
Performance Analysis of Memcached

Vijay Chidambaram

Department of Computer Science
University of Wisconsin Madison

vijayc@cs.wisc.edu

Deepak Ramamurthi

Department of Computer Science
University of Wisconsin Madison

scdeepak@cs.wisc.edu

Abstract
Memcached is an open source, high-performance,distributed
memory object caching system. It is widely used by large
scale Web 2.0 companies to speed up dynamic web appli-
cations by alleviating database load. However, there is little
or no academic literature on memcached - It is not under-
stood very well, and its performance has not been analyzed
so far. In this paper, we present an analysis of memcached.
We identify avenues for optimizing memcached and explore
two of them. We analyze the effects on performance for both
avenues.

1. Introduction
Memcached[6] is a distributed cache, originally developed
at Danga to improve their website performance. Since then,
it has evolved into a high-performance object caching sys-
tem which is widely used by large-scale companies. Face-
book has the world’s largest memcached deployment - It is
used in their photo service to cache the on-disk locations of
photos that are requested by users all over the world. Live-
Journal uses memcached to alleviate its database load due to
hundreds of thousands of users accessing blog entries. Twit-
ter uses memcached to reduce database load when millions
of users twitter and access each other’s streams.

The power of memcached lies in the fact that it is very
easy to scale - To increase performance or to increase the
amount of data cached, one just adds nodes. Memcached
is very fast since it resides entirely in main memory. This
makes it very attractive to companies that might need to scale
very quickly.

Inspite of the huge deployments of memcached in several
companies all over the world, it remains a poorly understood
system. The research community do not understand mem-
cached well - there have been no academic papers on the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

subject. There are also no publicly available performance
studies made by industry. It is very poorly documented in-
spite of being widely used. Development is carried out by a
dozen programmers , and outside this elite circle, knowledge
of how memcached works is not widespread.

In this work, we set out to understand memcached, ana-
lyze its performance and find possible bottlenecks. Our main
contributions in this paper include analysis of memcached’s
performance (both with respect to the number of clients con-
tacting the server, and the size of the data objects that mem-
cached stores), and identification of opportunities for op-
timizing memcached. As proof of concept, we explore two
such opportunities and report the effects on performance.

We look at tuning the e1000 network driver for mem-
cached - Interrupt blanking, where the system is non-
responsive to interrupts for a period of time; Opportunistic
polling, which switches between polling and interrupts for
I/O based on the load; We look at modifying the number of
buffers for transmitting and receiving packets and the delays
associated with transmitting and receiving packets.

We also look at providing operating system support for
memcached in terms of zero-copying. The Linux kernel has
some interesting system calls called splice and vmsplice
which implement zero-copy. We modify memcached to use
these system calls and document the effect of this modifica-
tion on performance.

The rest of the paper is organized as follows: Section 2 ex-
plains what memcached is, and some of its important prop-
erties. In section 3, we motivate our work and enumerate
our goals. Section 4 discusses the experimental setup that we
used, along with the specific tools used in the work. We ana-
lyze the performance of memcached in Section 5. We present
the design of our modified memcached in section 6, and ex-
plain its implementation in Section 7. We present a compari-
son of performance between the original memcached and the
modified memcached in Section 8, along with an analysis of
the performance. We discuss related work in Section 9, and
conclude in section 10.

2. Background
Memcached is anin-memory key-value store for small
chunks of arbitrary data (strings, objects) from results of

Figure 1. Memcached in action. Once values have been cached in the memcached server, GET requests from the Nginx http
server can be directly served by memcached, easing load on the app servers. Upon value updates, the app servers SET the
values in memcached.

database calls, API calls, or page rendering. Each data item
in memcached is associated with a key, which is used to
retrieve that particular data item. Memcached uses a sim-
ple hash table to stores keys and values. The lookup takes
constant time.

Memcached is adistributed caching system - There may
be several physical machines running memcached, but a uni-
fied view is presented to the end user. Memcached uses a
technique called consistent hashing to map each key perma-
nently to a single server, among all the servers running mem-
cached. Identifying which server contains a particular keyis
done at the client side, thereby relieving the servers of this
load. This contributes to the high scalability of memcached.

Figure 1 demonstrates the working of memcached. Upon
each update, the application servers SET the value in mem-
cached. Note that the value might be stored in any one of
the number of machines which are running memcached -
But this is oblivious to the application servers. Now when
the Nginx http server requires the result of a query, it first
asks memcached whether it has that value. If memcached
has that value, a trip to the application servers is avoided
and the value is returned by it to the http server. This is how
memcached helps alleviate database application load.

Instead of using malloc and free, memcached usesslab
allocation[7] to efficiently allocate space for key-value pairs.
Upon start-up, chunks of memory are pre-allocated. Upon
request for space for a particular value, the chunk closest
in size to it is returned. This is done to avoid fragmentation
and to avoid the overhead of finding contiguous blocks of
memory.

Memcached uses TCP for communicating with clients.
The latest version supports UDP partially, you can send

”set” messages to the server via UDP, but you cannot send
’get’ requests using UDP, since you need to reliably get
the response back. It can run in blocking and non-blocking
modes. Currently, the maximum size of key-value pairs that
can be stored is 1 MB.

Memcached supports multi-threading - the 1.4.3 version
which we use runs 4 threads by default. The number of
threads run can be controlled by setting an option at the time
of starting memcached.

3. Motivation
Memcached is widely deployed by a number of large scale
Web 2.0 companies such as Facebook, Flickr, Youtube,
Digg, Twitter, LiveJournal and Wordpress. These compa-
nies operate at huge scale, typically serving hundreds of
thousands of customers per second. These companies use
Memcached to alleviate database load and speed up their
web applications. This makes memcached one of the most
widely deployed distributed system of recent times.

However, there has been little or no academic research
about memcached. Due to the small amount of documenta-
tion available online about it, the research community does
not have a good understanding of it. Our goals in this project
are:

1. To gain a deep understanding of memcached

2. To find bottlenecks in memcached performance

3. To optimize memcached

The last goal of optimizing memcached is difficult be-
cause several companies, especially Facebook, have invested
time and money into optimizing it. The memcached project

Table 1. Specification of server node in experiments
Parameter Value
Operating System Fedora Core 6
Linux Kernel Version 2.6.20
Disk size 120 Gb
Frequency 3000 MHz
Memory 4 GB
Processor Pentium 4
Number of processors 2

leader at Facebook considers that the system is currently so
well tuned that adding a single system call will have a con-
siderable impact on throughput.

4. Test Setup
4.1 Hardware Setup

For our experiments, we borrowed machines from theWis-
consin Advanced Internet Laboratory. For preliminary ex-
periments, we used 10 machines. For the final experiments,
we used 24 machines. The specifications of the server node
are shown in Table 1. The frequency of the other nodes varies
between 2-3 Ghz, with main memory capacity varying be-
tween 1 GB and 3 GB. All nodes in the experiment ran
Fedora Core 6. All of the nodes were connected to a 1
Gigabit switch. Each node used theIntel e1000 network
driver.

4.2 Memcached version and options

The version of memcached we used is 1.4.3, which was
the latest version at the time that we began this work. The
command which we used to invoke memcached was:

nice -n -20 memcached -m 3000 -p 7000 -u root

This invokes memcached at the highest priority, with
memory allocation 3000 MB. Memcached runs as the user
root, at port 7000.

4.3 Client Library

For client-server communication, we used thelibmemcached

0.34 client library. The reason for choosing this particular
client was:

1. Libmemcached is written in C, making it one of the
fastest memcached client libraries. Since we use it for
performance analysis, we wanted the client library to be
as fast as possible so that it does not adversely affect
performance.

2. Libmemcached undergoes active development, and is one
of the more ”mature” client libraries for memcached.

4.4 Profiler

For profiling, we usedOProfile[8]. OProfile is a system-
wide profiler for Linux systems, capable of profiling all run-

ning code at low overhead. It consists of a kernel driver
and a daemon for collecting sample data, and several post-
profiling tools for turning data into information. OProfile
leverages the hardware performance counters of the CPU
to enable profiling of a wide variety of interesting statis-
tics, which can also be used for basic time-spent profiling.
All code is profiled: hardware and software interrupt han-
dlers, kernel modules, the kernel, shared libraries, and appli-
cations.

4.5 Workload

Memcached is a general purpose key-value store - It does not
assume anything about the values that it is asked to store.
To faithfully mimic this in our experiments, we randomly
generated strings containing ASCII characters. In our exper-
iments, the actual value stored in memcached is always ran-
dom - only the length of the value is controlled during the ex-
periments. Upon startup, memcached is first pre-populated
with keys from range 0 to 10000. Then each client randomly
picks a number in this range and requests the value for that
key. In our workload, all of the GET requests are hits and
successfully return a random string.

5. Analysis
We started up the memcached server, prepopulated it with
values and let the 9 client machines continuously request
values from the server. For the analysis, we used keys and
values of size 4 bytes. We ran Oprofile and profiled the entire
system, including kernel code. When we first profiled the
system, we noticed that memcached was spending a lot of
its time inside the kernel, and the network driver. So we
switched on additional options in OProfile that enabled us
to seewhere inside the kernel and the network driver that
memcached was spending time.

5.1 Observations

1. A lot of the time (∼15%) is being spent in the code of
thee1000 network driver. Around 3% of time is spent on
waiting for input.

2. Copying data from the user space to the kernel space also
takes up around 3% of time. An additional 3% is spent in
system calls for switches between the kernel-space and
the user-space.

3. Around 2% of the time is spent in handling tcp packets.
The profiled results show that all the data arrives in order
- the handler for out of order data packets is never called.

4. Around 2% of the time is spent in idle mode - the
mwait idle kernel method is used to make the pro-
cessor sleep, and wakes it up when a write is done in
a monitored memory region.

5. Locking among threads also takes up around 2% of the
time.

6. Malloc accounts for around 2% of the time during net-
work packet handling. This was initially surprising, since
memcached uses a slab allocator instead of malloc/free.
However, slab allocation is done only for internally stor-
ing data items and not for network packet handling and
other functions.

7. The code structure of memcached is very modular - For
every function that needs to be mutually exclusive, there
is a wrapper function that does locking, unlocking, and
then calls the function that actually does the work.

8. The command interpretation of memcached takes around
2% of the time.

9. The hash of memcached takes around 1% amount of
time. Given that the hash function is an O(1) operation,
this is surprising.

5.2 Opportunities for optimizing memcached

1. Since a lot of time is spent in the network driver, it can
be optimized for memcached’s operations. This is one of
the lines of optimization that we pursue in this work.

2. A lot of time is spent in switching between user and
kernel space and copying data between the two. It should
be kept in mind that the profiling was done on 1 KB sized
values. For bigger sizes such as 256 KB, the amount of
time spent for context switches and copying increases a
lot. This is the second line of optimization that we pursue
in this work.

3. TCP imposes a lot of overhead on memcached, both dur-
ing connection startup and during data transfer. Perfor-
mance could be improved if UDP is used instead of TCP.
However, this will involve a complete rewrite of mem-
cached’s interactions with the network and additional im-
plementation of reliability for get operations of mem-
cached.

4. If memcached’s workload is previously known, such as
the key-value sizes, the TCP implementation can be opti-
mized for that workload. For example, all the TCP pack-
ets can be made to be the same size of the memcached
key-value pairs. This would involve considerable amount
of work, tweaking the TCP implementation of the sys-
tem.

5. Consider the actual workhorse functions and the wrapper
functions in memcached. Given the amount of times that
some functions are called, merging these 2 functions
together and avoiding the function call overhead could
give some performance improvement.

6. The command interpretation part of memcached could be
optimized by replacing the text commands of memcached
with a binary protocol. This is being worked on by mem-
cached developers.

7. The hash function of memcached seems to be very com-
plex. It is complex because it provides us certain proper-

ties. The hash function could be examined and simplified,
cutting away unnecessary properties.

6. Design
From the analysis, we identified that memcached spends a
significant amount of time in sending out packets over the
network, and in copying information between the user-space
and kernel-space. In order to reduce the time spent in net-
work transfer, we looked at tuning the e1000 network driver
to be more efficient for memcached. In order to reduce copy-
ing information between user and kernel space, we looked at
providing operating system support for memcached in the
form of zero-copy techniques. Sections 6.1 and 6.2 explain
e1000 tuning and operating system support respectively.

6.1 Tuning the e1000 driver

The e1000 supports a feature calledinterrupt blanking[2].
Servicing an interrupt consumes some amount of processing
power. Servicing a lot of interrupts all the time increases
CPU load drastically. When interrupt blanking is enabled,
the processor only responds to interrupts every few mi-
croseconds. This reduces the load on the processor. This
feature is turned on by default in the e1000. While interrupt
blanking reduces CPU load, it adversely affects the through-
put since memcached is not responding as fast as it can to
the requests. We turned off interrupt blanking or coalescing
and measured throughput of the system.

When the system is handling a lot of packets, polling
might be a more efficient way to get I/O than interrupts. Our
preliminary experiments using polling demonstrated that us-
ing 9 clients is not creating enough traffic for polling to be ef-
fective. Hence it was not explored further. We also increased
the recieve and transmit buffers in TCP to the maximum
value allowed by the system.

6.2 Operating System Support

We investigated the option of providing operating system
support for memcached. From the profiling, we noticed that
there was significant amount of copying of data from user
space to kernel space and back. We came across two inter-
esting system calls that were added recently to the Linux
kernel -splice andvmsplice[10]. These system calls allow a
user-space process access to a kernel buffer in the form of
a pipe. The vmsplice system call transfers data from user-
space to a pipe. The splice system call transfers data from
one file descriptor to another.

The key idea in both these system calls is that they are
zero copy[3] - They minimize the amount of copying be-
tween user space and kernel space, and also within the kernel
space. We expected to get some performance improvement
by minimizing the amount of copying currently happening
in memcached.

7. Implementation
We describe the hurdles we faced while implementing both
the approaches explained in the previous section, and the
optimization we made to memcached while implementing
them.

7.1 Tuning the e1000 driver

Interrupt blanking in the e1000 driver is related to the
InterruptThrottleRate parameter of the e1000 driver.
The value set for this parameter is the maximum number
of interrupts per second that the adapter will generate for
incoming packets. We set the value of 0 for this parameter,
which denotes that blanking is turned off - As each packet
arrives, an interrupt is generated.

The parameterRxDescriptors specifies the number of
receive buffer descriptors allocated by the driver. Increasing
this value allows the driver to buffer more incoming packets,
at the expense of increased system memory utilization. We
set this parameter to the maximum value allowed.

The paramaterRxIntDelay specifies the delay imposed
on the generation of receive interrupts in units of 1.024 mi-
croseconds.Increasing this value adds extra latency to frame
reception and can end up decreasing the throughput of TCP
traffic. We set this parameter to zero to reduce the delay and
increase throughput.

The parameterTxDescriptors specifies the number of
transmit descriptors allocated by the driver. Increasing this
value allows the driver to queue more transmits. Each de-
scriptor is 16 bytes. We set this parameter to the maximum
value allowed.

The parameterTxIntDelay specifies the delay imposed
the generation of transmit interrupts in units of 1.024 mi-
croseconds. We set this parameter to zero to reduce the delay
and increase throughput.

Setting these parameters was done by changing the op-
tions for the e1000 driver in the/etc/modprobe.conf file.
We also carried out a preliminary evaluation of opportunis-
tic polling. In opportunistic polling, the driver measuresthe
number of packets arriving per second, and switches to in-
terrupts mode under low load and polling in high load. This
involved recompiling the e1000 driver with theNAPI option
enabled.

7.2 Operating System Support

7.2.1 Increasing kernel buffer sizes

The splice and vmsplice system calls are zero-copy and
hence should enable us to reduce the amount of data copying
happening due to memcached. Splice and vmsplice use a
pipe for communication and this pipe is implemented as a
kernel buffer in the Linux kernel. This was the first hurdle we
ran into while implementing splice support in memcached -
The maximum size of a kernel buffer is set inside the kernel
and cannot be changed via any system calls. So we modified

the Linux kernel to support bigger kernel buffers - This was
made difficult because of the complexity of the Linux kernel.

7.2.2 Using splice in memcached

Once we modified the Linux kernel to support kernel buffers
of size up-to 256 KB, we needed to modify memcached to
use splice[9] and vmsplice. This turned out to a non-trivial
task because of the complexity of memcached’s state ma-
chine and the asynchronous nature of vmsplice and splice.
From the profiling, we zeroed in on the part of memcached
that is responsible for sending messages over the network.

The amount of data transferred by splice from one file
descriptor to another (in our case, from the pipe kernel
buffer to the socket buffer) is not guaranteed to be the
amount of data in the pipe kernel buffer. This might happen
for a number of reasons, such as the socket buffer being
temporarily full. In such cases, the splice system call returns
the number of bytes actually transferred and sets the global
variableerrno to denote that all the data was not transferred.
We needed to identify when this was happening and to call
splice again. Note that we do not need to call vmsplice again,
as all the data has already been transferred from the user-
space buffer to the kernel buffer. This complicated error
handling quite a bit and we needed to store separate state
to check whether splice transferred all the data or not.

7.3 Optimizations

Once we implemented memcached with splice calls, we
found that performance was terrible - There was a delay
of about 1 second for each set/get operation. We needed to
make some optimizations to memcached to make the per-
formance better. It should be noted thatsendmsg is already
quite optimized and fine-tuned through wide usage, while
splice calls are just starting to get used and hence will need
to be optimized a lot to deliver the promised performance
benefit.

7.3.1 Creating a pool of pipes at startup

Our first optimization was creating a pool of pipe kernel
buffers at memcached setup - Because of the large number
of connections, pipe creation was slowing down memcached
by a considerable amount. Performance improved when pipe
creation was moved to memcached startup time, rather than
connection startup time. However, throughput of modified
memcached was still around 30% lower than that of original
memcached. While we were expecting some performance
degradation, this was higher than what we expected.

7.3.2 Avoiding lookup costs for pipe-connection
information

The second optimization was changing the structure of a
memcached connection so as to store information about the
kernel buffer pipe allocated to that connection. Previously,
we had implemented a table that stored this information and
upon connection startup, the table was scanned and a pipe

was allocated to that connection and the information was
stored in the table. However, the table lookup was reducing
performance - Once we stored this information inside each
connection, performance of modified memcached was on
par with that of original memcached when we stored large
key-value pairs in memcached.

8. Evaluation
For analyzing the performance of memcached and to mea-
sure the effects of our modifications, we decided to evalu-
ate performance via 2 criteria - how memcached scales with
the number of clients connecting to it, and how memcached
scales with the size of the data objects stored in it.

Each test was performed at least 10 times, and the aver-
age value was computed and is represented in graphs. The
standard deviation was also calculated and is shown in the
form of yerror bars on the graph.

The maximum data value used in the experiments is 250
KB, since we increased the kernel buffer size in the kernel
to a maximum of 256 KB. Increasing the kernel buffer size
further caused the kernel to crash.

8.1 Splice vs Sendmsg

In our modification to memcached, we have replaced the us-
age of sendmsg with system calls of the splice family. For ev-
ery sendmsg system call, there are now 2 splice family sys-
tem calls being used - splice and vmsplice. This means that
we are trading increased efficiency in copying data for ad-
ditional system call overhead. Therefore, unless the amount
of data copied is significant, and the inefficiency of sendmsg
with regards to data balances the system call overhead, splice
system calls will perform worse than sendmsg. This should
be kept in mind while considering the following results.

8.2 Scalability with respect to number of clients

For the clients scalability test, we borrowed 24 machines
from the Wisconsin Advanced Internet Lab (As mentioned
in section 4). We varied the number of clients connecting
to the server, and measured throughput. To further test scal-
ability, we ran multiple instances of the client code on each
of the 23 machines, effectively allowing us to have 46, and
69 clients connecting to the memcached server.

We performed this test with different data sizes - 1 KB,
80 KB, 120 KB and 250 KB. These data sizes were selected
from all across the spectrum and emphasize different aspects
of the workload. For example, the 1 KB workload has a
lot of small packets that shift the focus from copying data
to responding to interrupts and sending the packet over the
network. On the other hand, the 250 KB workload focusses
on copying and handling of data, with interrupt handling
taking less importance.

8.2.1 1 KB Workload

The 1 KB workload has the clients bombarding the server
with lots of small packets at a high rate. Thus, the capacity

of the server to handle interrupts and efficiently send packets
over the network comes into play, rather than how efficiently
the server copies data back and forth between user and kernel
space. Thus, using splice system calls is not expected to give
any performance benefit here.

Figure 2 shows the performance of memcached for the
1 KB workload. The performance of original memcached,
and our modified version, both with and without disabling
interrupt blanking, is shown. As expected, modified mem-
cached which uses splice system calls performs badly when
compared to original memcached.

Up-to 10 clients, disabling interrupt blanking works well,
consistently outperforming original memcached. However,
for any number of clients above 10, the performance de-
grades. This behavior becomes less mystifying if Figure 3
is considered. The performance of memcached heavily de-
pends on the load that the processor is under. Since the server
has two processors, the maximum is 200. Whenever the load
becomes equal to or greater than 180, memcached perfor-
mance degrades very badly.

Looking at Figure 2, memcached with interrupt blanking
disabled reaches 180 percentage CPU load at 10 clients.
This is exactly the point at which its performance starts
degrading. We believe on a more powerful processor, or one
with dual cores, the technique of disabling interrupt blanking
will scale to much more than 10 clients.

8.2.2 80 KB Workload

For the 80-160 KB workloads, the focus is on a mixture of
how the server handles interrupts and how efficiently the
data is being copied. Figure 4 shows the performance for
this workload. Because of the larger data size, the number
of packets sent and processed per second by the server is
reduced.

For the technique of disabling interrupt blanking to work,
the rate at which interrupts happen must be high. With 80
KB packets, the rate of sending packets is considerably re-
duced. Morover the number of clients which are connecting
to the server is not high. Hence, memcached with disabled
interrupt blanking does not outperform original memcached.

Modified memcached still performs worse than original
memcached, but the percentage of degradation is now within
1% as compared to the 23% of the 1 KB workload (This
value is for 10 clients). The additional copying that must be
done for the 80 KB workload enables modified memcached
to catch up to original memcached.

8.2.3 120 KB Workload

The 120 KB workload is at the middle of the range between
1 KB and 250 KB, and as such represents the middle-ground
between interrupt handling efficiency and data copying effi-
ciency. Figure 5 shows the performance for this workload.
Once again, because of the larger size of the data, the rate
at which packets arrive at the server decrease and disabling

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for 1 KB workload

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 2. Performance of memcached for 1 KB workload. Disabling interrupt blanking improves performance consistently
until the number of clients increases beyond 10. Modified memcached performs poorly due to small amount of data copying
taking place.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

CPU Load for 1 KB workload

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 3. CPU Load for 1 KB workload. Original memcached scales beautifully, with the CPU load increasing only slightly
as we increase number of clients. When interrupt blanking isdisabled, due to the extra CPU load, memcached reaches peak
CPU load earlier than normally.

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for 80 KB workload

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 4. Performance of memcached for 80 KB workload. Due to the bigger data size, packet arrival rate reduces and
memcached with interrupt blanking disabled performs poorly. Modified memcached catches up-to original memcached, with
difference in performance being less than 14 or 1%

 820

 840

 860

 880

 900

 920

 940

 960

 980

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for 120 KB workload

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 5. Performance of memcached for 120 KB workload. Disabling interrupt blanking does not give performance gains,
while modified memcached still performs slightly worse (approx 1%) than original memcached

 410

 415

 420

 425

 430

 435

 440

 445

 450

 455

 460

 465

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for 250 KB workload

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 6. Performance of memcached for 250 KB workload. Modified memcached, while getting very close to original
memcached’s performance, is still unable to do better. Interestingly, modified memcached with interrupt blanking disabled
does very well on this workload, performing better than justsplice modifications or only disabling interrupt blanking.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 5 10 15 20 25 30 35 40 45

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for workloads of various sizes

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 7. Performance of memcached for workloads of sizes 1-48 KB. Disabling interrupt blanking provides benefits when the
data size is small, as this leads to more packets arriving at the server per second. Modified memcached’s performance is very
close to that of original memcached as data size increases.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 50 100 150 200 250

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

of clients

Memcached Performance for workloads of various sizes

Original memcached
Modified memcached

Original memcached + Interrupts
Modified memcached + Interrupts

Figure 8. Performance of memcached for workloads of sizes 48-250 KB. As data size increases, the difference between the
performance of original and modified memcached decreases. Modified memcached’s performance is almost on par with that of
original memcached.

interrupt blanking does not provide us with a performance
gain.

Even though the curve for modified memcached looks
well below that of original memcached in the graph, in
reality, the performance degradation is within 1% of the
original memcached values. Note that sendmsg has been in
use for a long time, while splice is a newly introduced system
call. Thus, it is not surprising that splice system calls need to
be further optimized before providing performance gain.

8.2.4 250 KB workload

The 250 KB workload represents the end of the spectrum,
with the focus being on data efficiency rather than interrupt
handling. Because of the large data size, the rate of packets
arriving at the server is low, ruling out performance gain due
to disabling interrupt blanking.

Figure 6 shows the performance for this workload. We
notice an anomaly at the 20 client point, where the perfor-
mance of modified memcached (both with and without in-
terrupts) is better than that of original memcached. Unfor-
tunately, investigating the CPU load did not give us a clue as
to why this anomaly occurred.

Looking at the curve for modified memcached with inter-
rupt blanking disabled, we notice an interesting trend. In all
of the workloads so far, modified memcached with interrupt
blanking disabled has always performed poorly in compari-
son with the others. For the 250 KB workload, from 8 clients
onwards, modified memcached with interrupt blanking dis-

abled outperforms all the other modification techniques we
tried namely, only splice, and only interrupt blanking dis-
abled. It is within 1% of the performance of original mem-
cached at all times. This is highly promising and may indi-
cate the combination of our approaches has potential when
the data size increases.

8.3 Scalability with respect to data size

For the data scalability test, we used 10 clients and used
workloads of sizes varying from 1 KB to 250 KB. The
reason that we used clients is that when interrupt blanking is
disabled, the CPU load reaches the maximum for 16 clients,
leading to performance degradation.

Figures 7 and 8 show the performance of memcached
on these workloads. The reason that there are 2 graphs is
that throughput values for smaller sizes of the workload is
in the thousands, while throughput for the larger sizes of
the workload is in hundreds. If both of these graphs were
combined, it would be extremely hard to read. Note that
the throughput is in terms of packets per second - So while
the number of packets decreases as the size of each packet
increases, the throughput in terms of bytes is sustained.

Figure 7 shows that for smaller workload sizes, disabling
interrupt blanking improves performance. Beyond the 24 KB
mark, the modifications and original memcached perform al-
most the same, thus corroborating the less than 1% differ-
ence in performance that was seen in Figures 4, 5 and 6.

From Figure 8, we can infer that as the data size increases,
the performance of modified memcached reaches closer and
closer to that of original memcached. This is expected since
larger data sizes would cause more data copying. The per-
formance of modified memcached is almost on par with the
performance of original memcached. Further optimizations
are needed for the splice system call family in order to pro-
vide performance gain.

9. Related Work
Facebook, having the largest deployment of memcached in
the world, have gone to some lengths to optimize it[11].
They have implemented opportunistic polling, which switches
to polling under high load and interrupts in low load. They
have also replaced TCP with UDP. Both of these approaches
are suggested from the profiling in our work. We did a pre-
liminary test with opportunistic polling and concluded that,
with our small experimental setup, we would not be able to
see the benefit derived from it. Switching from TCP to UDP
is a huge task and we would not have been able to complete
it in the project deadline.

Our system-wide profiling was inspired by DEC’s early
work[1] on system-wide profiling. Shanti, an engineer at
Sun has done some coarse-grained performance analysis[12]
with memcached. However, their study does not explain
what key-value pairs were used, how many clients were used
and many other crucial details.

John Simons’ blog[13] talks about interrupt blanking and
how this can be used to increase throughput and reduce
latency. We have utilized this technique in our work. [3]
is a good resource for understanding zero copy. The splice
system call is explained by Linus Torvalds, creator of linux,
in this mailing list[14]. It is also discussed in [5] and [4].

10. Conclusion
In this work, we have analyzed the performance of mem-
cached with respect to number of clients and size of key-
value pairs. We have profiled memcached and identified pos-
sible bottlenecks. We have enumerated opportunities for op-
timizing memcached and have explored two such opportuni-
ties - Interrupt blanking and zero-copying. We have imple-
mented both of these modifications in memcached and have
analyzed the effect on performance. From the analysis, we
conclude that:

1. The memcached application in user-space is very finely
tuned and offers very little scope for further optimization.

2. Memcached offers a lot of opportunities for optimization
in the network and kernel components part. An operating
system and a kernel driver optimized for memcached is
likely to give very high performance gains.

3. Disabling interrupt blanking will provide performance
benefits when the number of packets arriving at the server
per second are large

4. Theoretically, using splice system calls should provide
performance gains. However, splice system calls have
been introduced only recently and need more optimiza-
tions before they can equal the performance of long-used-
and-optimized sendmsg.

References
[1] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, San-

jay Ghemawat, Monika R. Henzinger, Shun-Tak A. Leung,
Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger,
and William E. Weihl. Continuous profiling: where have all
the cycles gone?ACM Trans. Comput. Syst., 15(4):357–390,
1997.

[2] Intel. Linux* base driver overview and installation.
http://www.intel.com/support/network/sb/cs-009209.htm.

[3] Linux Journal. Zero copy i: User-mode perspective.
http://www.linuxjournal.com/article/6345.

[4] LWN.net Mailing List. And what becomes of zero-copy?
http://lwn.net/Articles/178682/.

[5] LWN.net. Some new system calls.
http://lwn.net/Articles/164887/.

[6] Memcached. Memcached official website.
http://memcached.org/.

[7] Trond Norbye. Communictation
from trond norbye to anatoly vorobey.
http://code.sixapart.com/svn/memcached/trunk/server/doc/memorymanagement.txt/.

[8] OProfile. Oprofile. http://oprofile.sourceforge.net.

[9] Splice Wiki Page. Splice (system call).
http://en.wikipedia.org/wiki/Splice(systemcall).

[10] Linux Man Pages. Splice man page. http://manpages.courier-
mta.org/htmlman2/splice.2.html.

[11] Paul Saab. Facebook blog: Scaling memcached at facebook.
http://www.facebook.com/note.php?noteid=39391378919/.

[12] Shanti. Shanti’s blog:memcached per-
formance on sun’s nehalem system.
http://blogs.sun.com/shanti/entry/memcachedon nehalem1/.

[13] Josh Simons. The navel of nar-
cissus: Solaris tcp latency for hpc.
http://blogs.sun.com/simons/entry/solaristcp latencyfor hpc.

[14] Linus Torvalds. Linux: Explaining splice() and tee().
http://kerneltrap.org/node/6505.

