Checkpointing Memory—-Resident Databases

Kenneth Salem

Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

A main memory database system holds all
data in semiconductor memory. For recovery pur-
poses, a backup copy of the database is maintained
in secondary storage. The checkpointer is the com-
ponent of the crash recovery manager responsible
for maintaining the backup copy. Ideally, the
checkpointer should maintain an almost—up-to-date
backup while interfering as little as possible with
the system’s transaction processing activities. We
present several algorithms for maintaining such a
backup database, and compare them using an ana-
lytic model. Our results show some significant per-
formance differences among the algorithms, and
illustrate some of the tradeoffs that are available in
designing such a checkpointer.

1. Introduction

The cost per bit of semiconductor memory is
decreasing and chip densities are rising. As a result
of these trends, researchers have begun to consider
database systems in which all of the data resides in
main (semiconductor) memory.! Memory-resident
data can mean large performance gains for database
systems. In current systems, much of a transaction’s
lifetime is spent waiting to access data on disks. In
addition, much of the complexity of the database
system itself can be attributed to the long delays
associated with the disks.

t We do not rule out the existence of slow archival
storage. One can think of a system as having two
databases (as in IMS Fastpath [Gawl85a]): one
memory—resident that accounts for the vast majority
of accesses, and a second on archival
storage [Ston87a). In this paper we focus on the
main memory database since its performance is criti-
cal.

CH2695-5/89/0000/0452$01.00 © 1989 IEEE

452

Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ 08544

The simplest way to design a main memory
database management system (MMDBMS) is to bor-
row the design of a disk-based database manager.
A MMDBMS can be viewed as a disk-based DBMS
with a buffer that happens to be large enough to
hold the entire database. One problem with this
approach is that it fails to capitalize on many of the
potential advantages that memory-residence offers.
For this reason, researchers have begun to re-
examine some of the components of a traditional
DBMS with memory-resident data in mind. Some

that have been considered are index
structures [Lehm85a,DeWi84a, Thom86a), query
processing [Lehm86a,Bitt87a,DeWi84a] and (pri-

mary) memory management [Eich87a].

One component of a DBMS that might be par-
ticularly difficult to transfer from a disk—based to a
memory-resident system is the recovery manager.
From the point of view of the recovery manager,
there are several interesting aspects of memory-
resident databases:

° At recovery time, the focus of the recovery
manager must be the restoration of the pri-
mary (memory-resident) database, rather than
the disk-resident database, to a consistent
state. Since the primary database can be lost
during a failure (e.g., a memory failure or
power loss), it must be reconstructed from a
backup copy on secondary storage.

° In a MMDBMS, the transactions’ data require-
ments can be satisfied without disk I/O. How-
ever, to manage the backup database the
recovery manager requires access to disks (or
other non-volatile storage). The recovery
manager’s I/O requirements should be satisfied
without sacrificing the performance advan-
tages that memory resident data can bring to
transaction processing. In particular, this
means that the recovery manager should do as
little synchronous I/O as possible. Such prac-

VILTD GO TUILLLLE Ul ALdAaluivil upuaved 1o UisK
before commit, and flushing dirty pages to
disk (while transactions wait) at checkpoint
time should probably be avoided.

. The relative contribution of recovery manage-
ment to the total cost of executing a transac-
tion will increase. As a simple example, con-
sider a "typical" transaction in a disk-based
system that costs about 20,000 instructions
(without recovery) and makes 20 database
references, half of them wupdates. In a
memory-resident system, that same transac-
tion may cost only half as many instructions.
The savings will come from such areas as
reduced disk I/O cost (if half of the database
references would have caused I/O activity,
that alone is a substantial savings at 1000
instructions per I/O), lower concurrency con-
trol costs (e.g., fewer lock conflicts, deadlocks,
and rollbacks), and reduced or eliminated
buffer management costs. The recovery
manager, on the other hand, must still per-
form expensive operations like disk 1/0. This
implies that the performance of the recovery
manager will be more critical to the overall
performance of a DBMS when data is memory
resident than when it is disk resident.

In this paper we will focus on one critical
aspect of crash recovery in a MMDBMS, namely the
maintenance on disk of the up-to-date secondary
copy of the database. We term this process check-
pointing, although checkpointing may be realized
quite differently in a MMDBMS than in a disk-
based DBMS. We will describe a number of possible
algorithms for asynchronous checkpointing, and
compare them using a simple analytic model.

An interesting feature of a MMDBMS is that
the I/O bandwidth to the backup database disks
should not become a bottleneck for transaction pro-
cessing since transactions require no access to the
secondary database. Similarly, I/O latency should
not be a problem if I/O is done asynchronously,
because asynchronous I/O is not likely to be in the
critical execution path of any transaction. Thus
evaluating "I/O cost”, as is commonly done for
disk-based systems, is not a good way of measuring
the impact of checkpointing on transaction process-
ing in a MMDBMS. This is not to say that the I/O
bandwidth is not important to the system’s perfor-
mance. As we will see, it affects recovery time in a
number of ways.

What does appear to be a useful checkpointing
performance metric in a MMDBMS is processor
overhead. Checkpointing processor overhead results

453

1rOfll SUuCIl acCulviuies as Iniviallzavlon Ol alskK l/U‘S,
data movement, and locking or other synchroniza-
tion with transaction processing activities. Check-
pointing can also indirectly affect the overhead costs
of other system activities, such as logging. The fact
the CPU costs rather than I/O costs may be the
critical performance factors in a MMDBS is one of
the reasons we believe the model presented here is
important.

Several algorithms for asynchronous mainte-
nance of a secondary database copy have appeared
in the literature [DeWi84a, FEich87a, Hagm86a,
Lehm87a, Pu86a]. The checkpointing algorithms
that we will consider are based on ideas drawn from
that work. In this paper, our emphasis is on algo-
rithmic alternatives. We have not considered check-
pointing mechanisms that rely on the existence of
special purpose or functionally segregated proces-
sors, nor those that require large quantities of stable
primary memory. However, in Section 6 we will
consider the effect of a stable log tail, i.e., the avai-
lability of enough stable RAM to hold the in-
memory portion of the log.

The rest of the paper is organized as follows.
In the next section we discuss the assumptions made
and the failures considered. In Sections 3 and 4 we
describe the checkpointing algorithms. Section 5
presents our performance model and analysis, while
Section 6 gives some of the results.

2. Assumptions

The hardware underlying the MMDBMS con-
sists of one or more processing units (CPUs), vola-
tile memory, and disks, all linked by one or more
data channels. There is enough primary memory to
hold a complete copy of the database (the primary
copy) plus any additional data structures that are
required by the system, e.g., page tables.

We assume that two complete backup data-
bases are maintained on disks and that a ping-pong
update, scheme is used. Only one of the two copies
is updated during a single checkpoint, and successive
checkpoints alternate between the copies.

During a checkpoint, only those portions of
the database that have been updated are written out
to their corresponding position on the backup data-
base. To implement this, database segments (i.e.,
pages) in memory include two dirty bits. When a
transaction modifies a segment, it sets both bits.
When the checkpointer flushes a modified segment
to one of the backups, it resets one of the bits.
When it flushes it to the second copy, it resets the
second bit. Thus, the checkpointer will only ignore
segments that have been flushed to both copies.

When a checkpoint completes, the current check-
point copy is noted at a known location on disk we
call home. The home block also contains a pointer
to the begin—checkpoint log entry made by this com-
pleting checkpoint. At recovery time, the home
block is used to select the most recently completed
checkpoint copy.

Finally, we assume that transactions use a
shadow-copy update scheme similar to that
employed by IMS/Fastpath [Gawl85a] and proposed
by others |[Eich87a]. Updates are stored in a buffer
local to the updating transaction until the transac-
tion commits. At that point, updates are installed
in the database by overwriting (copying) the old
version of the record with the new. Transactions
use REDO-only logging. UNDO logging (i.e., log-
ging old versions) is not necessary because old ver-
sions are not overwritten in the database unless a
positive commit decision is made for the transac-
tion.

It is important to note that there are other
approaches besides shadow-copy updates and ping—
pong backups. We are not arguing that the two
selected are the best; we are simply choosing
representative and reasonable alternatives so we can
study checkpointing algorithms independently of
these other components.

2.1. Failures

There are numerous types of failures that can
occur in a transaction processing system. We will
concentrate on recovery from (ransaction fatlures
and system failures. As defined in [Gray78al, a
transaction failure occurs when a particular transac-
tion must be aborted, either because of some inter-
nal condition or because of external intervention.
We are particularly concerned with transactions
that fail as a result of actions of the checkpointer.
The probability of a checkpoint-induced failure,
Drestart, Will be computed in Section 5 as a function of
the checkpoint algorithm.

A system failure results in the halt of the sys-
tem and the loss of the contents of volatile memory,
followed by system restart. One of the performance
measures we consider is the time for recovery from a
system failure. The recovery time is discussed in
more detail in Section 4.

In our model we do not explicitly consider
recovery from media fatlures [Gray78a). Provided
there is extra memory available, and provided that
the failed portion of memory can be mapped—out
transparently to the database system, media failures
in primary memory can be treated like system
failures. There are also interesting aspects to secon-

454

dary media failures in a MMDBMS. Recovery from
such failures may be easier than in a disk-based
DBMS because the lost data will be available in pri-
mary memory (provided that a system failure does
not occur simultaneously). Dumping of the backup
database (e.g., to tape) may also be easier because of
the more predictable disk access patterns of a
MMDBMS. We will not discuss these issues further
here.

3. Checkpointing Algorithms

In this section we describe a number of check-
pointing algorithms. The algorithms vary according
to the consistency of the backup copy they produce.
We will consider fuzzy, action—consistent (AC), and
transaction—consistent (TC) checkpoints.

Consider a transaction that updates records R,
and R, with two update actions. A TC backup will
reflect transaction activities atomically, i.e., the
backup will contain either the old versions of R, and
R, or their new versions, but not one old and one
new.

An AC backup may contain the old version of
R, and the new version of R, (or vice versa). How-
ever, each action will be reflected atomically. That
is, neither record will be found in a partially
updated state. Finally, a fuzzy backup makes no
guarantees about the atomicity of transaction or
actions.

As we will see, consistent checkpoints are more
costly to produce than fuzzy ones. However, an
important advantage of consistent backups is that
they permit the use of logical logging! as opposed to
value logging. With logical logging, operations like
“insert this new record” or “update this field of this
record” are recorded. Any associated changes in the
database access structures are not recorded. Value
logging, on the other hand, records all changes made
to memory in the course of the action.

3.1. Fuzzy Checkpoint Algorithm

Fuzzy checkpoints require little or no syn-
chronization with executing transactions. Fuzzy
checkpoints are suggested for recovery in main
memory databases in [Hagm86a].

We call our fuzzy checkpointing algorithm
FUZZY. It begins a checkpoint by entering a
begin-checkpotnt marker in the log, along with a list
of currently committing transactions. (A transac-
tion is committing if it is in the process of placing

t Logical logging is also known as transition [Haer83a)
or operation logging.

U0 UpPUQUTD 1L vUT uava.uacc.l \JIILVC UiIT 111Gl AT 1D L1l
place, the checkpointer flushes dirty segments from
main memory to secondary storage. Locks and
other transaction activity are ignored. Once the
dirty segments have been flushed, the (in-memory)
log tail is flushed to disk and the new current check-
point is noted {as described in section 2).

If one is not careful, fuzzy checkpointing may
in general lead to violations of the log write-ahead
protocol [Gray78a] (Such a violation occurs if a
transaction’s updates are reflected in a checkpoint
but not in the log.) However, because we are using
two ping-pong backup copies, the problem does not
arise. While a checkpoint is in progress, a
transaction’s updates may indeed appear in one of
the backups before they do in the log. Nevertheless,
since the checkpoint is incomplete, all such updates
will be ignored at recovery time. It is only when the
checkpoint completes that the updates in it become
valid. (If two backup databases are not used, then a
fuzzy checkpointer must copy the data to a main
memory buffer before flushing it, adding overhead
to the checkpointer [Sale87a).)

3.2. Black/White Algorithms

One way to produce a consistent backup is to
treat the checkpointing process as a (long-lived)
transaction. The checkpointer acquires a lock on
each segment before flushing and holds the locks
until the checkpoint is complete. We assume that
this method will result in unacceptably frequent and
long lock delays for other transactions. (At some
point during each checkpoint the checkpointer will
have all of the dirty database segments locked
simultaneously.) An alternative, which produces
consistent backup copies but requires that locks be
held on only one segment at a time, is presented
in [Pu8Ba]. The algorithms we will describe next
are variants of the mechanism proposed in that
paper.

The basic algorithm described in [Pu86a]
proceeds as follows. There is a "paint bit" for each
database segment which is used to indicate whether
or not a particular segment has already been
included in the current checkpoint. Assuming that
all segments are initially colored white (i.e., paint
bit = 0), checkpointing is accomplished by the algo-
rithm in Figure 3.1.

The algorithm can be used to produce either a
TC or an AC backup. To ensure that the check-
pointer produces a TC backup, no transaction is
allowed to access both white and black records. (A
record is the same color as the segment it is a part
of). Any transaction that attempts to do so is

455

AvVi UTU aliu 1 Toval veu.
can be produced by ensuring that no action accesses
both black and white segments. (Note that a single
transaction may contain both black—accessing and
white-accessing actions.) A transaction is aborted if
any one of its actions attempts to access both white
and black records.

AJ1X1111GM L Q. Nv vavnu
?

WHILE there are white segments DO
lock any white segment
process the segment
paint the segment black (set paint bit = 1)
unlock the segment
END-WHILE

Figure 3.1 - Black/White Checkpoint

The “"processing" of a segment can occur in
two ways. One option is to simply schedule the seg-
ment to be flushed to the backup disks. The check-
pointer locks each segment for the duration of the
disk I/O operation. We call this type of check-
pointer BW/FLUSH.

An alternative is to spool the I/O. Before
flushing the segment, the checkpointer first copies it
to a special buffer and then flushes the copy. The
advantage of this alternative is that the segment can
be unlocked as soon as it is copied; there is no need
to maintain the lock through the disk I/O. How-
ever, since copying the segment to the special buffer
is not free, there is a price paid in processor over-
head for this advantage. When checkpointing is
handled in this fashion we say that the checkpoint
style is BW/COPY.

3.3. Copy—on-Update Algorithms

Copy-on-update checkpointing forces transac-
tions to save a consistent "snapshot" of the data-
base, for use by the checkpointer, as they perform
updates. The principal advantage of copy-on—
update (COU) checkpointing is that once the check-
point has started, it will not cause transactions to
abort, as do the black/white algorithms. On the
other hand, primary storage is required to hold the
snapshot as it is being produced. Potentially, the
snapshot could grow to be as large as the database
itself. The COU mechanisms we will describe are
inspired by the technique described in [DeWi84a].
the "initial value" method of [Rose78a] and the
"save-some" method of [Pu86a]

“To begin a COU checkpoint, the database
must first brought into a state of the desired con-
sistency (either action—consistent or transaction—
consistent). In this case it is almost as easy to get a

TC state as an AC state!, so we will only consider
TC COU checkpoints in the rest of the paper. A
simple way to achieve a TC database state is to
quiesce the system: the updates of all currently com-
mitting transactions are completed, while no new
transaction are allowed to commit. (Note that run-
ning transactions that are not in the process of com-
mitting are allowed to continue. All their updates
are private and can be ignored at this point.)

When the database is quiescent a begin-
checkpoint record is written to the log, and the log
tail is flushed to stable storage. The consistent
database state that exists in primary memory is the
“snapshot" that will be flushed to secondary storage
by the checkpointer. Once the begin—checkpoint
entry is in the log, transaction committing can
resume.

The algorithm uses a paint bit per segment in
much the same way the black/white algorithm (the
bit determines whether or not the segment has
already been included in the current checkpoint). In
addition, each segment has a pointer which will be
used to point at the “snapshot" copy of the seg-
ment, if one exists.

Checkpointing is accomplished by the algo-
rithm shown in Figure 3.2. (As before, we assume
that all segments are initially colored white.)

WHILE there are white segments DO
lock any white segment ()

IF S has a pointer to a "snapshot" copy S THEN

paint S black

save pointer to §

erase pointer in S

unlock S

IF 5 is dirty THEN
flush § to the backup
free §

ELSE
process S
unlock S
END_WHILE

Figure 3.2 — COU Checkpointing

The transactions are responsible for saving
snapshot copies of segments when necessary so that
the consistency of the snapshot is preserved. When
a transaction wishes to update a segment that the

t This is true because we are assuming database up-
dates are not installed until the commit point. If up-
dates are installed before commit, AC states are
easier to achieve than TC.

456

current checkpointer has not reached (a white seg-
ment), it first makes a copy of the old version of the
segment if such a copy does not already exist. A
pointer in the segment is set to point at the newly-
created copy.

When the checkpointer processes a segment
which does not have a "snapshot" copy it has two
options, much as the black/white checkpointer did.
It can flush the segment while retaining its lock, or
spool the segment so that the lock need not be held
for the duration of the I/O operation. The former
strategy will be termed COU/FLUSH, and the latter
COU/COPY. (Note that if segment S already has a
snapshot copy S, then neither locking for the dura-
tion of the I/O nor copying is necessary.)

4. System Failure Recovery

After a system failure, the recovery manager
has at its disposal a backup copy of the database
and a transaction log on stable storage. In a disk-
based system, the log is used to bring the stable
database copy to a consistent state. In a
MMDBMS, the stable database copy and the log are
used to recreate a consistent primary database copy
in main memory.

The recovery procedure is to first read the
backup database into main memory (as discussed in
Section 2), and then to apply the log to the new pri-
mary database to bring it into an up-to-date con-
sistent state. Applying the log to the database
means the following. Recall that the location of the
begin—checkpoint log marker of the most recently
completed checkpoint is stored in the home block.
Thus it is not necessary to scan the log backwards
to find the begin—checkpoint marker. (With the
FUZZY algorithm, the log must be scanned back-
wards a short ways from the begin—checkpoint
marker to retrieve all updates made by transactions
that were committing at the time the checkpoint
started.) From that point the log is scanned for-
wards. If the log is a value log, new values of
modified records are written in place in primary
memory. Otherwise, the logged actions are rerun
against the database!!.

1t Actions may not be idempotent. We assume that an
identifier is associated with the log entry for each ac-
tion (much like a log sequence number |Gray78a]).
This identifier is stored with each segment affected
by the action and is used to ensure that an action is
applied exactly once to a segment.

In this section we consider the performance of
the various checkpoint algorithms that were
presented. The performance metrics that we will
consider are processing overhead and recovery time
(from system failures).

5.1. Performance Model

The first step is to model the hardware, data-
base, and the arriving transactions. Each CPU is
able to perform certain operations at a cost of some
instruction executions. A discussed -earlier, syn-
chronization (for consistent checkpoints) is accom-
plished through locking. Ci, 1s the cost to lock and
unlock a database object. Storage management
costs are represented by Cgy,., which is charged for
allocating (and later freeing) of a block of memory.
C;, is the processor cost of a disk'I/O. We assume
that the disk controllers support direct memory
access, so that C;, is independent of the amount of
data being transferred. The cost of data movement
in memory is taken to be proportional to the
number of words moved, with constant of propor-
tionality one instruction per word. {Note that the
number of processors is not needed since we will
only compute overhead per transaction.)

The parameters we have described, together
with the rest we will cover, are summarized in Table
5a. The table also lists the default values used. We
believe that the default values are realistic, at least
for some types of hardware and applications. Of
course, other values are possible. In the next section
we will explore the sensitivity of our results to vari-
ations in some of the more critical parameters.

The disks are used to hold the secondary data-
base copies and for logging. Niges 1s number of
disks available for backups. Disks are modeled as
simple servers that can transfer d words of data in
time Tyt + Tirane 4. We assume that the transfer
bandwidth scales linearly with the number of disks,
i.e., we do not consider interference caused by bus
contention or secondary reference locality’ Note that
I/O to the backup disks in a MMDB is likely to be
better behaved than I/O in a disk-based system
since I/O in a MMDB is done only by the check-
pointer. Thus we might expect seek delays to be
somewhat shorter for a MMDB than for a disk-
based system.

1 This may require a high performance IO subsystem.
An example of such a subsystem is found on the
Convex C-1. It can support up to 160 I/O controll-
ers though five buffered I/O processors onto an eigh-
ty nmegabyte per second bus to the main
memory [Dozi84a).

457

symbol _Dparameter default
Clock locking cost 50 instructions
C i buffer mgt. cost 200 instructions
Ciy 1/0O cost 1500 instructions
Toeek 1/0 latency 0.03 seconds
Tirans transfer time 3 pseconds/word
Nigioke backup disks 20 disks
Nigioks log disks 5 disks
S database size 256 Mwords
Syec record size 32 words
Seeq segment size 8192 words
St log header size 4 words
N arrival rate 1000 trans./second
Diail failure probability 0.05
N number of actions 5 actions/trans.
Reps segments per action 1.1 segments/action
Clrans raw transaction cost 10000 instructions

Table 5a — Parameters and their defaults

The database is assumed to contain Sy words
of data, grouped into records of size S,. The
record is the granule at which the transaction inter-
face operates, i.e. the primitive actions of a transac-
tion are record reads and writes. Records are stored
on larger physical blocks, called segments, for
efficient transfer to the backup disks. S, is the seg-
ment size, which can be any multiple of S,.;. Sient is
the space overhead of each log entry.

For simplicity we assume that all transactions
running against the database are identical. They
are assumed to arrive at the system at the rate of A
transactions per second. With probability pyy tran-
sactions voluntarily abort (e.g., insufficient funds
found in account). The model treats the execution
of a transaction much like a basic operation. The
cost of executing a transaction is Cig,. This is the
cost of executing the transaction ezclusive of
recovery costs, i.e., as if the transaction were run-
ning in a failure-free environment.

Each transaction consists of N, actions, each
of which modifies a single record. In many cases,
the modifications made by an action will be con-
tained within a single segment. However, in other
cases, a single action may affect more than one seg-
ment. {For example, if the record update makes it
grow, it may have to be moved to another segment.)
We let R,y represent the expected number of seg-
ments that will be modified by each action. The
update probability is distributed uniformly across
all of the database segments.

Note that we have chosen a R, relatively
close to 1. This is because we assume that secon-
dary indexes are not checkpointed (and their
changes are not logged). In a memory resident
database, secondary indexes can easily be recreated
as the database is loaded up after a failure. Thus,
there is no need to consider them part of the recov-
erable database. In a conventional system, this is
not true and we would expect R,,, to be larger. In
any case, we will consider the impact of R,,, in Sec-
tion 6. Also note that a uniform distribution for
segment updates is in a sense a ‘‘worst case”
assumption. If some type of hot spots exist, the
number of segments dirtied during a checkpoint
interval will be less, and the checkpointer will have
less work to do.

5.2. Performance Analysis

To compute the cost of running each transac-
tion we compute a synchronous overhead (i.e., extra
work done while running a transaction) and an
asynchronous overhead, the cost of checkpointing
the database. Synchronous overhead represents
recovery-related work done for each transaction
(e.g., logging overhead). Asynchronous overhead is
the cost of making a database checkpoint. We com-
bine both overheads into a single cost measure
(instructions per transaction) with the equation

Cuynch
Y licp

Ctat = Csynch +

where t;, is the intercheckpoint interval and X\ is the
transaction processing rate.

The value ¢, is a model parameter, but it
must be greater than i,pmi, the minimum inter-
checkpoint interval that gives the system a chance
to flush all dirtied pages. We now discuss how tiepmin
is computed. We start by computing the number of
pages that are dirtied in an arbitrary time period,
Nyimyft). Transactions update Ny = NguR,, random
segments. The probability that a particular seg-
ment will be touched by the ¢ transactions execut-
ing in the period is

NN])\t

I— |1 - ==
[Sdb/ Sﬂcg

The expected number of dirtied segments, Nqt)
will be the above quantity multiplied by the number
of segments, Sgp/ Spep

The number of segments that can be flushed
by the checkpointer in an interval t is given by

t
Nift) = Npgiggs .
"() ok Tuek + I‘trmusug

In the minimum interval t;pm,, 2 ping—pong check-

458

pointer must flush all dirtied pages in the current
and previous period (see Section 2). Thus,

Nidticpmin) = Nairt 2t icpmin)-

By solving this equation we determine tipmin. As
discussed above, the actual checkpoint duration may
be made longer than the minimum by inserting a
delay between the completion of a checkpoint and
the initiation of the next.

The synchronous costs are computed by

C
Csyuch = (l_p/ail)csucc+ pfailcfcﬂ"' pyntart(;m“ + Cfu'l):

where pjq is the probability that the transaction
aborts on its own, p,..: is the probability that it
must be restarted due to a checkpointer conflict,
Chuce is a transaction’s synchronous overhead during
normal execution, and Cp,y is the overhead in case it
fails. Note that when a transaction is aborted by a
restart we charge the expected wasted processing
Cirans/ 2 |Agra85a} to overhead {this assumes that
transactions fail halfway through).

The synchronous overheads C,, and Cpy
include the costs of log maintenance and of making
"snapshot" copies of segments (COU checkpoints
only). Log costs are assigned for allocating, flush-
ing, and copying data to the log, in proportion to
the log bulk per transaction. For logical or value
logging, each updated record must be written,
including S, overhead. For value logs only, any
incidental changes to segments (that occur when
records are installed) must also be logged. We
assume this involves S, extra words for each of the
RyoNo: segments dirtied by each transaction.
Unsuccessful transactions have no log bulk, since no
log entries are made until commit.

Unless black/white checkpointing is used,
Drestart 15 zero. (FUZZY and COU checkpoints never
cause transaction aborts.) For the TC black/white
checkpointers, we compute p,.u.: as follows. Let W
be the fraction of the database colored white, and
let Pr{OK| W=w] be the probability that a transac-
tion executes without being aborted for violating the
color rule, given that W=w. (We assume that W
remains constant throughout the execution of the
transaction, reasonable when the database is large
and the transaction small.) This occurs when all seg-
ments touched by the transaction are the same
color, so

P{OK!Wew) = 0" ™ 4 (1—w) '™

If checkpoints are always occurring (ticp == tipmin) We
can assume that W is uniformly distributed from
zero to one. By integrating the above expression we
can show that

PR N+ 1

The restart probability, prester, is simply 1 ~ Pr[OK].
If tip > tipmin then we multiply the value obtained
by ticpmin/ tipy the fraction of the time the check-
pointer is in operation and transaction in danger of
being aborted.

For AC black/white checkpoints, we are
interested in the probability that a single action
violates the two color rule. An action affects R,
segments on the average, so (by a similar calcula-
tion) we get

2
PlOK] = 7

The asynchronous overhead costs, Cgeynch, arise
from the activities of the checkpointer. Consistent
checkpointers lock and unlock each database seg-
ment at a cost of Cj,y per segment. Dirty segments
are flushed to the backup at a cost of C;, per seg-
ment. In addition, spooling checkpointers copy
dirty segments before the I/O at a cost of S, The
number of dirty segments per checkpoint
(Nainte2ticp)) Was calculated earlier. We omit further
details here, hut the complete analysis is presented
in [Sale87a)

The checkpoint duration is also used to deter-
mine recovery time, the other performance metric.
Recovery time has a number of different com-
ponents. The failure must be detected, the disks
must be spun—up (if power failed), the backup data-
base and the log must be read in off of the disks,
and communications must be restored [Hagm86a).
We will consider only the restoration of the data-
base from the backup and the log in our measure of
response times. The other components, while possi-
bly introducing significant delays, are not likely to
be affected by the transaction processing system.

We assume that recovery time is dominated by
I/O time. In particular, we take the recovery time
to be the time necessary to read the backup data-
base copy into main memory, plus the time to read
the appropriate portion of the log. The time to
read in the backup copy (or log) is determined by
the size of the database (or log) and the bandwidth
to the backup (or log) disks. The log size is com-
puted as t;,\ B, where B is the log bulk per transac-
tion.

6. Results

Figure 6a shows processor overhead and
recovery time for each of the checkpointing algo-
rithms. The data were obtained assuming that the
checkpoints duration was as short as possible (no

459

was used if permitted by the checkpointing strategy.
We used the basic operation costs given in Section
five.

FUZZY/FLUSH
[ACBW/FLUSH
[ACBW/OOPY

U
uuﬂuw“

[frooou/FLusH
—
| i 1 |] 1 1 1
150 100 50 0 0 26500 5000 7600
Recovery Time (Seconds) CPU Overhead (Instr./Trans.)

Figure 6a — Processor Overhead and Recovery Time

Several points are apparent from Figure 6a.
Most obvious is the relatively high cost of the TC
black /white checkpoint algorithms compared to the
corresponding COU algorithms. Most of the addi-
tional cost comes from rerunning transactions that
are aborted for violating the black/white restriction.
It is also apparent that spooling adds substantially
to the cost of a checkpoint (e.g., compare
ACBW/FLUSH with ACBW/COPY). Of course,
spooling algorithms lock segments for shorter
periods, but this is not reflected in our overhead
metric.

AC checkpointing (with logical logging) can be
done almost as cheaply as FUZZY. Though the
FUZZY algorithm need not lock pages and never
causes transaction aborts, ACBW/FLUSH does not
cause too many aborts and is able to take advantage
of less—costly logical logging. As we shall see
shortly, this gap widens as actions become more
complex {access more segments).

Recovery times vary little. The slightly longer
time for the FUZZY algorithm arises from the
greater log bulk (per transaction) of value logging.
This difference would be much greater if R,, were
larger, i.e., if activities such as secondary index
modifications had to be logged (in a value log). (See
Section 5.1.)

Although recovery times do mnot vary
significantly with changes in the checkpoint algo-
rithm, they can be made to vary by controlling the
checkpoint duration. In fact, for a given checkpoint
algorithm there is a tradeoff between processor over-
head and recovery time than can be controlled by
varying the checkpoint duration. This tradeoff is
illustrated in Figure 6b for two of the checkpoint

algorithms, TCBW /FLUSH and TCCOU/FLUSH.

4000 —{ =
CPU Overhead
3000 —
(Intructions
per
transaction) 2000 —
1000 —

200 400 000 800

Recovery Time (Seconds)
Figure 6b — Overhead/Recovery Time Tradeoff

The two solid curves represent the trajectory of
TCBW/FLUSH and TCCOU/FLUSH through the
processor overhead/recovery time space as the
checkpoint duration is varied. The checkpoint dura-
tion is smallest at the left end of each curve and
increases to the right. Thus, by increasing the
checkpoint duration, it is possible to drive processor
overhead down at the cost of increased recovery
time.

The dotted lines in the figure represent the
same experiment except that the bandwidth from
primary memory to the backup disks has been dou-
bled (by adding more disks). The dotted lines
extend further to the left than their solid counter-
parts because the higher bandwidth permits a lower
minimum checkpoint interval. Thus, greater
bandwidth allows the designer of a memory-resident
database system greater range of processor
overhead/recovery tradeoff.

It is also interesting that the increased
bandwidth is much more beneficial to
TCBW/FLUSH than to TCCOU/FLUSH. Though
the black/white algorithm is more costly in the ori-
ginal experiment (particularly with fast check-
points), its performance is indistinguishable from
TCCOU at the higher bandwidth. This is because
of reductions in the number of transactions that
must be rerun because of violations of the
black/white constraints. As the bandwidth
increases, the checkpointer requires less time to
update the backup copy. As a result, an incoming
transaction is less likely to encounter an ongoing
checkpoint and, consequently, a black/white con-
straint violation.

460

Figure 6¢ describes the effect of transaction
load, X\, on processor overhead for four of the algo-
rithms. The general trend is for decreasing per—
transaction cost with increasing load, because the
cost of a checkpoint is distributed over a greater
number of transactions as the load increases. In
particular, the spooling algorithms (dotted lines) are
much more expensive at low loads than their non-
spooling counterparts. However, at high loads they
are comparable. This is because at low loads the
cost of spooling dirty segments {(which changes little
with the load) is shouldered by fewer transactions in
a lightly loaded system.

40000 — . TCBW/QOPY

30000 —

TR R

CPU Overhead
(Intructions
20000 —
per

transaction)

10000 —

Transaction Load (Trans/Sec)

Figure 6¢c — Effect of Varying Transaction Load

We have already seen that checkpointing over-
head can be controlled by varying the checkpoint
interval. Figure 6d describes the effect of another
parameter, the segment size (S,,), assuming
tip = tipmin- (Recall that segments are the units of
transfer to secondary storage.)

The variety of behavior exhibited by the dif-
ferent algorithms arises from a combination of two
effects. First, as segments get larger, the total
number of segments in the database decreases.
Thus, checkpoints can be produced with fewer per-
segment overhead charges. For example, fewer
I/O’s need to be initiated since each I/O moves
more data.

Second, larger segments mean more efficient
disk I/O and hence faster checkpoints. This tends
to increase per—transaction overhead since relatively
fixed components of the checkpoint overhead, such
as copy costs, must be shared by fewer transactions.
(Note that it also reduces recovery time for all of
the algorithms, though recovery times haven’t been
plotted here.)

8000 — st
TCBW/OOPY
CPUOverbead 2%] =
(ntructions s et
4000 — L
transaction) - TOOoU/CoPY
2000 —
FUZZY/FLUSH
| | |
5000 10000 15000
Segment Size (Words)

Figure 6d ~ Effect of Varying Segment Size

Spooling algorithms (e.g., the two dotted
curves in the figure) are affected most strongly by
this second effect. Their per-transaction overhead
costs increase with the segment size as a result.
TCCOU/FLUSH, which does not spool but which
still requires a significant amount of data copying, is
affected in the same way though not as strongly.
The performance of other non-spooling algorithms
1s dominated by the first effect and their overhead
costs are lower for larger segments.

Finally, Figure 6e looks at the effect of
increasing R,,,, the complexity of (the number of
segments accessed by) a database action. The most
strongly affected algorithm is the black/white AC
algorithm, whose performance suffers because more
complex actions are more likely to violate the two—
color restriction, causing transaction rollback and
restart. The cost of TC black/white checkpoints
increases for a similar reason: more complex actions
mean more complex transactions which are more
likely to violate the two—color constraint.

In closing this section, let us consider how the
availability of stable main memory to hold the log
tail affects the cost of checkpointing. A stable log
tail makes it possible to commit transactions
without waiting for a log flush. This improves
response time somewhat, but does not reduce the
CPU overhead of checkpointing. Thus, we expect
performance results with a stable log to be essen-
tially equal to those of Figure 6a. In terms of tran-
saction throughput and recovery time, a stable log
tail has no advantages.

It is worthwhile pointing out that with other
database backup strategies, a stable log can help.
For example, if there is a single backup database,

46!

5000 —
TCBW/FLUSH
4000 ~—
CPU Overhead
(intructions
3000 —
per TOCOU/FLUSH «
transaction)
2000 ACBW/FLUSH
FUZZY/FLUSH
1000 —
! | T
1 1.5 2

Segments per Action
Figure 6e - Effect of Varying Action Complexity

then the fuzzy checkpointer we described here can
violate the log write-ahead rule. The problem can
be avoided with a stable log tail or by making the
checkpointer spool segments, delaying their I/O
until the appropriate log pages are on stable
storage. Clearly, the stable log alternative reduces
the overhead substantially.

7. Conclusions

We have presented a performance model for
an important aspect of crash recovery in memory-
resident databases. We have used the model to
compare several checkpointing algorithms. Our
results indicate that there may be significant differ-
ences in performance among them.

The relative performance of a checkpointing
algorithm depends on the system and environment
of which it is a part (e.g., transaction load, check-
point interval). However, it seems safe to say that
fuzzy checkpointing is the most efficient despite the
requisite use of pure physical afterimage logging.
Among the consistent checkpoints, a strategy like
ACBW+FLUSH seems to have the least overhead.
For dual backup database copies, a stable log tail
has minimal impact on transaction throughput.

We have ' considered checkpoint algorithms
independently of many of the other components of
the transaction processing system. In [Sale87a), we
explore the interactions between the checkpointer
and some of these components, namely storage
management of both primary and secondary
storage. We also consider in more detail the
interactions between checkpointing and logging. In
some cases, more expensive checkpointing algo-
rithms may actually prove to be beneficial because

they can be used in conjunction with less costly log-
ging or storage management techniques.

We are currently implementing a testbed with
which we will be able to experimentally evaluate the
algorithms presented here, as well as other aspects
of crash recovery in memory-resident databases.
We hope to able to measure synchronization and
other delays using the testbed, as well as to verify
the processor overhead and recovery time models
used here.

Acknowledgements

This research was supported by the Defense
Advanced Research Projects Agency of the Department
of Defense and by the Office of Naval Research under
Contracts Nos. N00014-85-C-0456 and N00014-85-K-
0465, and by the National Science Foundation under
Cooperative Agreement No. DCR-8420948. We are also
grateful for the support of an IBM Graduate Fellowship.
The views and conclusions contained in this document
are those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

References

Agra85a.
Agrawal, Rakesh and David J. DeWitt,
“Integrated Concurrency Control and Recovery
Mechanisms: Design and Performance Evaluation,”
ACM Transactions on Database Systems, vol. 10,
no. 4, pp. 529-564, December, 1985.

Bitt87a.
Bitton, Dina, Maria Butrico Hanrahan, and Caro-
lyn Turbyfill, “‘Performance of Complex Queries in
Main Memory Database Systems,” Proceedings of
the Third Int’l. Conference on Database Enginecer-
tng, pp. 72-81, Los Angeles, CA, February, 1987.

DeWig4a.
DeWitt, David J., Randy H. Katz, Frank Olken,
Leonard D. Shapiro, Michael R. Stonebraker, and
David Wood, Implementation Techniques for Main
Memory Database Systems, ACM, 1984.

Dozi84a.
Dozier, Harold and et al, *‘Super Supercomputer!,”
Computer Systems Equipment Design, pp. 17-22,
November, 1984.

Eich87a.
Eich, Margaret, ‘A Classification and Comparison
of Main Memory Database Recovery Techniques,”
Proc. 8rd Int’l Conf. on Data Engineering, pp.
332-339, Los Angeles, CA, February, 1987.

Gawl85a.
Gawlick, Dieter and David Kinkade, ‘‘Varieties of
Concurrency Control in IMS/VS Fast Path,” Data
Engineering Bulletin, vol. 8, no. 2, pp. 3-10, June,
1985.

462

Gray78a.
Gray, Jim, “Notes on Data Base Operating Sys-
tems,” in Operating Systems: An Advanced
Course, ed. G. Seegmuller, pp. 393-481, Springer—
Verlag, 1978.

Haer83a.
Haerder, Theo and Andreas Reuter, “Principles of
Transaction—Oriented Database Recovery,” Com-
puting Surveys, vol. 15, no. 4, pp. 287-317, ACM,
December, 1983.

Hagm86a.
Hagmann, Robert B., “A Crash Recovery Scheme
for a Memory-Resident Database System,” IEEE
Transactions on Computers, vol. C-35, no. 9, pp.
839-843, September, 1986.

Lehma85a.
Lehman, Tobin J. and Michael J. Carey, “A Study
of Index Structures for Main Memory Database
Management Systems,” Proc. Int’l Workshop on
High Performance Transaction Systems, Asilomar,
CA, September, 1985.

Lehm86a.
Lehman, Tobin J. and Michael J. Carey, “Query
Processing in Main Memory Database Management
Systems,” Proc. ACM-SIGMOD Conference, pp.
239-250, Washington, DC, 1986.

Lehm87a.
Lehman, T. J. and M. J. Carey, ‘““A Recovery
Algorithm for a High-Performance Memory—
Resident Database System,”’ Proc. ACM SIGMOD
Annual Conference, pp. 104-117, San Francisco,
CA, May, 1987.

Pu86a.Pu, Calton, “On-the-Fly, Incremental, Consistent
Reading of Entire Databases,” Algorithmica, no. 1,
pp. 271-287, Springer-Verlag, New York, 1986.

Rose78a.
Rosenkrantz, Daniel J., ‘“‘Dynamic Database
Dumping,” Proc. SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 3-8, ACM, 1978.

Sale87a.
Salem, Kenneth and Hector Garcia-Molina, ‘‘Crash
Recovery for Memory-Resident Databases,” CS-
TR-119-87, Dept. of Computer Science, Princeton
University, Princeton, NJ, 1987.

Ston87a.
Stonebraker, Michael, “The Design of the
POSTGRES Storage System,” Proc. 18th VLDB
Conference, pp. 289-300, Brighton, England, 1987.

Thom86a.
Thompson, William C., III, “Main Memory Data-
base Algorithms for Multiprocessors,” PhD Disser-
tation, University of California, Davis, CA, June,
1986.

