate with a TCP-Reno receiver, but the sender will operate more efficiently if the
receiver TCP is modified to return a selective ACK only when the ACK request bit is set. If the receiver sends ACKs
more often, the sender will selectively use the probe packet ACKs for RTTavg calculation.

We have found that the relatively intuitive parameters values given in the table are very robust, and thus that
the protocol is easy to configure for near-optimal operation over a very wide range of Internet paths. Further
experimentation is needed, but the results to date are encouraging.

4.2. Flow start-up

The sending host performs four principal steps to obtain the four basic path measures needed for protocol operation
during Flow Start-up. First, a 3-way handshake for connection setup. Second, using a fixed spacing of 15 ms, transmit a
packet pair, followed by four probe packets with the ACK request flag set, followed by another packet pair and another
four probe packets. Third, when the ACKs for the first four packets have been received, compute initial estimates of
RTTmin, RTTavg, and C . Finally, if 15 ms is less than 20 × 12/C or 20 packet service times on the bottleneck link,
wait for the ACKS of the last four probes and use every other probe ACK (i.e., four of the eight probe ACKs) as well
as both packet pairs to compute initial estimates of RTTmin, RTTavg, and C .

We note that the initial estimates of RTTavg, RTTmin and C are very approximate due to a small number of samples
with spacing that may violate tProbe∗. However, the goal is to initiate the flow quickly using these crude measures,
and then to refine the measured values during the Congestion Avoidance phase. To that end, the Congestion Avoidance
phase sends another packet pair during each RTT for the flow until 20 packet pairs have been sent, and the sender also
continues to recompute RTTmin.

Set p = pinit. Compute btarget and Starget.
Compute tProbe∗

× 12/C and set the desired average time between probe packets to the minimum of this value
and 100 ms. If the minimum time between probe packets is under 15 ms, set it to 15 ms. Note that these rules sacrifice
the desired independence of the probe RTT samples if tProbe∗

× 12/C is too long, and or improve the quality of
the samples if tProbe∗

× 12/C is very small. Once these steps are complete, the protocol moves to the congestion
avoidance phase.

4.3. Congestion avoidance

In this phase, the sender performs the following operations until all data is sent:

(1) Transmit packets with equal spacing at rate Starget, but shift sending time for probe packets that have the ACK
request flag set, so as to achieve exponential spacing of those packets with average that is the maximum of 1/Starget
and the desired spacing computed during flow start-up.

(2) On each probe ACK received,
(a) compute the RTT. Update RTTmin if this new RTT is smaller. Computer RTTavg by taking the average of the

six most recent RTT samples.
(b) If a packet loss event is detected (for example by two consecutive selective ACKs that contain the same packet

missing) recompute p as follows: p =
# packets lost+1

# packets sent since last loss+1/p . Recompute btarget and Starget.
(c) Otherwise, if the number of packets sent since the last loss event (q) is >10/p let p = 1/q. Recompute btarget

and Starget.
(d) Otherwise, compute b̄ from RTTavg and store the most recent two values of b̄. If b̄ is within 20% of btarget,

compute n and set nD = n. Otherwise, if two consecutive values of b̄ are more than 30% higher or lower than
btarget, compute a new Starget.

Note that ACK requests occur at most once every 15 ms and at least once every 100 ms, depending on bottleneck
bandwidth. Such spacing enables Madison to respond to congestion and packet loss, but greatly reduces overhead for
ACK processing, especially in high bandwidth paths. If a requested ACK is delayed (or lost), the sender quiesces until
the next ACK arrives of time-out occurs. This implements a coarse-grained ACK clocking in TCP-Madison.
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Table 3
Numbers of protocol evaluation experiments

Available bandwidth (Mb/s) Round trip time (ms)
[0.2, 10] (10, 100] (100, 200] (200, 823]

[0.1, 1] 379 641 732
(1, 10] 155 2232 2217 1830
(10, 50] 323 2291 2268 1821
(50, 550] 861 8239 3037 2645

Fig. 3. Accuracy of user-level Reno performance.

In the next section we show that the TCP-Madison protocol achieves the goals it is designed to achieve, and
outperforms previous protocols over many Internet paths including those between PlanetLab nodes.

5. Protocol performance comparisons

In this section we provide experimental results that (1) demonstrate that TCP-Madison meets its design goals over
a wide range of Internet paths, (2) compare Madison performance against Reno, FAST TCP, BIC-TCP and TCP-
Africa and (3) gain new insights and understanding of the performance of previous protocols that do not require router
modification.

We have experimented with Madison and the previous protocols on over 400 Internet paths with a wide range of
path characteristics over a period of many months. These experiments were performed at a variety of times to observe
different amounts of cross-traffic load on a given path. (In some cases, the cross-traffic load varied from 10% of
capacity to greater than 90% of capacity.) We used PlanetLab nodes as well as some additional nodes that increase the
variety of paths explored. Table 3 shows the number of experiments performed broken down by available bandwidth
and RTT.

Section 5.1 describes the experimental setup as well as the variety of paths explored. Section 5.2 presents
representative results for how parallel protocol transfers over wide-area Internet dumbbell topologies share the
bandwidth of a common bottleneck link. Section 5.3 presents results from back-to-back protocol transfer over further
Internet paths.

5.1. Experimental setup

The PlanetLab (and other) experiments require user-level protocol implementations that have been optimized to
achieve kernel-level performance measures, similar to previous work [6,18,20]. Our implementation while being
similar to previous work has two important features. First, it has a measurement mode where the receiver copies
only the packet header from the kernel thereby reducing overhead and enables us to use moderately loaded PlanetLab
nodes as receivers. Second, we detect context switches and determine the amount of time context switched out and
discard experiments affected by context switches. Fig. 3 shows that our steady state user level Reno throughput
(y-axis) is nearly identical to steady state kernel level Reno throughput (x-axis), for Internet paths with a wide range
of Reno throughputs.
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(a) FAST TCP (α = 8, γ = 1)
A/C = 0.96, C = 94 Mb/s.

(b) BIC-TCP (Smax = 32, Smin = 0.01)
A/C = 0.85, C = 100 Mb/s.

Fig. 4. Behavior of the protocol implementations (RTT = 61 ms, 14 shared hops).

Fig. 5. Wide-area Internet dumbbell topology.

Table 4
Baseline and other experimental paths

Baseline paths Other key paths Total range

RTTmin (ms) ≥200 0.1–823
C (Mb/s) ≥100 1–10 0.128–1000
Ux traffic (%) 70–95 <1, 99 1–99
Loss rate 0, 10−4, 10−3, 10−2 10−4, 10−3, 10−2 0–0.08
Bsize (packets) 150, 1000 40–4800
Xr (5 s) ≤1.1 >1.5 1–2.6

We have also validated each of our protocol implementations against previously published results. For example,
Fig. 4(a) contains results similar to Fig. 8 in [12], showing that two parallel FAST TCP flows sharing the same
bottleneck link quickly converge to nearly equal bandwidth share over paths with moderate RTT. Fig. 4(b) shows
convergence behavior of two parallel BIC flows sharing a bottleneck similar to the results in Fig. 5 of [21]. Our
results similar to Fig. 5 of [16] for TCP-Africa transfer and other additional validation results are omitted to conserve
space. The results of these and other validation experiments indicate that our protocol implementations are operating
correctly.

We use the protocol implementations to measure throughput and packet loss rate in back-to-back transfer as well as
for parallel transfers over paths that share a common bottleneck link. In the latter case, we use new wide-area Internet
dumbbell topologies as shown in Fig. 5. In such topologies, each host at site A is paired with a host at site B and flows
are run in parallel between each host pair starting at different times.

In all results reported in this section, we set Wmax = 172 kb for Reno. We set FAST TCP α as mentioned in [8] to
two times the maximum observed FAST throughput in pkts/ms measured over 200 s with a minimum value of 8. We
set BIC Smin to 0.01 and Smax = 32 as mentioned in [21].

To organize the variety of paths used in the experiments, we group the paths as follows. First, we consider a large
subset of the paths having the “baseline” parameter values shown in Table 4 that provide among the most challenging
conditions for transport protocols. Those parameters include large RTT (≥200 ms), the high end of current bottleneck
link capacity (C = 100–500 Mb/s) and significant cross-traffic load (>70% of C). Those paths include a wide range
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(a) Uxt < 10%,
no loss, Bsize = 318 KB
RTT = 59 ms, 14 hops, WI to CA.

(b) Uxt ≈ 85%,
no loss, Bsize = 484 KB
RTT = 246 ms, 16 hops, WI to Brazil.

(c) Uxt ≈ 60%,
p = 4 × 10−4 Bsize = 142 KB
RTT = 27 ms, 11 hops, WI to NY.

Fig. 6. Bandwidth sharing among Madison flows (C = 100 Mb/s).

of loss rates and bottleneck link buffer capacities as shown in Table 4. The baseline paths also include commercial
as well as high-performance (futuristic) research network paths. Finally, the baseline paths have low variation in the
average cross-traffic load (Xr ≤ 1.1, where Xr is the ratio of the maximum cross-traffic load to minimum cross-
traffic load observed during any given 5 s period of a 30 s data transfer on the path). This is because very few paths
available (<3%) have significant variation in cross-traffic load (Xr > 1.5) as observed over periods of several minutes.
In addition to the baseline cases, we also examine the performance of the protocols with paths that have other key
characteristics as given in the table.

In the case of back-to-back experiments, we observe as in previous work [1,17,22] that the path characteristics
remain stable over time horizons of several minutes. This is true for cross-traffic utilization above 90% as well as for
low to moderate cross traffic utilisation. We run two 30 s transfers (one Reno and one Madison) at the beginning and at
the end of each back-to-back experiment for all protocols. We use the results only if there is less than 10% difference
between the two Reno throughputs and less than 10% difference between the two Madison throughputs, to ensure
that the protocols are compared under very similar conditions. Note that throughput within each transfer may vary if
cross-traffic load varies on smaller time scales but the average cross-traffic load remains steady in each back-to-back
experiment.

Results for the baseline and other key path characteristics are shown in the next two sections.

5.2. Protocol bandwidth sharing performance

In this section we provide bandwidth sharing results for parallel flows that share a common bottleneck link. As
in previous work, we start the flows at different times and observe: (1) how quickly new flows converge to their
bandwidth share, (2) how equally the flows share the bottleneck capacity, and (3) the impact of loss rate on sharing.
We also use a wide-area dumbbell topology (Fig. 5) so that the flows are transmitted over actual Internet paths and
share an actual Internet bottleneck link.

We first evaluate bandwidth sharing among parallel Madison flows, with representative results provided in Fig. 6.
Fig. 6(a) considers the case where the bottleneck link has very low load (under 10%) from the normal Internet traffic
(at the time of the experiment). Under such conditions, protocol throughput is very stable and convergence to equal
bandwidth share is rapid, similar to and slightly better than the results for FAST TCP in Fig. 4(a). Fig. 6(b) consider
a more challenging “baseline” path with higher RTT (246 ms) and significant fluctuating load due to the background
Internet traffic. Again we observe rapid convergence to bandwidth share for each of three parallel Madison flows
(starting at time 0, 32 s, and 59 s, respectively). Madison throughputs fluctuate as the background traffic load fluctuates,
with total throughput (for Madison flows plus background flows) remaining steady and close to the bottleneck capacity
(100 Mb/s). No packet loss is observed, likely due to the fairly large bottleneck buffer capacity (484 KB) on this
hybrid commercial and high speed research network path. Results in Fig. 6(c) are similar to Fig. 6(b) for a commercial
Internet path with lower RTT and lower bottleneck buffer capacity (142 KB). In this case packet loss also contributes
to Madison flow throughput fluctuations, yet Madison still achieves near-equal bandwidth sharing and fairly steady
total bottleneck link load.

We next evaluate how FAST TCP, BIC, and Madison each share bandwidth with parallel Reno flows that
share a common bottleneck. Representative results for the challenging “baseline” paths are provided in Fig. 7(a)
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(a) Bsize = 1320 KB, RTT = 260 ms, 16 hops (WI to Brazil).

(b) Bsize = 140 KB, RTT = 261 ms, 15 hops (WI to central China).

Fig. 7. Bandwidth sharing with Reno (Uxt ≈ 70%, C = 100 Mb/s, Reno Wmax = 172 KB).

(Bsize = 1320 KB) and Fig. 7(b) (Bsize = 140 KB). In both figures there is significant bottleneck load (60%–70%)
due to other Internet cross-traffic. Note that in each figure, a Reno flow is started at time 0. At 30 s, another flow using
the given newer protocol, such as FAST TCP in Fig. 7(a)(i), starts. At 60 s, the Reno flow terminates, and at time
92 s another Reno flow starts. In Fig. 7(a)(i), there is no observed packet loss. The FAST TCP flow shares bandwidth
fairly with the on-going and new Reno flow, and gradually converges to a significantly higher throughput that fully
utilizes the bottleneck. The gradual convergence, due to the longer RTT than in Fig. 4(b), has also been observed in
previous work [11]. In Fig. 7(a)(ii), BIC rapidly achieves its bandwidth share, but the BIC flow causes degradation
in the throughput and loss rate for the on-going as well as new Reno flow. Fig. 7(a)(iii) shows that the Madison flow
rapidly converges to its bandwidth share while not degrading the performance of the Reno flows. FAST and Madison
cause no degradation in the Reno flows because they maintain a low average backlog in the network. Fig. 7(b) provides
similar results for the case where packet loss occurs due to smaller bottleneck buffer capacity. Note that FAST and BIC
achieve lower throughputs due to the packet losses at a bottleneck with fairly high load from existing Internet traffic.
To our knowledge, the impact of existing Internet traffic on FAST TCP and BIC performance has not previously been
published. Fig. 7(b)(iii) shows that Madison throughput fluctuates more due to greater fluctuations in the bottleneck
queue length; on the other hand, overall bottleneck throughput (not shown in the figure) remains steady and close to
C . For paths with lower RTT, lower C , and/or less cross-traffic, the differences among FAST, BIC, and Madison are
less pronounced. From the large number of experiments, we find that on long RTT paths with high bandwidth, FAST
TCP takes over 30 s to reach its bandwidth share 1 and BIC TCP creates packet loss and has trouble maintaining high
throughput on paths with low Bsize. In all experiments we have run Madison flows share bandwidth equally with other
Madison flows and fairly with Reno flows, as it is designed to do.

5.3. Protocol throughput comparisons

In this section we discuss results of back to back experiments over a variety of Internet paths. As explained in
Section 5.1, we only retain results if the average load due to background Internet traffic is the same throughout the
back to back transfers.

Fig. 8 provides representative results for Internet paths that present a challenge for transport protocol performance.
For each protocol in each figure, the curve shows the cumulative data transferred vs time, the number in parentheses

1 This has been previously observed [11].
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(a) Baseline path, Bsize = 158 KB
Uxt ≈ 42%, C = 100 Mb/s
RTT = 278 ms, WI to North-Eastern China.

(b) Moderate RTT, Bsize = 172 KB
Uxt ≈ 70%, C = 500 Mb/s
RTT = 78 ms, WI to San Diego.

(c) Negligible Cross-Traffic, Bsize = 2000 KB
Uxt < 10%, C = 100 Mb/s
RTT = 196 ms, WI to Taiwan.

Fig. 8. Protocol performance comparison: C ≥ 100 Mb/s, RTT >70 ms.

in the legend provides the number of packets lost per 10 000, and the number in square brackets provides the average
network backlog for the flow. The curve labeled A × Time shows the amount of data that would be transferred if
the protocol throughput is equal to the unused bottleneck link capacity before and after the back-to-back protocol
transfers. Note that in Fig. 8(a), Madison has throughput very close to A × Time, with loss rate 3.9 × 10−4 and
average backlog of 2.7 packets. This figure is for a path with the challenging “baseline” characteristics and with small
(158 KB) bottleneck buffer (Bsize). Fig. 8(b) is for a path with similar characteristics but higher C (500 Mb/s) and
more moderate RTT (78 ms). FAST TCP and BIC outperform Reno in both of those paths. On the other hand, BIC
throughput is hindered by the small Bsize and FAST TCP is only slowly converging to higher throughput (due to large
RTT and non-negligible packet loss caused by the existing Internet cross-traffic). Hence, Madison outperforms FAST
and BIC for such paths. Fig. 8(c) is for a path with similar characteristics to the one in Fig. 8(a) but with lower cross-
traffic load Uxt and a large Bsize (2000 KB). Lower Uxt improves the throughput of each protocol. The key change is
the larger Bsize, which improves BIC throughput and lowers the loss rate for the other protocols. In this case, Madison
still outperforms BIC because the packet losses decrease throughput in the BIC flow. Note also that Africa has slightly
better performance than Reno. We found that in most of our experiments, Africa only performed slightly better than
Reno. Hence, we omit the Africa results from the rest of the graphs in this paper.
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(a) C = 24 Mb/s A/C = 0.4, RTT = 113 ms, Bsize = 392 KB WI
to Ireland.

(b) C = 10 Mb/s, Reno p = 3.8% A/C = 0.18, RTT = 72 ms,
Bsize = 160 KB WI to CA.

Fig. 9. Protocol performance comparison: Lower C.

Fig. 9 provides results for paths with lower bottleneck link bandwidths and more moderate RTT than in Fig. 8.
In this case, there are smaller differences in the protocol throughputs and loss rates. We note however, that FAST
throughput is still somewhat hindered by the loss rate due to cross-traffic on the bottleneck. Also note that for these
lower bottleneck link bandwidths, the slope of the curves changes during the 20–30 s data transfers, indicating that
the aggregate load due to existing Internet cross-traffic is varying more with time than in the paths in Fig. 8. This is
likely due to lower numbers of flows traversing these lower capacity links.

6. Conclusions

This paper has developed new methods for computing bottleneck link characteristics in a network path, for sharing
bandwidth fairly with Reno flows, and for achieving rapid convergence to bandwidth share, all from simple path
characteristics (i.e., average and minimum RTT, loss rate, and bottleneck link capacity). We have also developed a
new protocol, TCP-Madison, that uses the new quantitative methods to implement fair sharing with Reno flows, equal
bandwidth sharing with other Madison flows regardless of their RTT values, rapid convergence to bandwidth share,
high bottleneck link utilization, and low network backlog. The key congestion avoidance mechanism in TCP-Madison
is to use a low average network backlog when there is no packet loss, and to reduce the average network backlog of
the flow when packet loss rate increases. The protocol also has five simple parameters, four of which have fixed values
for all hosts, and the fifth is the minimum average time between RTT samples.

We implemented the Madison protocol, as well as FAST TCP, BIC-TCP, and Reno. Experiments over hundreds
of PlanetLab and other live Internet paths show that the Madison protocol is simple to implement and achieves rapid
convergence to bandwidth share without inducing packet loss, at flow start-up as well as in response to changes in
cross-traffic congestion. The results show that TCP-Madison (a) shares bandwidth fairly with Reno flows, (b) greatly
outperforms FAST TCP as well as Reno on congested as well as lightly loaded paths with moderate to high RTT, and
(c) outperforms BIC on paths with relatively small bottleneck link buffers. For example, on a congested path from
Wisconsin to San Diego, Madison achieves four times higher throughput than FAST TCP and over ten times higher
throughput than Reno, while maintaining a total average network backlog of only 3.5 packets and a loss rate of only
2.5 per 10 000 packets sent. Madison outperforms FAST TCP due to its quick convergence to bandwidth share, rapid
adaptation to changes in cross-traffic load, and tolerance of packet loss when transmitting at bandwidth share.

On-going research includes extensions to the TCP-Madison protocol for differentiated service bandwidth
allocations, optimizing the protocol for wireless networks, and technology transfer to industry.
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