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Abstract

Declustering and replication are well known techniques used to improve
response time of queries in parallel disk environments. As data replication
incurs a penalty for updates, database designers face the problem of finding
which part of the database to load on each disk and how these parts should
be replicated. This problem becomes more complicated in heterogeneous
environments where disks have different speeds and capacities as intuitively
faster disks should be assigned a greater portion of the database to balance
the delay in the system. We present analytic results and heuristics providing
“near” optimal solutions to the combined problem of finding declustering
proportions and replication schemes in such environments. Our model takes
into account the characteristics of the disks such as speeds and capacities, as
well as, access patterns to the data. Simulation results for various environ-
ments comparing different replication strategies are also provided.
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1 Introduction

Declustering data on parallel disk systems, is a well known technique for improv-
ing I/O performance [3, 5, 7, 8, 6, 9]. The idea is to distribute the data among

� parallel disks so that data which is likely to be requested together by a query
�
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is allocated to different disks. In this way, queries reading large amounts of data
may experience significant improvement in their response time as each disk has
to access only a fraction of the answer.

Proposed declustering methods differ from each other in the way in which
they decompose the data among the disks. Methods based on hashing techniques,
error-correcting codes, Hilbert curves and lattice-based decomposition have all
appeared in recent research literature. All these methods attempt to balance the
load among the disks as the response time is dependent on the disk with maximal
delay among all the disks involved with the query.

Replication is another technique often used for improving I/O response time.
Recently there have been many research efforts to improve disk access times by
replicating some portion or all of the database across multiple disks [1]. Such
replication methods are known as mirrored disks [11] or shadow sets [12] and are
supported by many vendors of fault-tolerant systems. It is well known that data
replication may lead to higher availability as alternative disks may be used in case
of disk failures. In addition, I/O performance may be improved for applications
that are read-intensive. The reason for this is that if a requested page is replicated
on � disks, we may choose to read a copy from one of the � disks currently least
utilized or the one which can service the request with minimum seek time based
on the current disk arm location [1, 10]. There are also obvious disadvantages to
data replication such as higher storage costs and increased update costs – each
replica must be updated to maintain consistency.

Most research work on declustering and replication mentioned above was
done on symmetrical disk systems. In such systems the disks have similar transfer
rates and capacities, the maximum I/O speed-up is achieved if the response to a
typical query is balanced across the disks, However, many applications have to
use existing platforms and hardware configurations and therefore need to declus-
ter and replicate the data over a network of heterogeneous disks and servers. The
various disks in the system may differ in their transfer rates, seek times and their
capacities. Furthermore, the servers speeds may differ as well.

This work is motivated by a terrain visualization application where a collec-
tion of aerial photos (called tiles) are stored on a set of � parallel disks [4]. The
tiles are of different resolutions such that the same area can be viewed with more
or less detail as needed. A visualization request consists of a list of tiles that must
be fetched from the disks and sent to the visualization workstation. The response
time for servicing each request must be minimal to allow a continuous display
of the terrain without “hiccups”. We found that by declustering the tiles and then
replicating some of the tiles across a subset of the disks we could greatly im-
prove the response time for the reasons explained above. In this case we chose
to replicate low resolution tiles more than others as they are requested with more
frequency as well.

In [4] it was shown that declustering in heterogeneous environments could
lead to greatly improved performance if the fraction of the database loaded on
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each disk is approximately proportional to their speed. This must be done of
course subject to available capacities on the disks. The algorithm presented there
produced a declusterization scheme which provides the exact fraction of the data-
base to be loaded on each disk. In this paper we show that, similar to declustering,
replication in heterogeneous environments must take into account the character-
istics of the underlying disks.

As an example for the kind of problem we are looking at, consider a system
with two disks F and S (fast and slow) where the fast disk is 4 times faster than the
slow one. Intuitively, it seems that the loading of the disks should follow the speed
ratios, i.e., the faster disk should get 4 times as many records as the slow one.
However, in a previous paper a HEURISTIC declustering strategy was developed
where it was shown that the it is beneficial to load the faster disk with more than
the proportional number of records. Details of this heuristic are given later in
this paper. We consider three examples of clustering and compare them with a
replication strategy:

Clustering Records are spilt between the two disks.

� EQUAL-
��� ���

records on each of F and S.
� PROPORTIONAL-

��� ���
on F and

��� ���
on S.

� HEURISTIC-
�	�
�������

on F and
�	�������

on S.

Replication Records are replicated between the two disks.

� REPLICATION -
�

records on each of F and S.

Another strategy, which we will not discuss in our analysis, would be to con-
sider partial replication. Note that the ratios for the HEURISTIC example,

�	�
�������
�	�����

, depend on the disks speed ratio
����

and would be different for a different
disks speed ratio.

Given below are the response times of the system and standard deviation un-
der three scenarios (1000 simulations for each case). The response times are mea-
sured in terms of 1 unit of time, defined as the time to retrieve one record using the
slower disk. As we can see from the above cases, EQUAL is not a good solution in
heterogeneous environments. The REPLICATION strategy typically has a faster
response time and smaller standard deviation than the other strategies. However
the advantage of replication decreases with higher update rates and query sizes.
Although the above tradeoffs between declustering and replication are not sur-
prising, it is very difficult to predict the values of the above parameters at which
one strategy will outperform the others. In the remaining sections of this paper
we provide a detailed comparative analysis and simulation in order to determine
under what situations is replication better than declustering or vice versa.

Our main results are that,



4 Distributed Data

Average Std. Devn. Strategy
0.809992 0.316107 REPLICATION

1.21200 0.474401 PROPORTIONAL
2.05600 0.918076 EQUAL
1.05700 0.244440 HEURISTIC

Table 1: Case 1. Query size 4 records - No updates.

Average Std. Devn. Strategy
1.68802 1.66236 REPLICATION
1.44575 0.670909 PROPORTIONAL
2.48975 1.30718 EQUAL
1.25850 0.465889 HEURISTIC

Table 2: Case 2. Query size 4. Update probability 0.2, each affecting 4 records.

Average Std. Devn. Strategy
20.0008 2.40797E-02 REPLICATION
21.9920 2.18781 PROPORTIONAL
49.7850 5.10498 EQUAL
21.3092 1.19710 HEURISTIC

Table 3: Case 3. Query size 1000 records. No updates.

1. We provide a method for modeling disk retrieval times under declustering
and replication in the presence of updates.

2. This method produces approximate formulae and bounds for the expected
retrieval time, and the error of approximation is shown to be small using
simulation.

3. Using our formulae, it can be inferred that replication is favored to declus-
tering when the update rates are small, the number of disks large and the
size of the query small.

4. The value of improved retrieval time due to replication is inversely propor-
tional to the update rate, and proportional to the square root of the ratio of
number of disks divided by the average size of the query.

5. In heterogeneous environments, declustering may yield almost as good per-
formance as replication. Moreover, the expected retrieval time is often gov-
erned by the performance of just the fastest disks.
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The organization of the paper is as follows: In Section 2 we provide some
preliminary analysis for the case of two disks. In Section 3 this is extended to the
case of multiple disks. In Section 4 some simulation results and error analysis is
presented to validate our analytic formulae. Finally, in Section 5 some conclusions
and directions for future work are provided. To make this paper self contained, a
derivation of the optimal declustering formula from [4] is given in Appendix A.

2 Two Disks

In this section, we develop a modeling methodology for comparing replication
versus declustering when there are just two disks. The formulae for the perfor-
mance measures are nearly exact given our modeling assumptions listed below.
The expression for the retrieval time when there are no updates are derived first.
In the final part of this section, we develop a robust modeling methodology for
incorporating updates. The notation employed is summarized below.

���
Speed of Disk ����
Retrieval time of a query under declustering.�����	��
� ��������������
�� ����� ������
�� �������

is the retrieval
time when the size of the request is

�
, the declustering

is done in the proportions
� �

on disk � with speed
� �

,
and updates bring a work load of

�
per unit time. �

is the number of disks.�� 
Retrieval time of query under replication.�  �	��
!� � ���"������� ���#���

is the retrieval time when the
database is fully replicated on the � disks, with speeds

� �
,

and updates bring a work load of
�

per unit time.
The size of the request is

�
.�

Size of query�
Workload brought per unit time by updates
on the full database$ �&%��
Standard Normal Density function evaluated at

%
'��&%��

Standard Normal Distribution function evaluated at
%

'�()�&%��
Complement of

'��	%*�
, (i.e.,

,+-'��&%��
)

Unit Load One that will take
/.0�

units of time to perform
using a disk of speed

�
.

E[.] Expected value

Table 4: Notation Used in the Paper
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2.1 Performance without Updates

We first consider optimal declustering. We are given two disks, with speeds
� 


and
� � , with

� 
�� � � . A total of
�

records are to be retrieved by a query. As-
sume that a fraction

�
of the records are placed on the faster disk with speed

� 

,

and the remaining records on the other disk. The number of records requested
from the faster disk is a random variable given by the Binomial distribution with
parameters

� ��� �*�
. We will approximate this distribution using a random variable,�

, distributed normally with mean
� �

and standard deviation
� � � � ,+ �*�

.
Then the number of records requested from the two disks can be approximated
using

�
, and

� +��
.

Let ��� � ��
�. �&��

	 � � � , ��� � �
, and �� � � ��� ,+����

. The decision
variable is

�
, the fraction of records to place on the faster disk. The expected

retrieval time for the
�

records can be written as (see Appendix):��� � � �	� 
 � � � ����� ��� �0����� �
��
�	 � �	�� � + � ���*+ 

� � '�� � + �� � 	 
� 
 ' ( � � + �� ���	 � $ � � + �� � � 

��
 	 
� � � �

(1)

Proposition 1 An approximate value for
���

, the optimal value of
�

to obtain the
minimum expected retrieval time, is given by solving

' ( � � + � �� � � � � 

��
�	 � � � (2)

Proof: See Appendix.
In equation (2), the optimal value of � and � are denoted using an asterisk, as

they depend on the optimal declustering proportion,
���

as given below:� � � � � � �� � � � � � � � ,+�� � � �
We are now in a position to compare declustering versus replication using these
results.

Proposition 2 We are given two disks with speeds,
� 


and
� � . There are no up-

dates, the size of a query is
�

, and that the fraction obtained by solving equation
(2) is placed on the faster disk with speed

� 

. Then:

1. The optimal expected retrieval time is given by,��� � �� �&��
!� � � ��� � � ��� � ����� �
��
�	 � � 	 � � $�� � + � �� � � � 

��
 	 
� � � �
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2. The expected retrieval time when the database is fully replicated on the two
disks is given by, ��� �  �&��
!� � � � ��� �0��� � �

� 
 	 � � �
Proof: Using equations (1) and (2), the minimum expected retrieval time when
the database is optimally declustered can be expressed as,��� � �� �&��
 ��� � ��� � � ��� � � ��� �

� 
 	 � �	 � � � + � ���*+ � �
�&��
�	 � � �#� � 	 � 


�	��
�	 � � �#��
�� �	 � � $ � � + � �� � � � 
� 
 	 

� � �� �
��
�	 � � 	 � � $ � � + � �� � � � 

��
 	 
� � � �

(3)

When the database is fully replicated, the two disks work in tandem to retrieve
the data. Therefore the effective retrieval speed is

� 
 	�� � . It follows that the first
term on the right hand side of equation (3),

� . �&� 
 	 � � � corresponds to the
retrieval time in a fully replicated database.

�

In equation (3), the last term on the right hand side

� � $ � � + � �� � � � 
��
 	 

� � � �

is referred to in the sequel as the “extra” retrieval time arising due to random-
ness. The randomness itself is the result of splitting a request across a declustered
database. It follows that if there were no updates, replication would outperform
declustering due to this extra term in equation (3). For the sequel, it is also useful
to note that the value of

$ ��� � + � �/��. � ��� depends only on the ratio
��
/. �	��
 	�� � �

and not on the size of the query
�

. In the next section we incorporate updates.

2.2 Modeling Updates

We now extend the formulae given in the previous section to incorporate updates.
We make a key modeling assumption that updates result in the slowing down
of the disks. This modeling assumption will be denoted as SD. The assumption
SD is valid for example if the updates have preemptive priority over retrieval,
or updates take a relatively short time compared to retrievals. We examine the
error from employing the assumption SD using simulations, in section 4. We shall
develop equations for measuring the magnitude of slow down in disk speeds due
to updates and apply this slow down factor to determine the retrieval time. For
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a similar modeling approach, the reader is referred to section 2.4.2 on modeling
Ancillary work given in [2].

We are given two disks with speeds
� 


and
� � , and that the optimal declus-

tering proportion
� �

of records has been placed on the disk with speed
� 


. We
are given that updates create a load of

�
units of work per unit time. When the

data is declustered, assume that the update work created for the two disks is in the
proportion,

� � � � �+ � �/�
, and that the disk speeds are reduced due to this extra

work.

Proposition 3 (1) The effective (slowed down) speed of the two disks are given
by

��
/� ,+ �
� 
 	 � � � and

� � � ,+ �
� 
 	 � � � �

(2) The expected retrieval time when optimally declustered is given by,��� � �� �&� 
 ��� � ��� � � ���#��� � �� � ,+ �
� 
 	 � � �

��
 � �
� 
 	 � � 	 � � $�� � + � �� � � � 

� 
 	 
� � � � �

Proof: As defined, a unit load of work for a disk of speed
�

is one that will take/. �
units of time to perform. We are also given that updates bring a “load” of�

units of work per unit time. Due to the fact that the records are declustered
using the optimal declustering fraction

� �
, updates result in a load of

� � �
of work

per unit time for the disk with speed
� 


. The rest of the updating work goes to
the other disk. Consider the interval of time

�
� ��� �
. In this interval, the amount of

time devoted to updates by the first disk with speed of
� 


is given by,
� �)����. ��


.
The time available to retrieve records is given by,

���  + � �)��.0��
/�
. Thus only� 
�� ��� �+ ���)��. � 
 � � ���	� 
 + � �����

records can be retrieved in time
�

. In
practice, see equation (2),

� � � � 
 . �	� 
 	 � � � . Thus the effective disk speeds
are given by,

�	� 
 + � � ��� � � 
 � ,+ �
��
 	 � � � (4)

�&� � + � ,+ � � � ��� � � � � ,+ �
��
 	 � � � (5)

Equations (4) and (5), indicate that both disks are slowed down by the same factor
of

�  + ��. �&��
�	 � � ��� . Dividing the expected retrieval time given in equation (3)
by this factor yields the approximation,��� � �� �&��
 ��� � ��� � � ���#��� � �

(6)� � ,+ �
��
�	 � � �

��
 � �
��
�	 � � 	 � � $ � � + � �� � � � 

��
 	 
� � � � �

�
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Proposition 4 We are given two disks with speeds
� 


and
� � , and that the re-

cords are fully replicated on the two disks. We are also given that updates create
a load of

�
units of work per unit time. Then the expected retrieval time is given

by, ��� �� �	� 
 � ��������� � � ��������� � �
�	��
 + ��� 	 �&� � + ��� �

Proof: Any update will affect both disks. The amount of work that can be done
in an interval of time

� � ��� �
by a disk of speed

�
, will be given by

���	� + ���
(see

Proposition 3 for the details). Thus the effective (slowed down) speed of the disk
will be given by

�&� + �*�
. Finally in order to minimize the retrieval time when

the data is completely replicated, assume that we retrieve records in
� ��� � � ��� � � �

to these slowed down rates. It then follows that we obtain a combined speed of�	��
!+���� 	 �	� � +���� for addressing the query. Therefore the query can be addressed
in the time, ��� �  �	��
� ������������� ��������� � �

�	� 
 + ��� 	 �&� � + ��� � (7)

�
Equations (6) and (7) can now be combined to yield the following proposition.

Proposition 5 Under the assumptions stated in Propositions 3 and 4, the ratio of
the expected retrieval time under declustering to that under replication is given
by,��� � �� �&� 
 � � � �����!� ������������ �  �&��
!� �����"� ��� � ���#�*��� � � �	 � � � � ,+�� � �

�
� �&� 
 	 � � � �

�&��
�� � � �&� 
 	 � � + � ���
�	��
 	 � � + ��� �

(8)

Proof: Straightforward.
�

The proposition indicates that declustering is favored when the size of the
request

�
or the rate of updates,

�
, is large. Some numerical results illustrating

the two phenomena are given in Figure 1. In this example, there are two disks,
and their speeds are (8,1) in one case, and (4.5,4.5) in the other. As a benchmark
to compare the effect of optimal declustering we have also provided the expected
retrieval time when the records are declustered in proportion to the speeds of
the two disk, this is termed proportional allocation. The expected retrieval time
under proportional allocation (declustering) has been labeled as P, the time under
the optimal declustering as H, and the time under replication as R. We see from
the figure that,

1. The improvement obtained by using the optimal proportions (i.e., using
the value of

�
given by (2) ) for declustering (denoted as H) over the pro-

portional allocation (labeled P) can be significant when the request size is
small, and the disk speeds are quite different.
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Figure 1: Effect of the Size of the Query (No Updates).

2. The improvement due to replication (R) is greater when the disk speeds are
equal. This phenomenon occurs because both under H and R, the faster disk
takes most of the load when the two disks are unbalanced.

3. We note too that the improvement falls quite sharply (at the rate of
/. � �

from equation (8)) with the size of the request.

3 Multiple Disks

In the case of multiple disks, there is no closed form expression similar to equa-
tion (2) that is available for determining the declustering proportions. A heuristic
procedure based on equation (2) can be used to decluster the data when there are
multiple disks, as shown in [4]. The procedure is given below.

Procedure HEURISTIC:
Step 0: Read number of disks ( � ), disk speeds ( ��� ) and

average number records retrieved ( � ). Read tolerance ( ���
	 ).
We assume that disk speeds are ordered as: ������������������ .
Set proportions to be allocated on disk � as
� ��� � ����� � � � � �!�#"$"%"$� � ��& . Set '$($($�)( �+* .
Step 1: do while ( '$($($�)(,�����)	 )

'$($($�)( �.- � -
do � �./
0 �21 /3 �4� � �5� � �768�$&�9 �: � � ���: � � ���768�
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Solve for � in (2) using a search procedure

� '$� � � � �� ��� � 9 3 � �8($' �� �768���.��/ 1 � &�9 3 � �8($' �
'$($($�)( � '$($($�)( � � ��'$� � 1 � � �
enddo

enddo

In this procedure, the allocation is initialized to be proportional to the disk speeds
in Step 0. Then the records are reallocated using equation (2) beginning with the
two fastest disks, then reallocated on the next two fastest, and so forth. Usually
the procedure converges in 10-20 iterations of Step 1.1. It can be proved that this
procedure will eventually stop. Using this procedure, the fastest disk is favored
with an allocation of records in a proportion greater than its speed, see Step 1.1.
This situation is exactly as it was in the case of two disks. In that case, equation
(2) shows that the proportion of work for the faster disk,

� �
will be greater than

simply the ratio of speeds
� 
 . �	� 
 	 � � � .

Because of this bias in the allocation to the faster disks, we have found that
in an heterogeneous environment the retrieval time is basically governed by the
allocation to the two ����� ��� � � disks with speeds

� 

, and

� � . The comparison of
the retrieval times under declustering with respect to complete replication on all
disks can be carried out using this allocation procedure.

Consider � disks, with speeds,
��

	 � � 	 ��� ��	 ���

. Assume that the
records are allocated using the procedure HEURISTIC. Each query consists of

�

records to be retrieved, and updates bring a load of
�

of work per unit time. As-
sume that the errors introduced due to the Normal approximation to the Binomial,
as well as due to SD (modeling the effect of updates as “slowing down” of the
disks) are negligible. Let � 
 , � � 
 , � � 
 correspond to the allocation produced by the
HEURISTIC for the two fastest disks with speeds

� 

,
� � as follows. Let

� � 

,
����

be the number of records allocated to the fastest two disks under the heuristic pro-
cedure. Thus a total of

� 
 � � �"��� 
 	 � �� � records are allocated to these two disks.
Let � 
 � ��
 . �	��
 	 � � � , and

� � � � 
 . ��� � 
 	 ���� � . Denote, � � 
 � � � 
	� � ,+ �*�
,� � 
 � � 
&�

. Similarly, the values of �� , ��� , and ��� , correspond to the disk pair
(� � � 	 

).

Proposition 6 (1) A lower bound on the expected retrieval time is given by,��� � �� �&��
!� �����"� ��� ��� � 
 � � ���"��� �����
 � ����������� � ,+ �
� 
 	������ 	 � � �

��


� � �
��
�	������ 	 ��� 	 � � 
 $ � � 
 + � � 
� � 
 � � 

��
 	 
� � � � �

(9)

(2) If � is an even number, then an upper bound for the expected retrieval time is
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given by,� ,+ �
��
�	������ 	 ��� �

��

�

�

��
�

� 
 	 ����� 	 � � 	��
� odd

� �� $�� ��� + � ��� �� � � 
� �
	 

� ��� 
 �
	� �

(3) The retrieval time under complete replication is given by,� � �� ,�	� 
 ��� � � �����"� � � � ��������� � �
�&� 
 + ��� 	 ����� 	 �	� � + ��� � (10)

Proof: (1) The term, � ,+ �
� 
 	 ����� 	 � � �

��

�

in equation (9), incorporates the effect of updates (compare with equation (6)).
The term

� . �&� 
 	 ����� 	 � � �
in (9) is simply the deterministic component of the

retrieval time. This retrieval time is increased due to randomness induced by the
declustering. The increase due to randomness has been estimated in equation (9)
using the term

� �
 $ � � 
 + � � 
� �
 � � 
� 
 	 

� � � �

This correction term however only accounts for the randomness in retrieval times
between the first two disks (see Proposition 2), whereas there is the randomness
due to splitting the request over the other disks which has not been accounted
for in this formula. Therefore we get a lower bound for the retrieval time, if the
errors introduced by the other assumptions are not significant. Algebraically, if� �

is the random retrieval time from disk � , then, this fact can be expressed as���� ��� 
 � � � � �����"� � � � 	 ���� ��� 
 � � � � �
(2) The upper bound has been constructed using a similar logic. In the ex-

pression for the upper bound, we take each successive pair of disks, (1,2), (3,4)
.. ( �

+ 
, � ), and simply add the “extra” retrieval time due to randomness, aris-

ing from each pair of disks. We get an upper bound, because the actual extra
time due to randomness is the maximum of these pairs of values. Algebraically,
if
� �

is the random retrieval time from disk � , then, this fact can be expressed as���� ��� 
!� � � � ���"� � � � � ���� ��� 
 � � � � 	 ���� � ��� � ���!� 	 ����� 	 ���� ��� ����
 � � ��� .
(3) The retrieval time under the replication strategy is similar to the one given

by equation (7), and the logic for modeling the effect of updates is similar.
�

We provide two graphs, Figures 2 and 3, that depict the percentage error in
using equation (9) for the expected retrieval time. As can be seen from these
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Figure 2: Error Analysis in Modeling Updates, Speeds 8, 1
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Figure 3: Error Analysis in Modeling Updates, Speeds 4.5, 4.5
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figures, the combined error of approximation as well as due to our modeling as-
sumptions is less than 2

�
for this two disk case. In contrast we have found that

the upper bound is sharper (with error less than 1
�

in all cases tested) compared
to the the lower bound. We use only the lower bound below, to emphasize the
fact that with heterogeneous disks, the “extra” retrieval time due to randomness
is governed by the two fastest disks. The error due to using the lower bound for
the actual retrieval time will be discussed below. From equation (10), replication
becomes less attractive with increasing number of disks, because the effect of up-
dates becomes much more severe. We also see that if

� � � �
, then the � th disk

does not contribute to speedier retrieval. We summarize these results into a single
proposition,

Proposition 7 Given that there are � disks with speeds
� ��� � � 0� � ��� � �����"�

� ,
and updates bring work of

�
per unit of time, then declustering will be preferred

to complete replication when,

1. The update rate
�

increases;

2. The ratio

� � �

� ���	� �	
�� �� � ������ �  � � decreases.

Proof: As noted after Proposition 3, the value of
$ ��� � + � � �#. � � � , does not de-

pend on
�

, and can be denoted as
$

. For practical purposes (see equation (2)),���� , � �  � �
is equal to

� � . �	��
 	 ����� 	 �����
. Therefore, the ratio of the random

component to the deterministic component of the retrieval time in equation (9) is
given by

� ��� 
�� 	 
������� ��� � � � � � �� � ������ � � � .0� 
 � ��� ��� � $

� 
� �

�
� � � ��� � �	� 
 	 � � �

� ��
�� � $ �
(11)

Declustering gets more attractive when the random component arising due
to the random splitting of a request across disks becomes small relative to the
deterministic component

� . �	� 
 	 ����� 	 � � �
. Therefore the smaller is the ratio

in equation (11), the greater will be the preference for declustering.
�

The ratio in the second part of this proposition will tend to grow with the num-
ber of disks. For example, when the disks are balanced, the ratio is proportional to�

�
. �

. If update rates are not significant, then simply the variability in retrieval
across several disks could favor replication. This effect becomes significant when�

is small.
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4 Simulations

We have carried out simulations to test the validity of these conclusions as well as
the modeling assumption SD. In these simulations, an update arrives with a fixed
probability ��� along with a retrieval. The updates have to be carried out before
addressing the query. Each update is assumed to affect a fixed number of records,� . When the data is declustered, the locations of the records to be updated are
determined using the declustering proportions. When the data is replicated, we
compute the time needed to carry out the update on each disk. We then decide
which set of disks will be used to address the query using the following formula.
The disk speeds are

� 
 	 � � 	 ����� 	 � �
. The size of the query is

�
. Let,

� � ���� �
	���
���� ����

�

����� 
 � �
	 �

� �

� ����
����
�

(12)

The fastest
�

disks are then used to retrieve the
�

records. The reader should note
that this decision rule is the most effective in retrieving the requested records. It
can be shown that the performance using this rule will under general conditions
correspond to the the expected retrieval time obtained using the slowing down
assumption (SD). The value of

�
, i.e., the work load due to updates per unit time

can be approximated by
�&� 
 	 ����� 	 � � � � ��� � . The reason is that the disks

can do work at the rate of
� 
 	 ����� 	 � �

, and update work of � arises with
probability � � .

4.1 Effect of the Number of Disks

The results comparing replication versus declustering are shown in Figure 4.
There, we depict the effect of the number of disks. In this example, the total
speed is 120 split equally between 2, 3, 4 and 5 disks. The error in using the
approximations for this example is shown in Figure 5. The percentage error of
approximation increases with the number of disks. This is only to be expected,
because the lower bound is based on just the two fastest disks, see equation (9),
whereas in this example the disk speeds are balanced. The upper bound for the
expected retrieval time is sharper than the lower bound for all cases examined in
this section. The lower bound as an approximation has greater value in a hetero-
geneous environment, see below for an example.

In the absence of updates, replication gives greater benefits when there are
more disks. The reason, see Proposition 7, is that there is increasing variability
in the retrieval times when the request is split randomly between multiple disks.
The effect of this phenomenon is roughly in the proportion

�
� , where � is the

number of disks, as can be inferred from equation (11).
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Figure 4: Replication is Favored with Increasing Number of Disks.
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4.2 Effect of Updates

Next we look at the effect of updates. As determined by equations (9) and (10), we
see from Figure 6, that updates can diminuish the value of replication. As a rule,

Speeds = 60, 30, 15, 15, Request size = 720
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Figure 6: Declustering becomes more Attractive with Updates

the break-even for using replication occurs when the slowest disk is infrequently
used (

��� � �
), see equation (10). In Figures 7 and 8, we show the error in using

the formulae given in equations (9) and (10). The percentage error is small even
for a four disk example, and actually decreases with increasing rate of updates –
confirming that the use of the lower bound as well as the use of SD, do not detract
from the quality of the approximation.

5 Conclusions and Future Work

The current work provides an insight into the tradeoffs between replication and
declustering in heterogeneous environments. We showed that declustering intro-
duces an additive random factor to the response time as compared with replica-
tion. On the other hand replication introduces a more severe penalty under updates
as compared with declustering.

Our analytical results and simulations indicate the following:

� The effectiveness of declustering vs. replication improves with large request
sizes. The improvement is proportional to the square root of the request
size.
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Figure 7: Error Analysis: Declustering and Updates
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� The effectiveness of replication is decreased linearly with the relative pro-
portion of updates.

� The effectiveness of replication is increased with the number of available
disks. This improvement is proportional to the square root of the number of
disks.

� In environments with a large degree of heterogeneity among the disks,
declustering is more effective as the fastest disks tend to dominate the re-
sponse time and the ”randomness” due to declustering is decreased.

In the current paper we did not account for queueing effects which may affect
both declustering and replication. Although we believe that the above trends will
still hold, we plan to perform some future work on such analysis. Another area of
interest for future work is the design and analysis of combined declustering and
replication schemes. In realistic environments, a better solution may be obtained
by declustering the database into chunks and then replicating some (or all) of these
chunks with different degrees of multiplicity based on their access requirements.
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A Appendix

Derivation of Equation (1): Consider a random variable,
�

, distributed normally
with mean

� �
and standard deviation

� � ��� ,+ �*�
. Then,��� � � �	� 
 ��� � ����� ��� �0��� � � � ���� � ���
 � � + �
� � � �� � � �� 
�� � � 	 � ��
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 	 � � � � 	 � � � +��
� � � � � � � ��
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 	 � � � �� 
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 � ��� � + � � 


��
 	 � � � � � � 	 � � 

��
�	 � � � �	 �
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 	 � ��� � � 	 � � 

� 
 	 � � �
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�&��
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(13)

where � ����� is the indicator function of the set
�

. Let
'���'�(

stand for the standard
Normal distribution function and its complement. Let

$
denote the standard nor-

mal density function. Let � � � � 
 . �&� 
 	 � � � , � � � �
, and � � � � � � ,+ �*�

.
Then the right hand side of this equation can be simplified as:

�
� 
 	 � � 	 � � 


��
�	� � �
 � �

� � + � ��
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 	 � � � $ � � + �� ��
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� �
� 
 	 � � 	 � � + � ���*+ 

� � '�� � + �� � 	 
� 
 ' ( � � + �� ���	 � $ � � + �� � � 

� � 	 
� 
 � (14)

Proof of Proposition 1: This expression given in equation (1) can be minimized
by using a search procedure. A approximate but quicker result can be obtained by
treating � as independent of

�
(this is certainly not true, but this approximation

turns out to yield very good estimates for
���

). Then the expression to be mini-
mized can be written as:

� ��� � � + � + �� � + 
� � '�� � + �� � 	 

��
 ' ( � � + �� � �	 $ � � + �� � � 
� � 	 

� 
 � (15)

� +�� � + 
� � '����0� 	 

��
 ' ( ��� � � 	 $ ��� � � 
� � 	 

��
 � (16)

where
�

is the standard Normal deviate,

�
� ��� �

�
� � 

� � '���� � + 
� 
 ' ( ���0��� (17)

and

�
� � ��� �

�
� � � 

� � $ ���0� 	 
� 
 $ ��� � � �	�

(18)

Therefore
� ���0�

is minimized by setting the first derivative equal to zero, giving


� � � ' ( ��� ��� 

� 
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