Published in CCS’08: Proceedings of the 15th ACM Conference on Computer and Communications Security, Alexandria, Virginia, October 2008

Enforcing Authorization Policies using
Transactional Memory Introspection

Arnar Birgisson
School of Computer Science
Reykjavik University
arnarb@7@ru.is

Vinod Ganapathy
Department of Computer Science
Rutgers University
vinodg@cs.rutgers.edu

ABSTRACT

Correct enforcement of authorization policies is a difficult task, es-
pecially for multi-threaded software. Even in carefully-reviewed
code, unauthorized access may be possible in subtle corner cases.
We introduce Transactional Memory Introspection (TMI), a novel
reference monitor architecture that builds on Software Transac-
tional Memory—a new, attractive alternative for writing correct,
multi-threaded software.

TMI facilitates correct security enforcement by simplifying how
the reference monitor integrates with software functionality. TMI
can ensure complete mediation of security-relevant operations,
eliminate race conditions related to security checks, and simplify
handling of authorization failures. We present the design and im-
plementation of a TMI-based reference monitor and experiment
with its use in enforcing authorization policies on four significant
servers. Our experiments confirm the benefits of the TMI architec-
ture and show that it imposes an acceptable runtime overhead.

Categories and Subject Descriptors. D.4.6 [Operating Systems]:
Access controls; D.1.3 [Software]: Concurrent programming

General Terms. Languages, Security
Keywords. Reference monitors, Transactional memory

1. INTRODUCTION

Security enforcement mechanisms must be implemented with spe-
cial care. Because attackers may exploit exceptional state transi-
tions, enforcement must be correct even on uncommon code paths,
for unusual interleavings of execution, or during abnormal error
conditions. Experience shows that achieving these goals is chal-
lenging, especially for multi-threaded software [37, 62]. This pa-
per introduces Transactional Memory Introspection, an architecture
that can significantly simplify the task of correctly implementing
security enforcement mechanisms.

Our work is based on Software Transactional Memory (STM)
techniques for declarative concurrency control (e.g., [32, 33, 35,
52]). STM techniques are an active area of research, especially in
connection to multi-core trends in hardware concurrency [42]. With

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CCS’08, October 27-31, 2008, Alexandria, Virginia, USA.

Copyright © 2008 ACM 978-1-59593-810-7/08/10. ... $5.00.

Mohan Dhawan
Department of Computer Science
Rutgers University
mdhawan@cs.rutgers.edu

Ulfar Erlingsson
School of Computer Science
Reykjavik University
ulfar@ru.is

Liviu Iftode
Department of Computer Science
Rutgers University
iftode@cs.rutgers.edu

STM, a runtime system ensures that code sections have effects as
if they were executed in serial order; typically, those code sections
are marked using language-level annotations such as atomic or
transaction. STM constrains concurrency without relying on
error-prone locking and provides attractive guarantees, such as
consistent recovery from failures. Although current STM systems
incur high costs, hardware acceleration and language support may
soon provide competitive overhead [42]. Therefore, in the near
future, much software may be written to use STM techniques.

Transactional Memory Introspection (TMI) is a reference moni-
tor architecture that builds on STM semantics and machinery. TMI
allows security enforcement to benefit from STM guarantees, yet
remains compatible with existing security mechanisms, such as
those based on history- or state-based enforcement [2, 17, 30]. TMI
helps ensure that enforcement remains correct, even in corner cases.
In particular, TMI-based enforcement needs neither consider con-
current interleavings of execution nor worry about remedial steps
on policy violation.

Notably, TMI changes how security enforcement is integrated
into software functionality. TMI builds on the precise bookkeep-
ing, or readfwrite sets, that STM runtime system maintain to de-
tect read/write conflicts for concurrent executions. A TMI refer-
ence monitor is implicitly invoked whenever a security-relevant
shared resource is accessed in a transaction—i.e., on all changes
to security-relevant memory objects in the STM read/write sets—
as well as when transactions commit. Application-specific security
checks ensure security-policy compliance, e.g., that all security-
relevant accesses comply with an authorization policy. A transac-
tion is aborted unless all such security checks are successful.

By triggering security checks on resource accesses, TMI can
ensure complete mediation and can also avoid exceptional control
paths and other complexities arising from explicit security checks.
Furthermore, TMI can reduce the latency and performance over-
heads of expensive security checks, such as group membership
tests. Because security checks need not be fully evaluated until a
transaction attempts to commit, costly security-policy evaluation
can be performed lazily, or in parallel with execution.

The TMI architecture is practical. We have designed and imple-
mented TMI reference monitors for enforcing authorization poli-
cies on server software. In particular, we have created a TMI imple-
mentation based on Sun’s Dynamic Software Transactional Mem-
ory (DSTM2) toolkit for Java [34]. In our design, TMI-based en-
forcement can integrate the functionality of existing authorization
frameworks; we have performed such integration with Java stack
inspection [30] and XACML [23]. TMI can also support I/O when
combined with external transactional I/O mechanisms; we have im-

al. dispatch_request () {

az2.

a3. perform request ();

a4.

as. |}

a6. perform request () {

a7z.

as8. if (allowed(principal, resourcel, accessl))
ag. perform_accessl(resourcel);

all. else handle_failurel();

all.

al2. if (allowed(principal, resource2, accessZ2))
al3. perform_access2(resource2);

al4. else handle_failure2();

als.

ale. }

bl. dispatchrequest () {

b2. transaction [principal] {
b3.
b4. perform request ();
b5.
% b6. } /* Commits only if all authorization succeeds */

b7. |}

b8. perform.request () {
b9.

* b10.
b1l.

* bi2.
b13.
bl4. }

Authorization manager, implicitly consulted by TMI for % lines:
switch (<resource, access_type>)
case (resource=R, access_type=A) —
if (—mallowed(principal, R, A))then abort_tx;

perform_accessl(resourcel);

perform_access2(resource2);

(a) Current practice in authorization enforcement: Embeds refer-
ence monitor invocations in application code. Presents difficulties
in (1) identifying resource accesses and ensuring complete mediation;
(2) eliminating time-to-check to time-of-use bugs (in lines a8/a9 and
lines al2/a13); and (3) correctly handling authorization failures.

(b) TMI-based authorization enforcement: Decouples application
functionality from policy enforcement. (1) Ensures complete mediation
of all resource accesses via introspection on memory-access bookkeeping
performed by the STM runtime; (2) prevents race conditions by construc-
tion; and (3) allows simple handling of authorization failures via rollback.

Figure 1. A comparison of traditional and TMI-based enforcement of authorization policies.

plemented such support using off-the-shelf packages for transac-
tional file and database access.

We experimented with TMI-based enforcement of authorization
policies on four servers, comprising a total of nearly 55,000 lines of
code, converted to make use of DSTM2. Our experiments confirm
that the TMI architecture can help ensure the correct enforcement
of security policies, and that it can have acceptable enforcement
overhead. We also found that retrofitting STM techniques and TMI-
based authorization to existing server software was a manageable
task; most of the work was due to DSTM2 limitations that should
disappear in future, more mature, STM systems. Based on our
experiments, we conclude that the TMI architecture is a useful new
alternative for authorization policy enforcement, and that it can be
widely applicable, even to existing software.

In summary, the main contributions of this paper are:

o Transactional Memory Introspection. We introduce TMI, a
new architecture for implementing reference monitors. We de-
scribe its components and applicability, and show that it can
help avoid violation of complete mediation and time-of-check
to time-of-use race conditions, and can simplify handling of er-
rors and authorization failures (Sections 2 and 3).

e An implementation of a TMI reference monitor. We show
that TMI-based enforcement can be practically implemented
and can integrate and build on existing security mechanisms and
frameworks. We present one particular TMI implementation,
suited to the enforcement of authorization policies (Section 4).

o Experimental validation of the benefits of TMI to security
enforcement. We have retrofitted server software with a TMI
reference monitor in a way that integrates with the software’s
existing security mechanisms (e.g., XACML or Java stack in-
spection). Our experiments show that adopting TMI-based en-
forcement can be straightforward, and that this results in simpler
and less error-prone code. We measured an acceptable, average
overhead of less than 11% for TMI-based enforcement of autho-
rization policies (Section 5).

2. MOTIVATION AND BACKGROUND

In this section, we first present our focus application—enforcement
of authorization policies in server software—and explain how TMI-
based enforcement can help overcome many of the difficulties in
the implementation of such enforcement. We then present back-
ground material on transactional semantics and STM techniques.

2.1 Challenges in implementing authorization

Server software must protect shared resources from inappropriate
client access by formulating and enforcing an authorization policy.
Such policies specify, for each shared resource, what principals can
perform which operations. At runtime, a reference monitor should
ensure that each access to a shared resource is authorized.

Unfortunately, as prior work shows, integrating authorization
enforcement into server software is time-consuming and error-
prone. For example, it took almost two years to add invocations
of the Linux Security Modules (LSM) reference monitor to the
Linux kernel [58]. Similar recent attempts to enforce authorization
policies in the X11 server [40, 56], the JVM [25], and IBM Web-
sphere [36] have also become time-consuming, multi-year efforts.

To understand the key difficulties in the current practice of
enforcing authorization policies, consider Figure 1(a), which shows
pseudo-code from a server. This server accesses resources on behalf
of a client (on lines a9 and al3). As an example, if this server is
a chat server, the accesses may correspond to adding a user to a
chat forum. Because a chat forum is a shared resource, accesses to
modify the forum must be authorized, e.g., to prevent users from
joining private forums or forums where they are blacklisted.

As shown in Figure 1(a), authorization is typically enforced
by embedding reference monitor checks with server functionality,
using a programming language pattern such as if...then...else.
Resource accesses are performed conditional on a predicate that
checks whether the access is permitted (lines a8 and al12).

If the access is denied, an error handler is executed (lines al®
and al4) to perform any remedial steps necessary to restore the

ssize_t vfs_read (struct file *file,...) {

if (check permission(file, MAY_READ) == ALLOWED) {
file->f op->read(file,...);
}

}
int page_cache_read (struct file *file,...) {
struct address_space *mapping =
file->f dentry->d_inode->i_mapping;

mapping->a_ops->readpage(file,...);

Figure 2. An example showing violation of complete mediation.

software into a consistent state. In this current practice of authoriza-
tion policy enforcement, three major difficulties must be overcome,
as discussed below.

(1) Difficulty in completely mediating access to resources. Two
properties must be ensured for complete mediation of access to
shared resource. First, each access must be checked and authorized.
Second, each call to the reference monitor must provide the cor-
rect security-relevant metadata, such as the operating principal, the
identities of accessed resources, and the types of access (in the chat
server example, respectively, the user attempting to join, the chat
server forum, and the operation of joining a forum).

In current practice, ensuring these two properties is a chal-
lenge. First, the locations for authorization checks that guard each
resource access (in Figure 1(a), lines a9 and al3) are currently
identified manually. This process can easily fail to identify re-
source accesses, especially along uncommon, easy-to-overlook
code paths. For instance, consider Figure 2, which shows (sim-
plified) code snippets from the Linux kernel. Both vfs_read and
page_cache_read read the contents of a file object (the lines in
bold font). However, the function page_cache_read does not
check for file permissions, since it expects them to have been
checked elsewhere. This omission may lead to an unauthorized
read from a file: Zhang et al. [62, Figure 10] found a case where
an unchecked file object is used by page_cache_read upon a page
fault from a memory-mapped region.

Second, security-relevant metadata, such as the permissions to
check for authorizing access, are also typically identified manually
and hard-coded into server software. Such decentralized, ad hoc
checking is highly error prone, especially as code is changed over
time. Not surprisingly, Jaeger et al. [37, Pages 193-196] found
several inconsistencies in the file-access permissions checked on
different code paths in the Linux kernel.

(2) Difficulty in preventing Time-Of-Check To Time-Of-Use race
conditions (TOCTTOU bugs). With the possibility of concurrent
execution, the current practice of authorization enforcement shown
in Figure 1(a) becomes even more problematic. In multi-threaded
server software, the resource accesses authorized on lines a8 and
al2 must still be valid at lines a9 and al3, respectively, for all pos-
sible execution interleavings. Otherwise, an attacker may be able
to maliciously exploit the resulting race condition, or TOCTTOU
bug [8]. For instance, in the chat server example, if the forum is
public when the authorization check is performed, then there must
be no way for the forum to become private before a user joins; oth-
erwise, an unauthorized user may be able to join a private forum.
It is particularly difficult to prevent TOCTTOU bugs when en-
forcing authorization in efficient, multi-threaded server software,
written using modern, modular techniques. Unless all code paths
are accounted for, attackers may be able to induce context switches

between authorization and access, and perturb shared state in ways
that violate the security policy. For instance, such TOCTTOU bugs
were found in the analysis of the LSM-protected Linux kernel [62].

(3) Difficulty in correctly handling authorization failures and
other errors. Server software must continue to function despite
errors and authorization failures due to one client. In Figure 1(a),
this is the task of the error handlers (lines a1® and a14), which must
return the server software back into a consistent state. Depending
on the service, this may involve executing a complex, uncommon
error path, and performing compensating actions, e.g., to undo
other, previously-authorized operations related to a single server
request [2, 9, 57]. If the security policy that is being enforced is
stateful, the state of the enforcement mechanism may also have to
be wound back. For example, if a chat server user requests to join a
forum, and processing this request involves several steps, then—if
the request is eventually not authorized—an error handler may need
to undo all of the chat server state changes due to the processing of
that request.

Several studies show that error-handling code can be a large
fraction of server software; one IBM survey reports error handling
to be up to two-thirds of code [12]. Authorization failures and se-
curity exceptions account for a large fraction of errors, and they
are no easier to handle than other errors [6, 24]. Much software
simplifies this problem by treating all errors equally: by either ig-
noring them or by halting execution [57]. However, server software
must correctly deal with the corner cases resulting from errors and
authorization failures. In current enforcement practice, shown in
Figure 1(a), the result is likely error-prone and difficult-to-maintain
software.

2.2 Benefits of TMI-based authorization

The TMI architecture helps avoid the above difficulties by decou-
pling security enforcement from application functionality in soft-
ware that uses STM techniques. For this, TMI requires that ac-
cesses to security-relevant, shared resources be enclosed within a
transaction{...} code section, as shown in Figure 1(b).

TMI also requires an application-specific TMI authorization
manager that provides the security checks to be performed for each
access to a security-relevant resource. In addition to implement-
ing checks, this authorization manager also provides the mapping
between low-level access to shared, security-relevant resources
(e.g., individual reads and writes to fields of memory objects) and
policy-specific, security-relevant operations. In a chat server, for
example, the authorization manager might map certain writes to
the shared data structures for users and groups to the operation of
joining a chat forum, when security policy restricts that operation.

As the server executes, all accesses to shared resources within
a transaction are precisely monitored for the read/write sets of the
STM runtime system. (For this, all shared state is identified to the
STM system, e.g., using language-level annotations or types; as
an optimization, security-relevant resources may also be separately
identified to reduce TMI enforcement overhead.) A TMI reference
monitor builds on this bookkeeping to trigger authorization checks.

Specifically, in Figure 1(b), the security-relevant resourcel
and resource? are accessed within a transaction{...} code sec-
tion. Using TMI-based enforcement, those accesses will trigger
authorization-manager-specified security checks corresponding to
those in lines a8 and al2 of Figure 1(a). With TMI, if a transac-
tion is to commit, all such authorization checks as well as a final
transaction validation must have succeeded.

TMI offers improved protection against violation of complete
mediation by ensuring that the reference monitor is implicitly in-
voked whenever shared, security-relevant resources are accessed
within a transaction{...} code section. In particular, with TMI,
a developer need no longer identify and guard individual re-

source accesses as in Figure 1(a). Rather, as shown in Figure 1(b),
transaction{...} code sections may span multiple resource ac-
cesses and method calls; in server software, such a code section
may naturally encompass the code that dispatches and handles
client requests.

TMI also simplifies failure handling: authorization failures sim-
ply cause a transaction abort, thereby reverting back into the consis-
tent state at the start of a transaction. Thus, a server can be assured
that upon an authorization failure, a request will have no effect. As
shown in Figure 1(b), transaction aborts may be silent, and software
may be written to indicate access failure by default. Alternatively,
a transaction abort may throw an exception, as we do in our imple-
mentation of Section 4. With TMI, the reference monitor state itself
can also have transactional memory semantics, which can further
simplify correct failure handling for stateful authorization policies.

For multi-threaded software TMI can reduce the possibil-
ity of TOCTTOU bugs by building on the STM serialization of
transaction{...} code sections. Furthermore, TMI can also allow
lazy or concurrent evaluation of security checks, such as the expen-
sive, high-latency group-membership tests often used to check au-
thorization. This enhancement can significantly reduce overheads,
as shown in Section 5; it is discussed further in Section 3.3.

Because TMI reference monitors are integrated directly with an
STM runtime system, they can perform introspection to determine
security-relevant information, such as old or new data values, ac-
cess types, or other authorization metadata. Such introspection also
allows TMI-based enforcement of history-based or data-dependent
authorization policies, as well as the enforcement of security poli-
cies based on well-formed transactions [14].

2.3 Software transactional memory

As defined by the database community [31], a transaction is a se-
quence of actions that must satisfy the ACID properties: Atomicity
requires that all actions complete successfully, in their totality, (a
transaction commit), or that none of them have any visible effects
(a transaction abort). Consistency requires transactions to maintain
application-specific data invariants that hold before transactions.
Isolation requires transaction to give the same result, irrespective
of other simultaneous transactions. Finally, Durability requires that
the data changes of a committed transaction must be persistent and
visible to all subsequent transactions.

STM techniques aim to ease the writing of correct, multi-
threaded programs by providing an abstraction for transactional
access to shared-memory data. Many STM systems extend a pro-
gramming language with new code sections, identified by a special
keyword (often atomic). These code sections execute with trans-
actional semantics as defined above, except that memory is still
transient (the D from ACID is missing). In this paper, we denote
atomic code sections using transactionf...}, to avoid confusion
with any given STM proposal.

To see the benefits of STM transactions as a programming ab-
straction, consider the example shown in Figure 3 (adapted from
[42]). In this example, data is popped off a first stack, S1, and
pushed onto a second stack, S2. If executed concurrently, this
code must simultaneously synchronize access to both stacks—
otherwise, execution interleaving may expose abnormal states,
e.g., states where data is on neither stack. Conventionally, this
synchronization would be achieved as shown in Figure 3(a): by
acquiring dedicated locks for S1 and S2, before performing the
pop () and push() operations.

Unfortunately, programming using locks is error-prone. The
programmer must ensure that all the required locks are acquired;
otherwise, a race condition may be possible. The programmer must
also ensure that locks are always acquired in a correct order; other-
wise, a deadlock may be possible.

acquire (S1.Iock);
acquire (S2.1lock);
value =S1.popQ);
S2.push(value);

release (S2.1lock);)
release (S1.1lock);

transaction {
value = S1.popQ);
S2.push(value);

(a) Lock-based programming | (b) STM-based programming

Figure 3. A comparison of code for atomically moving a data
item between two stacks.

In contrast to locks, with STM the programmer need not specify
how concurrency control is achieved: automatically, each declared
transaction{...} code section will execute atomically. Thus, the
code in Figure 3(b) can provide the same functionality, yet be
simpler and less error-prone than the code in Figure 3(a).

STM systems must be able to detect and resolve runtime con-
flicts between different transactions. There is great variability in
the implementation of STM runtime support. For instance, imple-
mentations may use compiler support [3], support from software
libraries [34], or hybrid schemes that combine hardware and soft-
ware [18, 22, 49]. Similarly, STM systems also differ in the granu-
larity at which they detect conflicts: word-based STM tracks indi-
vidual memory words (these include most hardware STM systems),
while object-based STM tracks language-level objects (these in-
clude most language-based STM systems). A comprehensive dis-
cussion is beyond the scope of this paper; the book by Larus and
Rajwar gives a good overview of much recent research [42].

Any STM runtime system must track the data dependencies of
transactions, i.e., what data is read, as well as what data is writ-
ten. The STM runtime system must validate that the sets of those
reads and writes (the read/write sets) are not in conflict with other
transactions; a conflict occurs when, concurrently, the same mem-
ory object is used by multiple transactions, and at least one trans-
action changes the value of that memory object. An STM runtime
system that considers only conflicts between accesses within trans-
actions can provide weak atomicity; STM systems that also detect
conflicts from non-transactional activity, and provide strong atom-
icity, may incur greater costs and are less common [1, 33, 53]. Val-
idation can happen eagerly or lazily, as long as each access is val-
idated before a transaction commits. If validation detects conflicts,
the STM runtime system consults a contention manager to decide
which transaction to commit. To allow other, conflicting transac-
tions to be aborted, the STM runtime system must also provide
rollback mechanisms that undo the execution effects of those trans-
actions. Finally, STM systems may support nested transactions, or
other transaction composition.

For software that uses declarative concurrency control, existing
STM mechanisms already perform the majority of the work needed
for TMI-based enforcement. Thus, the adoption of TMI-based se-
curity enforcement is likely to add little in terms of complexity,
mechanism, or performance overhead.

3. TRANSACTIONAL MEMORY
INTROSPECTION

In this section, we describe the TMI architecture and its use in
enforcing authorization policies. We also show a concrete example
of TMI-based enforcement and discuss enhancements.

3.1 The TMI architecture

The TMI architecture aims to raise the level of abstraction in the
implementation of security enforcement mechanisms. It does so
by decoupling application functionality from security enforcement
code, much as STM techniques decouple applications from con-

Validation

Execution

Read and

‘eager validation -
(eag write sets

or authorization
possible)

Y

validate

TX body > Contention

manager

lost conflict

roll back work and retry

Authorization Commit

2 7
,/ Authorization -
/ policy /
’

Authorization | Success

|
: checks | Commit logic
|

Jfailure

Abort,
no retry

Figure 4. An overview of a TMI reference monitor and the lazy, commit-time enforcement of a stateless authorization policy. The
solid boxes are standard components of STM systems, while the dotted boxes show components added by the TMI architecture.

cerns about lock acquisition order. TMI-based enforcement can
thereby eliminate concerns about check placement, race conditions,
and exceptional execution paths.

A TMI reference monitor observes the execution of transac-
tions in an STM system. Each transaction is associated with a spe-
cific principal; this principal may be given as an explicit argument
to transaction{...} code sections, as shown in Figure 1. The
TMI reference monitor is invoked, implicitly, whenever a security-
relevant, shared resource is accessed, so that compliance with the
security policy can be checked. The TMI reference monitor is also
invoked at the end of a transaction to ensure that only policy-
compliant transactions are allowed to commit.

With TMI, the application software defines the security policy,
the set of resources that are security-relevant, as well as the code
that checks security-policy compliance. In particular, when TMI
is used for authorization in a server, the server code must identify
the resources for which access must be authorized. Depending on
the underlying STM system, this may require code changes, such
as annotations. The server must also define an authorization man-
ager that contains code for security checks; upon each access to
a security-relevant resource, the TMI reference monitor consults
the authorization manager. The authorization manager may evalu-
ate application-specific expressions and maintain its own security
state. Furthermore, TMI supports introspection on security-relevant
information, such as the old or new values for a memory access.
Thus, a TMI reference monitor can observe a rich trace of exe-
cution activity, and evaluate predicates on that trace; this allows
the enforcement of most practical security policies—in particular,
history-based policies and other EM-enforceable policies [50].

Figure 4 shows how a TMI reference monitor extends the
mechanisms of an STM runtime system. As transactions ex-
ecute, the STM runtime system tracks accesses to shared re-
sources in its read/write sets. All accesses within the scope of a
transaction{...} code section are tracked, including those that
happen indirectly (e.g., through deeply-nested method calls). To
ensure complete mediation, the TMI reference monitor is invoked
whenever a security-relevant resource is added or updated in the
read/write sets. For some STM systems, a language-level type, or
annotation (e.g., @sensitive in our DSTM2 implementation) is
sufficient to guarantee these TMI reference monitor invocations.
Alternatively, security-relevant resources may be placed in the
read/write sets of concurrently-executing, dummy transactions, so
that they trigger a conflict. (A similar technique is used to trigger
efficient retry in some STM systems [32].)

As seen in Figure 4, TMI extends the validation step for STM
transactions to also enforce correct authorization, or general com-

pliance with security policies. With TMI, a transaction is aborted
(and not retried) if it performs unauthorized resource access or oth-
erwise violates the security policy. Alternatively, certain authoriza-
tion failures such as those due to a timeout, might trigger a retry (al-
though we have not pursued that option). Upon an abort, the STM
runtime system will roll back all effects of a transaction, including
any changes to the state of the TMI reference monitor. Thus, the
application is restored into the same consistent state as before the
transaction, apart from an error code that is returned to the applica-
tion to indicate the security violation.

The results of security checks must be established before trans-
actions attempt to commit. TMI-based enforcement should abort a
transaction if, and only if, a security check fails and validation of
the complete execution finds no conflicts. However, security checks
need not be fully evaluated when the TMI reference monitor is in-
voked; the bulk of the work can often be performed lazily, or even
overlapped with the execution of the transaction. We have used both
lazy and overlapped enforcement of authorization policies for our
experiments in Section 5, and found that they can significantly re-
duce overheads.

The TMI reference monitor is invoked implicitly upon access
to security-relevant resources, as described above. However, there
are cases when code within an STM transaction must explicitly
query the security policy. For example, a tar utility that archives
all the files in a directory might need to create a consistent archive,
even when one file is not accessible. Therefore, for such excep-
tional cases, the TMI architecture supports immediate evaluation
of security policy, without the risk of a transaction abort. Such sup-
port can be implemented in many ways, e.g., by exposing a direct,
Boolean authorization query interface to application software.

The underlying STM system, and its language integration, has
an influence on aspects of TMI-based enforcement that range from
efficiency to applicability. For example, most of the performance
overheads that we measured in our experiments in Section 5 were
due to inefficiencies of the library-based DSTM2 system. Also,
as an extreme data point, TMI may not be not compatible with
some limited, hardware-only transactional memory proposals, such
as [19, 20]. More commonly, TMI-based enforcement must take
into account any gaps in complete mediation that may arise as
a result of the limited, weak atomicity provided by many STM
systems. For example, in server software, this may entail placing
transaction{...} code sections around all handling of requests,
since any request processing might access a security-relevant,
shared resource.

A TMI reference monitor is best built on an STM system with
comprehensive support for I/O and external state, since security

/* @sensitive */ class GradeCell {
StudentID sid;
ProjectID pid;
int grade; {

/* Other class declarations omitted for brevity */
GradeCell[][] sheet;

String getGrade(int s, int p)
{

return + sheet[s][p].get_grade(Q);

}

String setGrade(int s, int p, int g) {
sheet[s][p].set_grade(g);
return "" + g;

}

/* Server handling of a command for a client principal */

String doRequest(Object principal, String command)

}; try transaction[principal] {

} catch(AccessDeniedException) { }
} return null;

Tokenizer st = new Tokenizer(command);
String action = st.nextToken();
int student = st.nextInt();
int project = st.nextInt();
if (action.equals("getGrade™)) {
return getGrade(student, project);
} else if (action.equals("setGrade")) {
int grade = st.nextInt();
return setGrade(student, project, grade);

).

switch (<resource, access_type>)

XACML GradeSheet authorization manager: if xacml_getdecision evaluates to “permission denied”, TMI aborts the transaction.

case (resource=GradeCell G/field accessed is grade, access_type=read) — xacml_getdecision(principal, G, getGrade);
case (resource=GradeCell G/field accessed is grade, access_type=write) — xacml_getdecision(principal, G, setGrade);

Figure 5. Code fragment showing the GradeSheet changes needed for TMI-based enforcement in our DSTM?2 implementation.

policies often aim to constrain externally-observable effects. For
example, some STM systems extend transactional semantics to
I/O in transaction{...} code sections using the support for dis-
tributed transactions provided by an increasing number of I/O sys-
tems (e.g., the NTFS file system [45] and MySQL database [44]).
Techniques for extending STM semantics to I/O and external state
are an active area of research [21, 42, 48]. For this paper, we
have extended an STM implementation to provide transactional
file and database I/O, using off-the-shelf transactional I/O packages
(e.g., [38, 44, 45]).

3.2 Example of TMI-based policy enforcement

As a concrete example of using a TMI reference monitor to en-
force authorization policies on client requests, consider Figure 5,
which shows a snippet of code taken from GradeSheet, a Java-
based multi-threaded server to manage student grades. For our ex-
periments in Section 5, we modified GradeSheet to make use of the
object-based STM system DSTM2.

The key data structure in GradeSheet is sheet, a two-dimensional
array of GradeCell objects, each of which stores the details of a
student, a project, and a granted grade or an average grade. The
sheet table can be accessed by multiple principals and each access
must be properly authorized. For instance, GradeSheet may enforce
that a teaching assistant can only access/modify the student grades
in projects that she supervised. GradeSheet parses commands is-
sued by clients in the top-level function doRequest, which dis-
patches requests; Figure 5 shows how getGrade and setGrade
are dispatched and access the sheet table.

The GradeSheet code must be changed in three ways to make
use of DSTM2 and TMI-based enforcement; Figure 5 shows the
relevant code in bold. First, GradeSheet code that may access
shared resources is wrapped in a transaction{...} code section
that correctly identifies the acting principal. Second, with TMI-
based enforcement, server code must correctly handle a transac-
tion abort because of authorization failure; for GradeSheet, upon
an authorization exception no code needed to be executed since
doRequest already indicated failure with return null. Third,
DSTM2 requires shared objects to be especially marked (accom-
plished by the @sensitive annotation before the GradeCell def-
inition); it also requires reads and writes to these shared objects to
happen via accessor functions such as set_grade and get_grade.

Aside from these changes, a separate authorization manager
must also be provided to enable TMI-based enforcement. We
have specified GradeSheet authorization policy using XACML;
the policy details are given in Section 5.1. Parts of the autho-
rization manager are shown in the lower half of Figure 5. The
TMI reference monitor is invoked on each read or write of a
GradeCell object, since those objects are the security-relevant
resources. The GradeSheet authorization manager specifies how
xacml_getdecision checks must be invoked based upon the type
of access that was performed. For example, a read access to the
grade field indicates that the getGrade security-relevant opera-
tion is being performed, which triggers the relevant check in the
authorization manager.

3.3 Enhancements

The basic TMI reference monitor architecture presented above can
be augmented in several ways, as discussed below.

(1) Eager, lazy and overlapped enforcement. With eager en-
forcement, authorization checks happen immediately upon each
security-relevant update to the STM read/write sets of a transaction;
each authorization check must be fully completed before the trans-
action continues execution. Explicit authorization queries, e.g., as
described in the tar utility example in Section 3.1, always trigger
eager enforcement.

In contrast, with lazy enforcement, only the inputs to autho-
rization checks are evaluated, or copied, when the TMI reference
monitor is invoked. Validation and authorization happens at the end
of the transaction, when all security-relevant operations performed
during the transaction are authorized en masse. If any of the opera-
tions is not authorized, the entire transaction fails.

With overlapped enforcement, each transaction may spawn an
auxiliary thread to perform policy evaluation. Subsequently, when
the transaction performs a security-relevant operation, the inputs
for authorization checks are dispatched in a message to this aux-
iliary thread, which then performs the authorization checks con-
currently. During validation, transaction execution joins with the
auxiliary thread, and the transaction is aborted if any authoriza-
tion checks failed. Our experimental evaluation in Section 5 shows
that overlapped enforcement is effective in improving performance

when both the transaction body and policy evaluation have high
latency, or are computationally expensive.

With lazy and overlapped TMI-based enforcement, transactions
are speculatively executed with optimistic assumptions. Like other
speculative security enforcement, such as that of [46, 61], this may
benefit performance but may also expose new side channels and
increase the risk of leaking information. (Also, like all substantial
runtime mechanisms, the STM system itself may add new covert
channels.) For example, given an STM runtime system that pro-
vides weak atomicity and updates memory in-place (e.g., that in
[3]), lazy and overlapped TMI-based enforcement will expose in-
formation to non-transactional activity. Thus, lazy and overlapped
TMI-based enforcement is more suited for policies for integrity,
auditability, etc., than for policies where confidentiality is critical.

(2) Stateful authorization policies. In stateful authorization poli-
cies, such as those expressed using security automata [17, 50], each
security-relevant operation potentially alters the state of the policy.
Enforcing such policies requires two enhancements to the basic de-
sign of the TMI reference monitor.

First, the order in which security-relevant operations happen
decides how the state of the policy changes, and must therefore
be recorded. This is achieved by building a TMI introspection log
on top of the STM read/write sets. Each read/write to an object in
a transaction is added to the end of this log, thereby preserving the
order in which these operations happen. During enforcement, the
introspection log is used to update the state of the authorization
policy. Second, for stateful policies, it is also important to have
transactional semantics on the state of the policy. This is because
upon an authorization failure, the state of the policy may also have
to be restored.

(3) Fingerprints. A security-relevant operation on a resource may
often consist of several low-level accesses to that resource. A fin-
gerprint maps each such security-relevant operation to the low-
level resource accesses that constitute the operation [27]. For ex-
ample, in FreeCS, a chat server that we evaluated (Section 5.3), the
security-relevant operation of a user joining a chat room involves
writing the field usrList of an object called Group, followed by
writing to a field grp of an object called User. Prior work pre-
sented techniques to automatically mine such fingerprints by ana-
lyzing server source code [27].

For each security-relevant operation that consists of multiple
resource accesses, we supply the TMI reference monitor with its
fingerprint. The reference monitor matches the resource accesses
specified in the fingerprint against updates to the read/write sets to
determine when security-relevant operations are performed during
the transaction. In some cases, such as the FreeCS example dis-
cussed above, the fingerprint may consist of a sequence of resource
accesses (rather than a set). Thus, the TMI reference monitor must
be extended to support an introspection log, and fingerprints must
be matched against this log to determine when a corresponding
security-relevant operation is performed.

4. IMPLEMENTATION

We implemented a TMI reference monitor by extending Sun’s
Dynamic Software Transactional Memory (DSTM2) package [34].
Although not described here, we have also implemented TMI in
Haskell, where TMI benefits from the static guarantees and strong
atomicity of Haskell STM [33]; a technical report contains a formal
semantics and other details of this implementation [7]. Below, we
describe the details of our DSTM2 implementation.

DSTM2 provides a framework for Java object-based STM
systems, along with some concrete STM runtime mechanisms.
DSTM2 supports STM fundamentals but not uncommon fea-
tures (e.g., nested transactions). Thus, DSTM2 mechanisms track

read/write sets, perform validation and contention management,
and commit/abort transactions. In particular, DSTM2 contains two
mature, substantial STM mechanisms for detecting and resolving
conflicts (the obstruction-free and shadow @atomic shared object
factories; those factories are described in detail in the DSTM2 pa-
per [34]).

Our implementation is compatible with any STM mechanism
that fits into the DSTM2 framework; in particular, we have applied
TMI-based enforcement with several different DSTM?2 contention
managers and both types of @atomic objects. Our implementation
also allows TMI reference monitors to make use of other, existing
security mechanisms; for our experiments, we have integrated TMI
with XACML [23] and Java Stack Inspection [30].

Our implementation extends DSTM2 by interposing on up-
dates to read/write sets and on the transaction commit/abort logic.
Security-relevant, shared objects are identified with a @sensitive
annotation that is synonymous with @atomic. A TMI reference
monitor is invoked at the start and end of transactions (just before
commit or abort), as well as on each access that may change a
transaction’s read/write set (e.g., on all accesses to @sensitive
objects). These invocations trigger the application-specific autho-
rization manager, which filters out access to security-relevant ob-
jects and performs authorization checks. These invocations may
also copy relevant metadata; for example, if the authorization
policy is specified using security labels of subjects and objects
(e.g., as in SELinux), those labels may be copied for use in au-
thorization checks. If an access is not authorized, the transac-
tion is aborted and an AccessDeniedException is thrown. (This
is the only exception a transaction can throw: for other excep-
tions, DSTM2 implements a fail-stop model.) The handler for the
AccessDeniedException can optionally be used to specify com-
pensating actions that must be executed upon an authorization fail-
ure.

In our implementation, most authorization checks can be de-
ferred by copying all security-relevant metadata into an introspec-
tion log. Security-relevant information can change during a trans-
action, so the introspection log must contain immutable copies of
this metadata for input to authorization checks. Our implementa-
tion supports both lazy-until-commit and overlapped enforcement
of deferred authorization checks. (Explicit, functional checks may
not be deferred, as discussed in Section 3.1, and are always eagerly
evaluated.) In our experiments, we have also used the introspection
log to enforce history-based authorization that detects the finger-
prints of security-relevant operations.

We also extended DSTM2 to support transactional I/O, by
adding to the commit/abort logic support for two-phase distributed
transactions [31]. Using this support and the Apache Commons li-
brary [38], we extended STM semantics to file [/O. We also added
partial DSTM?2 support for transactional modifications to back-end
databases using java.sql.Connections.

Overall, not counting library code, our implementation adds
less than 500 lines of Java code to DSTM2; each application-
specific authorization manager is between 100 and 200 lines. We
also created transactional (@atomic) versions of standard Java data
structures and containers; these, and other modifications comprise
a few thousand lines of code changes.

Our TMI reference monitor implementation applies only to
DSTM2 server software—just as the TMI architecture applies only
to software that uses declarative concurrency control. Because no
such software existed, we first had to retrofit DSTM2 onto server
software in order to experimentally validate our implementation.
This porting involved three changes (the first two, substantial
changes would not be required with a language-integrated STM
system, such as [3, 32]).

First, all shared objects had to be identified, and their class re-
placed with an equivalent, transactional class, annotated with the
@atomic or @sensitive keywords. For this, we had to imple-
ment transactional versions of common data structures, such as
java.util.HashMap and java.util.Vector; for simpler data
structures, containing only scalar values or strings, we could use
DSTM?2 support for automatic generation of @atomic classes. Sec-
ond, the reads and writes of fields in transactional objects had to
be changed to use DSTM2 accessor functions. For example, the
statement sheet[s][p].grade = g in GradeSheet’s setGrade
method had be modified to sheet[s][p].set_grade(g) as
shown in Figure 5, where the set_grade method is a DSTM2
accessor function to set the field grade of a GradeCell object.
Third, and most simply, a transaction{. ..} block had to be intro-
duced around the handling of client requests, as well as other code
that accesses shared resources.

Given the above modifications, adding TMI-based enforcement
of authorization policy was easy for the server software in our ex-
periments. First, the principals had to be identified and exposed
for each transaction{...} code section. (In our implementa-
tion, principals are transaction arguments, as shown in Figure 5,
where the principal variable contains the principal.) Second, an
application-specific authorization manager had to be written for
instantiation at the start of server execution. This task primarily in-
volved understanding the server’s authorization policy, the server’s
security-relevant resources, and what metadata to copy into the
introspection log. Finally, for some experiments, we had to inter-
face the authorization manager with external security mechanisms
(namely, XACML [23] and Java Stack Inspection [30]).

5. EVALUATION

This section reports on the retrofitting of four servers, comprising
nearly 55,000 lines of Java code, with TMI-based authorization
using our DSTM2-based implementation. Our intent with these
experiments was to evaluate whether the TMI benefits held in
practice.

The results of our evaluation confirm that TMI-based enforce-
ment is practical, and can be easily adopted by STM servers to
facilitate the writing of simple, correct authorization code. Further-
more, our results confirm that TMI can be integrated with existing
security mechanisms, that TMI has acceptable enforcement over-
head, and that TMI can adapt enforcement and overhead to each
workload—in some cases allowing absolute performance improve-
ments over traditional authorization.

5.1 GradeSheet: A grade management system

As discussed in Section 3.2, GradeSheet is a simple client/server
Java application to manage student grades, containing about 900
lines of code. Principals are either graders (professors or TAs) or
students. GradeSheet enforces the following authorization policy:
(1) a professor may read/write all grades and read all grade aver-
ages; (2) a TA may read/write grades for projects that she super-
vised and read any project’s grade average; and (3) a student can
only read her own grades and project grade averages.

We ported GradeSheet to use TMI-based authorization policy
enforcement and converted all shared objects to their transactional
equivalents. The @sensitive GradeCell objects must be autho-
rized based upon their security-relevant attributes, namely grades,
student IDs and project IDs. We integrated the TMI authorization
module with both a custom-built policy engine as well as another
one that used XACML [23] policies.

5.2 A Tar archive service

We experimented with a 5,000 line Java service that allows standard
Tar archives to be created and processed [55]. We converted this
code to use TMI-enhanced DSTM2, and perform each service
invocation within a transaction. Few lines were changed in this
conversion: we used a simple, static escape analysis to establish
that most state was transaction-local, and that files were the only
security-relevant, shared resources.

Subsequently, we added TMI-based enforcement of file-system
authorization policies to the converted Tar service. We imple-
mented this enforcement with an authorization manager that is also
installed as, and inherits from, the Java SecurityManager [30].
Thus, our TMI reference monitor accurately models system-level
access control in Java.

In particular, our TMI reference monitor is invoked whenever
any files are opened for reading or writing. As before, it can per-
form authorization checks lazily or in an overlapped fashion, by
copying into an introspection log any security-relevant metadata,
including the Java stack-based security context.

We have used our implementation for lazy and overlapped en-
forcement of existing Java stack inspection security policies. We
used java.security.AllPermission, the simplest policy avail-
able for Java stack inspection. Coupled with overlapped enforce-
ment, more complex policies would amplify the trends shown in
our experiments. In particular, potentially more work could be per-
formed in parallel with the main execution.

5.3 FreeCS: A chat server

FreeCS is a Java-based chat server that consists of about 22,000
lines of code [26]. FreeCS allows its users to broadcast messages;
a message broadcast by a user is visible to all other users in the
same group (FreeCS’s equivalent of a chat room). A user can issue
several commands via a FreeCS interface, including commands to
join a new group, invite other users to her group and ban members
from her group; in all, FreeCS supports 47 such commands.

A FreeCS user is associated with a privilege level, e.g., Super-
User, Guest, Punished, Banned; the set of commands that a user
can issue is based upon her privileges. Similarly, a group can also
be Open or Locked: users can freely join Open groups, while spe-
cial privileges are required to join Locked groups. FreeCS enforces
a variety of policies on users and groups. However, these poli-
cies are hard-coded in FreeCS (using language constructs, such as
if...then...else).

We ported FreeCS to use TMI-based authorization policy en-
forcement. We used the TMI reference monitor to both replace
FreeCS’s enforcement mechanisms for several commands, as well
as augment FreeCS to enforce several policies that it currently does
not; we describe a few examples below.

(1) Punished users are disallowed from joining other groups. We
modified FreeCS to use TMI to enforce this existing policy.

(2) Superusers are disallowed from joining a Locked group. This
extends FreeCS policy, in which no restrictions are placed on users
with Superuser privileges.

(3) Bound the number of users who can join a group; as with the
previous policy, this extends FreeCS, which imposes no upper limit
on the number of users in a group.

Our implementation uses the XACML framework to express
FreeCS authorization policies. In each case, if a user is not autho-
rized to perform an operation (e.g., join a group), FreeCS rolls back
the failed operation, and sends a failure message to the user; no ad-
ditional failure-handling code was required.

Overall, our port of FreeCS to use TMI-based enforcement
required about 860 changes in seven classes. In all, we introduced

[write G.usrList — write U.grp |

Figure 6. Fingerprint for the operation corresponding to user
U joining a group G in the FreeCS chat server.

transactions for all 47 FreeCS client requests. Most of the changes
to FreeCS involved replacing reads/writes of transactional objects
with DSTM2 accessor functions. As described in Section 4, this is
a limitation of any library-based STM, which can be overcome with
compiler-based or language-based support for transactions.

Several security-relevant operations in FreeCS consisted of
multiple low-level object accesses. We therefore supplied the TMI
reference monitor with fingerprints to recognize these security-
relevant operations. These fingerprints were also sensitive to the
order of accesses; we therefore used introspection logs as the ba-
sis for TMI-based enforcement. For example, the security-relevant
operation corresponding to a user joining a group involves the fol-
lowing sequence of low-level accesses, in sequence: adding the
user to the usrList of the Group; and setting the grp field of the
User object to the group that the user just joined. The TMI ref-
erence monitor matches the fingerprint for this operation (shown
in Figure 6) against the introspection log to determine whether a
user has attempted to join a group; if so, it consults the policy to
determine whether the operation is authorized.

5.4 WeirdX: A window management server

WeirdX is a Java-based X window server that consists of about
27,000 lines of code [39]. WeirdX supports the X protocol; there-
fore X clients can connect to WeirdX, and communicate with each
other and with WeirdX in much the same way that they do on the
X11 server [60].

Much like the X11 server, WeirdX does not enforce any policies
on X clients that connect to it. Therefore, a malicious X client can
access/modify resources that belong to other clients of WeirdX.
This has serious consequences; an X client can register to receive
events (e.g., keystrokes) sent to other clients, or even shut them
down. Prior work has motivated the need for window management
servers to enforce authorization policies on clients to prevent such
attacks [40].

We ported WeirdX to enforce authorization policies using TMI.
We used TMI in conjunction with the XACML framework to for-
mulate and enforce several policies that have been discussed in
prior work [40], including preventing a rogue X client from killing
arbitrary X clients, and mediating copy/paste operations. For exam-
ple, we enforced the Bell-LaPadula policy on how data copied from
an X client can be pasted to other X clients.! Overall, our port of
WeirdX required about 4,800 changes in 25 classes, and introduced
108 transactions to the code that dispatches X protocol requests to
handlers; as with FreeCS, most of these changes were related to re-
placing reads/writes of transactional objects with DSTM2 accessor
functions. We also had to make a few changes to WeirdX code that
handled output to the screen. In particular, we modified WeirdX to
buffer writes that happen within transactions, and flush the buffers
only upon a transaction commit.

5.5 Performance

We evaluated the performance of three variants of the GradeSheet,
Tar, FreeCS and WeirdX servers. The first variant, No-STM, is an
unmodified server. The second variant, STM-only, is a server that
has been ported to use an unmodified DSTM2, for concurrency
control only. The third server variant, STM-TMI, is the server

'We used IP addresses of X clients as their security labels, though finer-
grained security labels are possible with OS support [56].

ported to use our modified DSTM for concurrency control and to
use TMI-based authorization. In this variant, each client request
to the server is handled as an STM transaction, the TMI reference
monitor mediates on all access to security-relevant resources, and
a server authorization manager performs security checks.

The same authorization policy is enforced in all three server
variants. In the STM-TMI variant, enforcement uses our added
TMI-based enforcement mechanisms, while the No-STM and
STM-only variants use the original server authorization mecha-
nisms. However, only the STM-TMI variant of WeirdX performs
enforcement, since the unmodified server had no security policy.

We ran experiments and measured the performance of the four
servers and their variants. Furthermore, for the STM-TMI variant,
we ran three experiments, using implementations of eager, lazy and
overlapped authorization managers. Figure 7 reports the arithmetic
mean of the measured wall-clock execution time for the following
processing: the handling of a client request in GradeSheet (avg.
over 60,000 requests), the archiving of 10,000 empty files to/from
a ramdisk using Tar (avg. over 10 runs), the addition of a user to
a FreeCS forum (avg. over 750 runs), and creating and mapping
subwindows (as performed by the x11perf/create benchmark [59]).
These experiments included no contention and no authorization
failures; they ran on a quiescent system with Intel Core 2 Duo
processors. The measurements did not significantly vary from the
reported averages.

As Figure 7 shows, lazy TMI enforcement (STM-TMI/Lazy)
always incurs acceptable overheads—under 21% in all cases. Ea-
ger TMI-based enforcement (STM-TMI/Eager) has even lower
overhead for GradeSheet and Tar (which shows a not-statistically-
significant 1% speedup). However, eager enforcement is not a good
strategy for FreeCS and WeirdX, where it results in a significant
slowdown. This is because both FreeCS and WeirdX use a complex
fingerprint to identify security-relevant operations, such as joining
a forum and creating/mapping windows. While lazy enforcement
can match fingerprints once and for all, before commit, eager en-
forcement checks for a match on every security-relevant access. In
particular, the x11perf/create benchmark creates and maps several
hundred subwindows; with eager enforcement, each of the create
and map operations entails fingerprint matching and policy lookup,
which results in a very significant slowdown of WeirdX. Thus, the
choice between lazy and eager TMI-based enforcement can depend
on the authorization strategy, as well as the server software and its
workload.

With overlapped TMI enforcement (STM-TMI/Overlapped),
our implementation creates a thread for each transaction. There-
fore, one may expect significant overhead on short transactions;
indeed, as shown in Figure 7, we measured 54% overhead for
GradeSheet. However, we observed a speedup of 15.8% for Tar;
this is because expensive stack-inspection-based authorization of
Tar can be usefully overlapped with transaction execution. FreeCS
and WeirdX can similarly benefit from having fingerprint match-
ing performed on a parallel thread. (However, for FreeCS, the
best strategy is still lazy, one-shot matching upon commit.) Thus,
whether to overlap TMI-based enforcement can depend on trans-
action length, the cost of thread creation and synchronization, and
the cost of authorization checks.

As shown in Figure 7, TMI-based authorization has acceptable
overhead when applied to servers written to use STM techniques;
TMI-based enforcement can even improve the performance of such
software. However, the No-STM and STM-only columns show
that simply using DSTM2 for concurrency control results in a
very substantial performance overhead. It must be emphasized that
this high overhead (11x for FreeCS and 28x for WeirdX) does
not apply in general to other STM systems (see [42]). Rather, it
is an artifact of the library-based DSTM?2 implementation, which

| No-STM | STM-only | STM-TMI/Eager | STM-TMI/Lazy | STM-TMI/Overlapped

GradeSheet | 398 us 451 us 452us (0.3%) 458 us (1.4%) 694 us (54%)
Tar 4.96s 15.40s 1524s (-1.0%) | 16.87s (9.5%) 12.96s (-15.8%)
FreeCS 321 us 3907 us 5471us (40%) | 4075us (4.3%) 4244 us (8.6%)
WeirdX 0.23ms 6.40 ms 69.12ms (10.8%x) 7.74ms (21%) 715ms (11%)

Figure 7. Performance measurements for servers. The overhead of using TMI (shown in parentheses) is calculated by comparing the
STM-TMI variant against the STM-only variant. Numbers in bold show the most efficient TMI variant for each server.

0 |
n
o Lazy enforcement +
o _| T Eager enforcement
[Te)
B
[[To R
I + °
()
= /
o
£ ¥ / 0
g iyl
g g] /c
=] +/
o
S ¢/
O/
[Tol
N

% contention

Figure 8. Comparing lazy versus eager enforcement in the
presence of contention.

is an unoptimized research platform whose main goal is to offer
flexible interfaces. The current DSTM?2 prototype is therefore not
tuned for performance and does not offer compiler or language-
runtime support. Transactional memory systems that are compiler-
based [3], language-based [32], or hardware-accelerated [18, 22,
49] incur much lower overheads than DSTM2. The overhead of
future, language-integrated STM systems is likely to be competitive
with other means of concurrency—especially as STM techniques
are widely adopted, and optimized, and accelerated with hardware
support.

We also evaluated the overhead of lazy and eager authorization
managers at different contention levels; Figure 8 presents the results
of this experiment. At x% contention, a transaction execution has
x% chance of being retried because it conflicts with another, con-
current transaction; thus, 100—x% of execution attempts will return
a response (by commit or authorization failure). We measured the
time for GradeSheet requests to be fully completed (i.e., committed
or aborted with an AccessDeniedException) by simulating con-
tentions from 0-50%; of all requests, 5% failed an authorization
check. At low contention, eager enforcement is more efficient, since
it performs no work in copying metadata into an introspection log.
However, as contention grows, lazy enforcement becomes more ef-
ficient. This is because eager enforcement performs authorization
checks on all accesses, even for transactions that must be retried
because they encounter a conflict due to contention. In contrast,
with lazy enforcement, authorization checks happen only once, at
commit, no matter how often the transaction was retried.

Determining the most efficient enforcement strategy requires
measuring factors such as contention, the cost of authorization
checks, the time to execute a transaction body, and the rate of autho-
rization failures. We have implemented simple measure-and-adapt
authorization managers that switch between eager and lazy en-

forcement. Our experiments with such adaptive enforcement con-
firms that it can dynamically adapt and follow the more efficient of
the two curves shown in Figure 8.

6. RELATED WORK

We focus our discussion of related work to four areas: applications
of transactions to security; comparing TMI and virtual machine in-
trospection; work on exception handling and recovery; and aspect-
oriented software development.

Applications of transactions to security. Clark and Wilson’s in-
fluential model for commercial security policies is defined in terms
of separation of duty and well-formed transactions that preserve
data integrity [14]. Our TMI-based approach is well-suited to en-
forcing such security policies: TMI can ensure that transactions
never commit unless all actions are authorized, e.g., based upon
separation of duty policies, and that application data is consistent,
i.e., the integrity of all data items has been verified.

The Vino operating system [51] used transactions to isolate the
effects of misbehaving and/or malicious kernel extensions, such as
device drivers, by executing them in the context of a transaction.
If an extension fails or violates system policy (e.g., by hoarding
resources), Vino simply terminates the corresponding transaction,
thereby isolating the extension. In contrast to TMI, which uses
existing STM mechanisms to enforce policies, Vino used a custom-
built transaction manager in the kernel. Further, Vino only relied on
transactions for remediation; though resources accessed during a
transaction are logged, they are only used to restore system state. In
contrast, TMI uses access logging in a key way to achieve complete
mediation.

Chung et al. recently used transactional memory to imple-
ment thread-safe binary translation and applied it to implement
information-flow tracking [13]. This work primarily uses transac-
tional memory to ensure thread-safe access to security metadata
(i.e., taint bits). The TMI architecture, coupled with a dynamic bi-
nary translation system, can also be applied to track information
flow; in this role, TMI will primarily help avoid TOCTTOU bugs
when accessing security metadata. However, Chung et al. show that
information-flow tracking can be implemented using hardware-
only transactional memory techniques as well; in contrast, the TMI
architecture requires software support.

Peyton-Jones and Harris proposed a framework to support
programmer-supplied data invariants in the Haskell STM [47].
These invariants are Boolean functions that are evaluated just be-
fore a transaction commits. Much like TMI, any invariants that
are violated result in a transaction abort. However, this framework
does not allow security checks at each access to a security-relevant
resource, or the maintenance of introspection logs. Even so, a TMI
reference monitor could potentially benefit from its supporting
mechanisms.

Locasto et al. propose SEAD, a system that uses transactions
to build self-healing software [43]. In SEAD, each function is ex-
ecuted as a transaction; faults due to bugs or exploits in a function
abort the transaction and trigger an application-specific repair pol-
icy. SEAD implements custom-purpose speculative execution us-

ing binary rewriting and can be applied even to legacy executables.
However, unlike TMI, SEAD does not benefit from STM semantics
and machinery, e.g., through introspection on STM read/write sets,
and does not support general security policy enforcement.

In contrast to TMI, which uses transactions to handle authoriza-
tion failures, Swamy et al. propose Rx [54], a security-typed lan-
guage that uses transactions to handle dynamically-changing poli-
cies. In Rx, a programmer annotates code that must execute under
a single, consistent policy. The runtime system executes this code
transactionally and ensures that any updates to the policy as this
code executes will abort the transaction. Although we have not ex-
plored dynamically-changing policies, TMI can possibly accomo-
date them by assigning transactional semantics to the policy.

Finally, Speck [46], or Speculative Parallel Check, is a recent
system that uses speculation and rollback to overlap security checks
for reduced latency. While not as general as TMI, nor based on
STM techniques, Speck shares many aspects with TMI, such as
its support for overlapped enforcement and I/O based on external
transaction managers.

Virtual machines for security. Virtual machine monitors (VMM)
have recently emerged as a popular location to implement security
enforcement mechanisms [11]. Indeed, at least superficially, they
offer many of the same benefits as a TMI-based security mecha-
nism. They allow introspection of runtime state of the guest oper-
ating system, thereby easing the construction of intrusion detection
systems that resist evasion and attack [29]. They also permit roll-
back and replay of system state, thereby allowing the construction
of malware detection and forensic tools (e.g., [16, 41]).

TMI offers several advantages over the VMM-based approach.
Foremost, TMI extends declarative concurrency control and there-
fore applies at the instruction-level of granularity, in contrast to
VMM-based techniques, which apply at a much coarser level of
granularity. This difference is significant. It allows TMI-based
techniques finer-grained control over program execution, thereby
permitting instruction-level rollback. It also improves application
development by easing the integration of security enforcement
mechanism: TMI eliminates TOCTTOU bugs by construction, sim-
plifies the handling of security exceptions, and ensures complete
mediation of all resource accesses within transactions. Such fine
grained control over program execution may possibly be imple-
mented within a VMM as well, but the engineering overheads of
doing so are much higher.

In contrast, the VMM-based approach provides better control
over system level events, such as I/O. For example, file system
changes can be undone by simply rolling back to an earlier state;
TMI must be coupled with transactional I/O libraries to support
rollback of system-level events. In addition, the VMM-based ap-
proach can be used to enforce security policies on legacy binaries;
in contrast, TMI requires changes to server code. Combining TMI
with VMM-based techniques to construct security mechanisms is
an interesting area for future work.

Exception handling and recovery. As argued earlier, TMI lever-
ages transaction rollback to simplify the handling of security ex-
ceptions. An IBM survey reports that a large fraction of server code
relates to exception handling [12]. Weimer and Necula [57] found
that up to 46% of code on several Java benchmarks was exception
handling code (or reachable from it) and that SecurityException
was one of the most common exception classes that these bench-
marks handled erroneously. Exception handling code is often com-
plex, especially when it must consider several corner cases [10, 24,
57]. Indeed, there is experimental evidence that exception handling
code is more likely to contain bugs [15]. Because security excep-
tions account for a large fraction of exception handling code, the

TMI-based approach can result in easier-to-maintain, and less clut-
tered code.

The Microreboot [9] approach handles exceptions by offering
fine-grained control over the server, e.g., by allowing parts of it to
be rebooted, without impacting server availability. TMI is similar
to Microreboot in that it also offers fine-grained, instruction-level
control over exception handling in server software.

Aspect-oriented software development. Aspect-oriented pro-
gramming languages, such as Aspect] [5] and AspectC++ [4],
allow concerns that crosscut an application (e.g., security and error-
handling) to be developed separately and integrated with the appli-
cation. An aspect weaver matches the application against a set of
patterns (called pointcuts) and integrates appropriate advice (akin
to actions) at each program point that matches a pattern.

Because TMI enforces authorization policies by introspecting
on the STM’s read/write sets, it is a dynamic aspect weaver. How-
ever, the key advantage that TMI provides over traditional aspect
weavers is that it does not require advice to deal with authoriza-
tions exceptions, which automatically trigger transaction rollback.
In contrast, traditional aspect weavers must be supplied with ad-
vice to restore application state on an exception. In addition, TMI
also provides thread-safe aspect weaving, and does not introduce
TOCTTOU bugs or deadlocks.

7. SUMMARY

Correct implementation of security mechanisms is a difficult task,
due to the challenges of providing complete mediation, prevent-
ing TOCTTOU bugs, and ensuring correct handling of policy vi-
olations. The TMI architecture can significantly reduce the diffi-
culties of correctly implementing security enforcement. A TMI-
based authorization mechanism can get precise information about
all security-relevant runtime accesses, without having to worry
about race conditions, and can handle security violations by rolling
back to a consistent software state. TMI-based enforcement is flexi-
ble, and can integrate with other, existing security mechanisms. For
some policies and workloads, TMI-based enforcement can lower
the overhead and latency of enforcement; in particular, TMI allows
authorization checks to be overlapped with execution. We believe
that the combination of TMI and declarative concurrency control
is a highly attractive architecture for the creation of future, secure
software.

There are several avenues for future work on the TMI architec-
ture. For instance, while this paper has focused on enforcing au-
thorization policies, TMI can also implement many other security
services, ranging from runtime information-flow tracking to intru-
sion forensics. Similarly, TMI may be combined with static anal-
ysis, in particular, to automatically identify authorization points
(e.g., as in [28]), to determine transaction boundaries, or to elim-
inate unnecessary reference monitor invocations. Finally, TMI en-
forcement might integrate some of the developments in the rapidly-
progressing field of STM systems, such as the recently-proposed
techniques for handling I/O within transactions [21, 48].

Acknowledgements. We would like to thank Tim Harris and the
anonymous reviewers for their detailed and insightful comments.
This work was supported in part by grants from the Rutgers Univer-
sity Research Council and the Reykjavik University Development
Fund.

REFERENCES

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transac-
tional memory and automatic mutual exclusion. In ACM POPL, Jan
2008.

[2] M. Abadi and C. Fournet. Access control based on execution history.
In NDSS, 2003.

[3] A. Adi-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and
T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. In ACM PLDI, June 2006.

[4] The home of AspectC++. http://www.aspectc.org.

[5] Aspect] project. http://www.eclipse.org/aspectj.

[6] F. Besson, T. Blanc, C. Fournet, and A.D. Gordon. From stack
inspection to access control: a security analysis for libraries. In [EEE
CSFW, June 2004.

[7] A. Birgisson and U. Erlingsson. An implementation and semantics
for transactional memory introspection in Haskell. Technical Report
RUTR-CS08007, Reykjavik University, Aug 2008.

[8] M. Bishop and M. Digler. Checking for race conditions in file ac-
cesses. Computer Systems, 9(2):131-152, Spring 1996.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-
croreboot: A technique for cheap recovery. In USENIX OSDI, Dec
2004.

[10] T. Cargill. Exception handling: A false sense of security. C++ Report,
6(9), Nov 1994.

[11] P. M. Chen and B. Noble. When virtual is better than real. In USENIX
HotOS, May 2001.

[12] F. Christian. Exception handling. Technical Report RJ5724, IBM
Research, 1987.

[13] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-safe
dynamic binary translaction using transactional memory. In /EEE
HPCA, Feb 2008.

[14] D. D. Clark and D. R. Wilson. A comparison of commercial and
military computer security policies. In /JEEE S&P, May 1987.

[15] F. Cristian. Exception handling and tolerance of software faults. In
Software Fault Tolerance. Wiley, 1995.

[16] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. In USENIX OSDI, Dec 2002.

[17] U. Erlingsson and F.B. Schneider. SASI enforcement of security
policies: A retrospective. In New Security Paradigms Workshop, 1999.

[18] C. Cao Minh et al.. An effective hybrid transactional memory system
with strong isolation guarantees. In ISCA, June 2007.

[19] K. E. Moore et al.. LogTM: Log-based transactional memory. In IEEE
HPCA, Feb 2006.

[20] L. Hammond et al.. Transactional memory coherence and consistency.
In ISCA, June 2004.

[21] M. J. Moravan et al.. Supporting nested transactional memory in
LogTM. In ACM ASPLOS, Oct 2006.

[22] P. Damron et al.. Hybrid transactional memory. In ACM ASPLOS, Oct
2006.

[23] Extensible access control markup language.
coverpages.org/xacml.html.

[24] C. Fetzer, P. Felber, and K. Hogstedt. Automatic detection and mask-
ing of nonatomic exception handling. IEEE Trans. on Software Engi-
neering, 30(8):547-560, 2004.

[25] B. Fletcher. Case study: Open source and commercial applications
in a Java-based SELinux cross-domain solution. In Annual SELinux
Symp., Mar 2006.

[26] FreeCS—the free chatserver. http://freecs.sourceforge.net.

[27] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for
authorization policy enforcement. In /IEEE S&P, May 2006.

[28] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining security-sensitive
operations in legacy code using concept analysis. In ACM/IEEE ICSE,
May 2007.

[29] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In NDSS, Feb 2003.

[30] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Platform
Security. Addison-Wesley, second edition, September 2003.

[31] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[32] T. Harris and K. Fraser. Language support for lightweight transactions.
SIGPLAN Not., 38(11):388-402, 2003.

[33] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. In PPoPP, Feb 2005.

[34] M. Herlihy, V. Luchango, and M. Moir. A flexible framework for
implementing software transactional memory. In ACM SIGPLAN
OOPSLA, Oct 2006.

http://xml.

[35] M. Herlihy, V. Luchango, M. Moir, and W. Scherer. Software trans-
actional memory for dynamic-sized data structures. In ACM PODC,
July 2003.

[36] M. Hocking, K. Macmillan, and D. Shankar. Case study: Enhancing
IBM Websphere with SELinux. In Annual SELinux Symp., Mar 2006.

[37] T. Jaeger, A. Edwards, and X. Zhang. Consistency analysis of au-
thorization hook placement in the Linux security modules framework.
ACM TISSEC, 7(2):175-205, May 2004.

[38] Jakarta Apache Commons. http://commons.apache.org/
transaction.

[39] JCraft. WeirdX—pure Java window system server under GPL. http:
//www. jcraft.com/weirdx.

[40] D. Kilpatrick, W. Salamon, and C. Vance. Securing the X Window
system with SELinux. Technical Report 03-006, NAI Labs, Mar 2003.

[41] S. T. King and P. M. Chen. Backtracking intrusions. In ACM SOSP,
Oct 2003.

[42] J.R. Larus and R. Rajwar. Transactional Memory. Synthesis Lectures
on Computer Architecture. Morgan Claypool, 2006.

[43] M. E. Locasto, A. Stavrou, G. Cretu, and A. Keromytis. From STEM
to SEAD: Speculative execution for automated defense. In USENIX
Annual Technical, June 2007.

[44] M.D. Matthews. Distributed transactions with MYSQL XA, 2005.

[45] Microsoft. Transactional NTFS in Windows Vista. http://msdn2.
microsoft.com/en-us/library/aa363764.aspx.

[46] E. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
security checks on commodity hardware. In ACM ASPLOS, March
2008.

[47] S. Peyton-Jones and T. Harris. Transactional memory with data invari-
ants. In ACM SIGPLAN TRANSACT, 2006.

[48] C.J.Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhan-
dari, and E. Witchel. TxLinux: Using and managing transactional
memory in an operating system. In ACM SOSP, Oct 2007.

[49] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support
for software transactional memory. In IEEE Symp. on Microarchitec-
ture, Dec 2006.

[50] E. B. Schneider. Enforceable security policies. ACM TISSEC, 3(1):30—
50, Feb 2000.

[51] M. L Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In USENIX OSDI,
Oct 1996.

[52] N. Shavit and D. Touitou. Software transactional memory. In ACM
PODC, Aug 1995.

[53] T. Shpeisman, V. Menon, A. Adl-Tabatabai, S. Balensiefer, D. Gross-
man, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing isolation and
ordering in STM. In ACM PLDI, June 2007.

[54] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing policy up-
dates in security-typed languages. In Computer Security Foundations
Workshop, July 2006.

[55] Tar for Java: The com.ice.tar package. http://trustice.com/
java/tar/.

[56] E. Walsh. Integrating X.Org with security-enhanced Linux. In Annual
SELinux Symp., Mar 2007.

[57] W. Weimer and G. C. Necula. Exceptional situations and program
reliability. ACM TOPLAS, 30(2), Mar 2008.

[58] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.
Linux security modules: General security support for the Linux kernel.
In USENIX Security, Aug 2002.

[59] x11perf: The X11 server performance test program suite.

[60] The X11 Server, version X11R6.8 (X.Org Foundation).

[61] A. Yumerefendi, B. Mickle, and L. Cox. TightLip: Keeping applica-
tions from spilling the beans. In USENIX NSDI, April 2007.

[62] X.Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis
of authorization hook placement. In USENIX Security, Aug 2002.

http://www.aspectc.org
http://www.eclipse.org/aspectj
http://xml.coverpages.org/xacml.html
http://xml.coverpages.org/xacml.html
http://freecs.sourceforge.net
http://commons.apache.org/transaction
http://commons.apache.org/transaction
http://www.jcraft.com/weirdx
http://www.jcraft.com/weirdx
http://msdn2.microsoft.com/en-us/library/aa363764.aspx
http://msdn2.microsoft.com/en-us/library/aa363764.aspx
http://trustice.com/java/tar/
http://trustice.com/java/tar/

	Introduction
	Motivation and Background
	Challenges in implementing authorization
	Benefits of TMI-based authorization
	Software transactional memory

	Transactional Memory Introspection
	The TMI architecture
	Example of TMI-based policy enforcement
	Enhancements

	Implementation
	Evaluation
	GradeSheet: A grade management system
	A Tar archive service
	FreeCS: A chat server
	WeirdX: A window management server
	Performance

	Related Work
	Summary

