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Abstract
Current Linux Operating Systems’ power gover-

nors do not provide a fine-grained control and man-
agement over the energy utilized by the applications
running on a computing system. Linux power gover-
nors by default use ondemand CPU frequency gover-
nor or Intel’s P-state driver for power management
by considering the entire system load rather than in-
dividual application requirements. This system-wide
and default kernel policy could have undesirable ef-
fects on OS power management and could lead to
poor battery life and performance for modern CPUs.
In this project, we first provide an overview of the
difficulties in existing Linux Operating System power
management and we explore the opportunities that
application characterization presents for more effi-
cient energy management solutions.

We present E-MOS (Efficient Energy Management
Policies in Operating Systems), an energy manage-
ment model which uses applications’ characteristics
to make frequency scaling policy decisions in order
to achieve better energy efficiency while balancing
the performance of the system. The decisions of this
application aware policy can be applied through the
ACPI (Advanced Configuration and Power Interface)
user-space power governor. E-MOS is evaluated on
variety of benchmarks and we see energy savings
upto 2x for a 13% performance loss.

1. Introduction

The last decade of computing has seen mobile
phones, wearables and other battery powered sys-
tems becoming more ubiquitous. This shift towards
mobile computing has lead to system designers be-
ing faced with the challenge of prolonging battery

life by limiting the energy consumed by system re-
sources (CPU, Memory, Network) and improving
system energy efficiency [13, 16] while running a
multitude of user applications. In addition to energy
consumption, managing system power dissipation is
also very important in avoiding heat related problems
that are prevalent in computing systems [9].

Most of the existing work on system energy con-
servation rely on techniques that dynamically charac-
terize power consumption and the Quality of Service
(QoS) requirements of applications. Based on these
parameters, systems implement power management
policies by using DVFS (Dynamic voltage frequency
scaling) [6] to reduce the CPU operating frequency
or switching to lower-CPU power states [11, 20]
during periods of low activity. Reflecting this, the
current power management governors in Linux pri-
marily use one source of information while regu-
lating power, CPU usage and system performance
requirements. Based on the performance needs of a
system, these governors vary the CPU frequency in
an effort to manage energy consumption while main-
taining QoS. There exists a wide variety of other
sources of information, through platform indepen-
dent interfaces like ACPI [1, 2], platform dependent
interfaces like RAPL(Running Average Power Limit)
and of-course the user as well. The rigid nature of
current power management policies could harm the
energy efficiency of a system, since each applica-
tion could differ in its needs, and thus require differ-
ent strategies to achieve efficient energy utilization.
Some applications (such as those that interact with
the user) run for shorter periods of time and require
an immediate response. Other, more background
tasks (like a disk scan) run for longer durations but
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might not be latency bound. While the former class
of applications could benefit from short periods of
high performance, the latter could be executed more
efficiently by operating at a lower performance level.
Furthermore, similar issues occur with other system
resources and the efficient management of these re-
sources also affect the optimal energy management
strategy. These issues could affect the systems that
manage power only through CPU frequency scaling.

Given the issues identified, we aim to explore
cases where the current power governors on Linux
fail to yield a reasonable energy management so-
lution. Furthermore, similar to the work of Liang
et. al [10], we aim to show that by providing infor-
mation that characterizes the needs of a particular
application, better energy efficiency is achievable.
We first profile applications and characterize them
into buckets based on how compute intensive, cache
sensitive and memory intensive they are. Based on
this information, an analytical model called E-MOS
is used to reason about the frequency scaling of cores
and achieve better energy efficiency. The analytical
model uses a decision table which uses the param-
eters of an application and power management ob-
jectives to be achieved as inputs. It then computes
possible actions that need to be taken to optimize
energy efficiency by providing different frequency
scaling settings for the given system. The model
achieves a trade off between energy and performance
by reducing or increasing and/or maintaining the
CPU frequency. We evaluate the model’s results by
implementing its suggestions and testing with the
user-space power governor for a variety of applica-
tions. Our experiments scale the CPU frequency and
we observe energy savings of up to 2x with 13% per-
formance loss compared to the default Linux power
governors.

This paper makes the following contributions:

• An analysis and case study of existing Linux
power governors for different applications that
can be categorized as compute intensive, cache
sensitive and memory bound.

• An application aware analytical model called E-
MOS which analyzes the trade off between energy
efficiency and performance with application infor-

mation.
• An improved energy-management policy, which

tunes the CPU frequency to meet application de-
mand while achieving better energy efficiency.

• A comparison of E-MOS with Linux’s default
power governors for a number of benchmarks.

Paper Organization We first discuss related work
in the power management field in Section (§2). We
present a brief overview of the existing Linux power
management solutions in Section (§3). Section (§4)
discusses a case-study of non-linear scaling with
existing power governors and motivates our work.
Section (§5) explains our application categorization
and with a detailed analysis, reasons about the prob-
lems with existing Linux governors. Section (§6)
explains our E-MOS analytical model and the deci-
sion table it uses to make application-aware energy
management policy decisions. Section (§7) details
our experimental methodology while Section (§8)
gives a detailed evaluation and results of our model.
We discuss the lessons we learned in Section (§9)
and finally conclude in Section (§10).

2. Related Work

The Energy Management (EM) area in operating sys-
tems constitutes a diverse set of solutions to the prob-
lem of ensuring performance while decreasing power
usage. The Linux kernel has some predefined gover-
nors for managing power but many papers have rec-
ognized that these general purpose solutions are cer-
tainly not optimal, and perhaps in some case not even
adequate. There have been a number of attempts to
remedy this and we enlist some of these solutions
in this section. Dynamic Voltage Frequency Scal-
ing [6] has been a popular hardware mechanism to
save power and boost performance. Zeng et. al [20]
focuses on directly managing power usage as one
might manage other scarce resources. Choi et. al [7]
dynamically profile applications to determine a good
energy management policy at hardware level.

Non-Optimal General Purpose EM Policies It
has been recognized that the generic policies for en-
ergy management implemented in Linux by using the
ACPI interface are not always the best performing, or
most efficient. For example in the context of mobile

2



devices [10], the on-demand power governor used
by the Android operating system does not guarantee
low power consumption for all workloads. Recently
(as of Linux 3.9), Intel introduced a P-state driver
that is more platform specific to overcome some of
the issues of the ACPI governors. On the opposite
end of the spectrum, we see work done by Yanpei.
et. al [11] that attempts to tackle this issue for data
center workloads and emphasizes QoS guarantees
rather than energy efficiency. Our work focuses on
providing more dynamic energy management deci-
sions based on the application information. Work
on using user-space governor to drive the power pol-
icy and compare the implementation with the other
Linux governors has been done in [10].

Existing Energy Efficiency Policies In the case
of [20], energy is treated as another scarce resource
and a currency based algorithm is used. Processes in
this system are allocated a specific amount of power
usage, and are given access to various power consum-
ing operations in relation to the amount of power they
are allocated. However, this is focused largely on the
question of optimization of allocation, and not on the
question of how to ensure that the energy is produc-
tively used. Other implementations [10, 7] attempt
to form a correlation between the number of memory
accesses and ideal operating frequency. They base
this argument on the fact that some workloads see
lower power when executed at higher frequencies.
Their experiments show that this is a consequence of
the number of memory accesses, whose frequency
of operation remains constant. By getting a mea-
sure of the memory accesses in a workload, they use
the memory access - CPU frequency correlation to
set the operating frequency. Our approach is simi-
lar to the above work where we classify workloads
depending on how CPU/memory bound and cache
sensitive.

Application Profiling and decomposition Dy-
namic voltage and frequency scaling based on appli-
cation profiling and decomposition has been done
in Choi. et. al [7]. This idea on profiling is similar
to our project’s initial profiling step, but the work-
load is decomposed into two-parts here: On-chip and
Off-chip, effectively indicating CPU sensitive and

memory sensitive applications respectively. It ex-
ploits the idea that different workloads have different
power management needs and these statistics could
be exploited at run-time. They do not implement this
in operating system and the energy management pol-
icy may be overridden by the kernel’s own policies.
Similarly, Choi et. al [8] work does DVFS for energy
conservation classifying all the applications based on
On-chip and Off-Chip computation ratio. Again this
would result in a generic decision, based on ratios
calculated offline. Power conscious fixed scheduling
policy of applications with DVFS based on profil-
ing information has been implemented in Shin et.
al [17], which again does not integrate the decision
making capability to operating systems. Snowdon
et. al [18] also characterize applications but use this
information to estimate an application’s power con-
sumption. They use this information to present the
OS with a flexible power management policy. Their
Koala policy needs a special mention as it is very
closely related to our current work which aims at
embedding application information into the energy
management policy of the operating system, based
on an application’s needs.

3. Linux Power Governors
On today’s Linux systems, depending on hardware
availability and the version of the Linux kernel used
in a distribution, power management is either han-
dled by the ACPI governors or Intel’s P-state drivers.
The ACPI governors are platform independent solu-
tions that base their decisions on system load and
ACPI events and request CPU frequencies. On the
other hand, Intel’s P-state drivers were introduced in
Linux 3.9 and support processors from Sandybridge
onwards. The P-state drivers are more aware of the
hardware capabilities of Intel’s processors and re-
quest Performance states (P-states) rather than fixed
frequencies.

ACPI governors These governors attempt to scale
CPU frequency in order to save power. CPU frequen-
cies can be scaled automatically depending on the
system load, in response to ACPI events, or manually
by user space programs. The infrastructure available
in the Linux kernel to perform frequency scaling is
called CPUPOWER. There are a number of ACPI gov-
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ernors available in Linux but the ondemand governor
is the most widely used. This governor sets the CPU
frequency depending on the system load. In general,
this governor tries to run the CPU load at high fre-
quency. If the CPU load placed by the user abates,
the ondemand governor will step back down through
the kernel’s frequency steppings until it settles at
the lowest possible frequency, or the user executes
another task to demand a ramp. Ondemand scales its
frequency in a work queue context. In other words,
once the task that triggered the frequency ramp is fin-
ished, ondemand will attempt to move the frequency
back to minimum. If the user executes another task
that triggers ondemand’s ramp, the frequency will
bounce from minimum to maximum.

P-state drivers Intel’s P-state drivers work on the
race-to-idle concept. Since most modern CPUs con-
sume very little power when idle, these drivers at-
tempt to execute workloads as quickly as possible
and return the CPU to an idle state. Race-to-idle
policies benefit from the power savings of having
the CPU in an idle state for most of the time. Apart
from exploiting the idle CPU power savings, the
P-state drivers are also aware of the available Perfor-
mance states (or P-states), which represent a voltage-
frequency operating point for the CPU. Currently,
two P-state driver algorithms are selectable by the
user: powersave and performance. As their names
imply, the powersave driver emphasizes power sav-
ings at the cost of performance while the Perfor-
mance driver works in a manner that is similar to the
ACPI ondemand governor.

4. Imperfect Scaling Study

This section focuses on a case study, which explores
the frequency scaling capability of the system with
two types of access patterns in applications. An
assumption often made, with respect to the power
utilization is that on a given CPU, changing the fre-
quency will change the CPU performance by the
corresponding amount (generally known as scaling).
However, this is only true when considering the CPU
execution. But, there are other architectural param-
eters whose performance do not scale along with
CPU frequency. One particular example would be
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Figure 1: Frequency scaling effect for cache misses

memory. CPU caches hide much of this latency, but
cache misses can be particularly damaging for the
system energy efficiency, as the time frame is too
short for the operating system to handle the cache
misses intelligently, or even be aware of them. Yet,
operating systems’ take long enough time to make
a decision that they measurably decrease the perfor-
mance and/or efficiency.

To demonstrate this effect, we wrote a simple
micro-benchmark, where a process takes large array
(32MB), copies a random entry to another random
entry in memory. We then operated the CPU core at
variety of frequencies using CPUPOWER [3] utility
and measured the execution time. This workload
was then compared to another process that did the
exact work of copying data from one point to another,
but did so sequentially, avoiding most of the cache
misses. As expected for both processes the time
to execute decreases as CPU frequency increases.
We can then plot the efficiency, computed here as
the time to execute the process represented as the
number of clock cycles per operation. For ease of
comparison these were then normalized. Figure 1
shows the comparison of the random access work-
load with the sequential workload with increasing
CPU frequency, normalized to the base 1200Mhz
frequency.

Since both processes do the same amount of com-
putation, the only factor that can affect the perfor-
mance and efficiency is the memory access pattern.
If the performance scaled perfectly with CPU fre-
quency, we would expect a nearly flat line, with all
cache hits as we see in the case of sequential access
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Figure 2: Distribution of Instructions in Applications

workload in the figure. But with random accesses,
we see instead that the cycles per operation increase
as the frequency increases, clearly demonstrating a
decrease in the efficiency. This is because of time
spent in handling cache misses, and CPU is not do-
ing any useful work to hide this latency. It can be
seen that at 2300Mhz, we are 20% less efficient than
at 1200MHz. There are two mitigating factors with
respect to this issue. First is programming practices
– since cache misses are a well known performance
issue, many applications are already written to avoid
them as much as reasonable. Second is the hard-
ware – in particular modern processors have both
hyperthreading and out of order execution, both of
these features allowing the processor to potentially
work on other instructions while the cache misses
are being served.

Operating system however, in this scenario does
not take efficient decisions, to actually save energy
by overriding the default policies. Instead, it still
relies on its power governors to run at higher CPU
frequency and thus waste energy. This could be a
simple example, but nonetheless, as we will demon-
strate in further sections with some real workloads,
the inevitable constraint is memory bandwidth and/or
latency, and in these cases a decrease in CPU fre-
quency may very well lead to efficiency gains.

5. Power Governors Analysis

The case study in the previous section showed a con-
trived example and how cache misses are effected
due to the imperfect frequency scaling in Linux
power governors. In this section, we consider real
applications and try to analyze how existing Linux
power governors perform for different class of appli-

cations.

5.1. Application categorization

We chose applications from SPEC2006 [19] and
SPLASH2 [5] to account for both single-threaded
and multi-threaded applications’ analysis. We also
have written two micro-benchmarks which we call
MICRO-BENCH suite from now, to exercise mem-
ory behavior. ML2 is a linked-list traversal workload
and MM is a workload which has byte accesses larger
than cache line size. To first analyze the distribution
of instructions in these applications, we used the
PIN [12] binary instrumentation tool for profiling.
The PIN tool was modeled to account for total in-
structions in the application, instructions which get
hit in the cache and instructions which miss in the
cache and actually access the memory. The applica-
tion profiling was mainly done to figure out which
frequency must be scaled based on the time spent by
these applications in CPU or DRAM or Caches. We
could not get Disk (I/O) related instructions and I/O
behavior of applications, as PIN cannot model file
system accesses, and we have no control over the
speed at which Disk accesses happen. So, our focus
is mainly on the following three categories:
• Compute Intensive: The applications which spend

most of their execution time in CPU core and have
more computation instructions between load/s-
tores to the memory. For these applications, CPU
frequency is the important parameter.

• Cache Sensitive: The applications which have
more memory access instructions, but due to the
locality of the data accesses, most of them get the
data in CPU caches. For these applications, again
CPU frequency is important. For our analysis, we
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Figure 3: Execution time for Linux ondemand and Intel P-state power governors

assume that, CPU cycles will be wasted in getting
the data from the caches, whenever it encounters
load or store instructions. It is possible that just
by profiling the memory related instructions and
not analyzing the cache accesses, one could mis-
interpret the application as memory intensive and
always scale the DRAM frequency leading to en-
ergy wastage.

• Memory Bound These are the applications, which
have lot of last level cache misses and the ac-
cesses reach memory (DRAM). Increasing the
CPU frequency for these applications could lead
to wastage of energy and for better performance
DRAM frequency might have to be scaled rather
than CPU frequency.
Figure 2 shows the application categorization and

distribution of instructions across seven SPEC2006
benchmarks, five SPLASH2 benchmarks and two
micro-benchmarks. We see that SPEC2006 has more
compute intensive instructions with some of them
having good cache locality. SPLASH2 has more
cache sensitive instructions in average with some
having good percentage of compute as well as mem-
ory related instructions. The micro-benchmark MM
has lot of cache related instructions and many access-
ing memory. ML2 has zero cache access and all of
the load/store instructions access the memory.

5.2. Power governors performance

We executed these applications on a Linux kernel
with Ondemand [14] power governor as the default
and also ran the applications on two power gover-
nors (performance and powersave) of Intel’s recent
P-state [4, 15] driver 1. We considered Intel’s P-

1 Section 7 explains the methodology used for performance
and energy estimation

state driver, as it has access to turbo boost frequency
through direct driver interface. Figure 3 shows the
execution time of selected benchmarks across all
three applications suites (SPEC2K6, SPLASH2 and
MICRO-BENCH) for three discussed power gover-
nors. It is seen that, all the three power governors
have similar performance even though each has a
distinct objective. Intel P-state performance gover-
nor is supposed to boost the performance with ac-
cess to turbo boost frequency. Even though, P-state
powersave governor has slightly worse performance
compared to other two, as it tries to save power by re-
ducing the frequency, the difference is not significant.
The next subsection details on energy efficiency of
each of these governors.

5.3. Power governors energy efficiency
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As seen with the execution time, we also wanted
to analyze if the power governors perform similar
with respect to energy efficiency. Figure 4 shows the
energy consumption in Joules for three of the SPEC
2006 benchmarks. We see that the core and uncore
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energy for all the three benchmarks across all three
governors are similar. Figure 5 shows similar trend
for memory intensive micro-benchmarks.

Figure 6 shows energy consumption for SPLASH2
benchmarks. In case of SPLASH2 benchmarks, it
can be seen that for all three workloads, P-state pow-
ersave saves more energy around 2-3 joules com-
pared to other two governors. This complements
why powersave governor had worse execution time
than other two. However, still the powersave gov-
ernor does not save significant energy savings even
though it reduces the CPU frequency to save lot of
power.
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Figure 6: Energy Consumption for SPLASH2
workloads with ondemand and p-state governors

The takeaway from this analysis is that: 1) existing
Linux power governors are optimized only for com-
pute intensive benchmarks; 2) All the three power
governors mainly use "race to halt" approach to ex-
ecute workloads faster (scale CPU frequency) and
thus try to save energy; 3) The existing power gov-

ernors are not application-aware and do not rely on
application characteristics to scale CPU or DRAM
frequency; 4) ondemand governor scales frequency
on overall system load rather than individual appli-
cation requirements. Based on these takeaways, we
believe that operating systems should give more free-
dom to user-space for energy management and mak-
ing better policy decisions. User-space has more
information about applications it is running than the
underlying drivers or hardware. We now present our
model E-MOS, which is an application-aware energy
management model and discuss its implications on
OS energy management policies.

6. E-MOS Analytical Model

-  

Profiled Application 
Information 

RAPL + Perf + 
CPUPower 

E-MOS Analytical 
Model 

+  
Reduce Freq.  
by 5%, 10%, 25% 
steps 

Energy estimates 
for CPU cores 

Increase Freq.  
by 5%, 10%, 25% 
steps 

User-Space 
Power 

Governor 

User-space Application 

       a)           b)  

Figure 7: a) E-MOS model; b) Frequency setting in
User-space governor

With the detailed analysis and reasoning out the
anomalies of existing power governors in the pre-
vious section, we now present our E-MOS (Effi-
cient Energy Management Policies in OS) analyt-
ical model which mainly relies on the principle
of application-aware energy management. We be-
lieve that OS providing more freedom to user-space
for energy management is beneficial, since user-
space has more relevant information about applica-
tions and their behavior. Of-course, dynamic power
management by changing the CPU frequency and
DRAM frequency simultaneously based on applica-
tion phases would be an ideal power governor behav-
ior. But, our model as of now only statically decides
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a frequency setting based on overall application char-
acteristic. Although, E-MOS is an analytical model,
one could modify the existing OS power governor to
implement E-MOS. Our project aims to evaluate E-
MOS model with variety of applications, and based
on the results and analysis we aim to use the user-
space governor to feed in the suggested frequency
setting and get the energy benefits.

Figure 7 (a) depicts the overview of our E-MOS
model. It takes the profiled application information
– number of compute, cache sensitive, memory
intensive instructions (Profiling output from PIN
model) as input and uses Linux utilities to get the
execution time (perf), energy (perf and RAPL)
and frequency (CPUPOWER) estimates with the
default power governors. These application level
measurements are then used by a python framework
model and it gets the new energy estimates by
increasing or reducing the frequency by 10%, 15%
and 25% scaling steps. The model, estimates the
energy based on the runtime statistics collected for
the application and equation below:

Energy(E) = Power(P)∗ExecutionTime(T )
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Figure 8: Energy estimates from E-MOS when
frequency reduced by 30% (600Mhz)

Power is measured by RAPL utility again with
the varied frequency and execution time is measured
using perf. These new energy estimates are then
plotted with ondemand power governor as baseline.
Figure 8 and Figure 9 shows one such example of

E-MOS reducing and increasing the CPU core fre-
quency by 25% (600 Mhz). Ideally, you want to vary
both CPU core and DRAM frequency for different
application types and then evaluate over baseline
model. But, current Linux APIs are not sophisti-
cated enough to measure the runtime frequency and
energy estimates for DRAM. Also, there is very lim-
ited interface to modify the runnable frequency of
DRAM.

6.1. Core frequency reduction

Figure 8, plots all the applications with their perfor-
mance on y-axis and core energy efficiency on x-axis
normalized to ondemand governor. We can see that
the energy efficiency of all the applications increases
significantly upto 1.9x with the core frequency reduc-
tion by 600Mhz. But, the performance of compute
intensive applications takes a hit, as they mainly
depend on core frequency. Interestingly, memory
intensive applications’ performance is very close to
ondemand governor as they do not much depend on
core frequency. Even, cache sensitive applications
lose only around 15% performance with such a large
core frequency reduction. This, indicates that there
is potential in energy efficiency gain while executing
cache sensitive and memory intensive applications
by reducing the core frequency.

6.2. Core frequency increase
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Figure 9, shows a scenario where the core fre-
quency is increased by 600Mhz. Here, compute in-
tensive applications have speedup upto 1.25x which
is expected. But, there is not much speedup im-
provement for cache and memory applications with
the increase in core frequency. This, indicates that,
increasing core frequency has not much effect on
performance of memory and cache applications and
you might not want to decrease core frequency when
executing memory and cache applications to gain
better energy efficiency.

6.3. E-MOS energy management policies

Now, based on the E-MOS model energy results for
various applications, and different frequency settings,
we formulated a policy decision table to be followed
by the power governors based on the application
type and the objective. These policies are formu-
lated based on the energy estimates from the E-MOS
model. Table 1 shows the policy decisions to be
taken for various applications based on the energy or
performance objective. Even though, E-MOS model
does not control or evaluate DRAM frequency, based
on the energy estimated for two scenarios mentioned
above, we formulated the policies for DRAM fre-
quency setting too. All our further evaluations and
results only use core frequency setting policies and
all the evaluation is optimized for energy as the first
class constraint. Figure 7 (b) shows how based on the
suggested frequency setting of E-MOS model, user-
application can scale the CPU core frequency setting
using user-space power governor. With user-space
power governor one can manually set the core fre-
quency and pin the application to run with that. Thus,
E-MOS model along with the user-space power gov-
ernor can act as an application-aware energy man-
agement tool, for better energy efficiency.

Application Objective CPU Freq. DRAM Freq.
Compute Energy Maintain\Increase Decrease
Compute Performance Increase Maintain

Cache Energy Decrease Decrease
Cache Performance Maintain Increase

Memory Energy Decrease Maintain\Increase
Memory Performance Maintain Increase

Table 1: E-MOS Policies Decision Table

6.4. Limitations

We believe our first order E-MOS model, is prelim-
inary model and lot of improvements are needed
for dynamic power management. Once such sce-
nario is where a single application has multiple exe-
cution phases with compute and memory intensive
and you need support to dynamically switch to the
corresponding phase by increasing/decreasing the
core and DRAM frequency. Also, since this is an
analytical model, more realistic estimates can be
obtained by integrating this model inside an actual
kernel power governor. We aim to implement this as
future work.

7. Methodology and Evaluation

All the experiments are executed on an Intel core
i7 3630, running 32-bit Ubuntu 15.04 with Linux
kernel 3.19. The available scalable CPU frequencies
are: 0.8Ghz to 3.4Ghz at steps of 300Mhz. With
turbo, a single core can execute with a frequency
of 3.4GHz. All power/energy measurements were
made in terminal mode to reduce the added noise
of the desktop environment. A number of system
power measurement methods were examined while
working on this project, including: a wattsup meter,
PowerTOP, PowerStat and perf. After testing
and comparing each of these methods, we decided
to use perf, integrated with the RAPL driver, since
it provided us with the best (and most repeatable)
estimate of the energy consumed by an application.

perf uses Intel’s RAPL (Running Average Power
Limit) to estimate the energy consumed by an appli-
cation. RAPL was designed by Intel to manage the
thermals of a processor, i.e. ensure that their chips
run within the thermal limits. It does so by reading a
few Machine Specific Registers (MSRs) and using a
software power model to estimate power and energy.
The RAPL interface was released with Linux 3.13.
Using RAPL, estimates of energy consumed by the
cores as well as the package energy (package energy
includes the core energy consumption as well as the
cache numbers and uncore numbers) can be obtained.
Intel have conducted tests [15] that validate the ac-
curacy of the RAPL estimates. There is an inherent
issue with RAPL since it uses 32-bit counters that do
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not generate an interrupt on overflow. Perf handles
this by gathering multiple periodic samples and us-
ing 64-bit counters that are updated in sync with the
RAPL counters. While perf handles the counter
overflow issues, its counters are incremented in steps
of 0.23 nJ and this requires the final values to be
scaled. The perf stat tool handles this scaling
at the cost of a few extra clock cycles due to the
additional floating point arithmetic. perf allowed
us to measure the energy consumed by the cores and
the cache. We measured the energy consumed by a
benchmark by using perf stat and the baseline
energy consumption was measured by calling the
RAPL interface and executing the Linux usleep
function for durations equal to the execution time
of the benchmark. All our energy numbers were
obtained by executing a benchmark and measuring
the corresponding system energy for 10 iterations.
The lowest measured values were then used in our
analysis.

Limitations The perf energy consumption num-
bers that we collected for the cores are measured
for the entire power plane. Therefore, even though
benchmarks could run on a single core, our num-
bers are for all cores. We have attempted to reduce
the impact of this by measuring the baseline energy
consumption.

8. Results

In this section, we present our E-MOS model evalua-
tion and the results of the model i.e chosen frequency
settings, for all the initial applications we profiled.
One important thing to remember is, we have opti-
mized the model to work on energy as the first class
objective and so the frequency setting chosen by E-
MOS is more aligned towards energy efficiency with
reasonable performance loss. We present our results
based on each application type and the chosen fre-
quency setting. We try to reason out why E-MOS
would have chosen that setting and show the energy
efficiency gains for each category. For all the graphs,
both the energy efficiency and performance are nor-
malized and are relative to the ondemand governor
findings.

8.1. Compute intensive workloads

Figure 10 shows the relative core energy efficiency
and speedup for SPEC2006 benchmarks which are
mainly compute intensive workloads. E-MOS chose
a frequency setting of 1.8Ghz to 2.4Ghz for the best
energy efficiency among the available scalable fre-
quency set. The geometric mean for 2.4Ghz indi-
cates upto 1.4x of energy efficiency with just 3%
performance loss. Provided E-MOS was optimized
for energy savings, 3% performance loss with such
significant energy gains is a good indication. You
can still boost the application until turbo boost ca-
pability but you will lose lot of energy gains. So
did E-MOS not choose setting above 2.4Ghz as the
power consumption factor affects more to energy
utilization than the lower execution time. With lower
frequency of 1.8Ghz, you gain upto 1.6x energy ef-
ficiency with performance loss of 15%. You might
want to go to lower frequency settings when energy
is utmost important with situations like low battery
in mobile phones.

8.2. Cache sensitive workloads

Figure 11 shows the relative core energy efficiency
and speedup for SPLASH2 benchmarks which have
both compute and cache sensitive workloads. E-
MOS chose a frequency setting of 1.8Ghz to 2.1Ghz
for best energy efficiency among the available scal-
able frequency set. This rationale makes sense as
you want to slightly reduce the core frequency when
most of the instructions are accessing cache and es-
pecially with the random workload we saw in our
case study, you don’t want to spend too many CPU
cycles at higher frequency wasting energy. The ge-
ometric mean for 2.1Ghz indicates upto 1.5x of en-
ergy efficiency with just 4% performance loss. With
one setting lower, for 1.8Ghz you can gain energy
efficiency upto 1.62x and a 9% performance loss.
We believe for cache workloads, 2.1Ghz is good, as
modern processors are equipped with prefetching
and out of order execution mechanisms which hide
the cache latency effectively and thus want to be
executing at slightly higher frequency than 1.8Ghz.
This result was interesting as we expected E-MOS to
still choose a lower setting, but we got around 1.5x
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Figure 10: SPEC2006 run with user-space governor with frequency setting 1.8Ghz to 2.4Ghz 
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Figure 11: SPLASH2 run with user-space governor with frequency setting 1.8Ghz to 2.1Ghz

energy efficiency with a higher setting.

8.3. Memory intensive workloads

Figure 12 shows the relative energy efficiency
and speedup for micro-benchmark suite MICRO-
BENCH which are memory intensive workloads. E-
MOS chose a frequency setting of 1.2Ghz to 1.8Ghz
for best energy efficiency among the available scal-
able frequency set. The geometric mean for 1.2Ghz
indicates upto 2x of energy efficiency with 13% per-
formance loss. it is interesting to see that even with
the frequency increasing to 1.8Ghz, there is no sig-
nificant increase in performance for these workloads.
So, it is better to run these applications at lower fre-
quency with half the energy (2x energy efficient) than
what you need for ondemand power governor. You
would see performance increasing if you have capa-
bility to increase the DRAM frequency. However,
in that case, you have to get the energy estimates of
the entire system, which includes core, uncore and
DRAM.

Overall, E-MOS analytical model with user-space
power governor provided a good scalable frequency

setting for all the three type of applications with bet-
ter energy efficiency compared to ondemand power
governor. The results backed our intuition that
application-aware energy management is better and
it makes sense for OS to give onus to user-space to
make more better policy decisions. However, with
more community support and integrating E-MOS
type application-aware models into existing power
governors could lead to better energy management
solutions in OS. It is an interesting analysis from this
project towards achieving the goal of energy efficient
computing and with tools getting better we can ex-
pect to see more energy efficient solutions in coming
days.

9. Lessons learned

Power management is still a challenge but, based on
the evolution of tools and interfaces that we have
explored over the course of working on this project,
the tools needed to create a more efficient power
management system are improving all the time. With
RAPL (on Intel’s processors at least) and libraries
like PAPI, accurate power estimation is now much
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Figure 12: MICRO-BENCH run with user-space governor with frequency setting 1.2Ghz to 1.8Ghz

simpler. Our implementation can be extended to
work with real time, interactive applications by using
the CPU’s performance counters with RAPL’s power
estimates.

Speaking of interactive applications, it became ap-
parent to us that performance benchmarks might not
be the best method of evaluating a power manage-
ment policy, based on our tests. The performance
centric nature of benchmarks like SPEC are good
workloads for power management policies and, as
can be seen from our comparisons, might not be the
best way of differentiating any potential improve-
ments,

Looking closer at the results of our Linux com-
parisons, and taking into consideration the possible
issues with using performance benchmarks, it would
seem like the P-state drivers do not make power man-
agement a solved issue. Based on our analysis, there
are gains to be had with application specific policies.

10. Conclusion

Through this project, we aimed to prove that en-
ergy efficient policy decisions can be made by tak-
ing application characteristics into account. While
our implementation is limited to a static analysis of
workloads, our results show that this idea does have
merit. This concept can be extended to a dynamic
implementation by using performance counters and
libraries like PAPI and interfaces like RAPL continue
to make this more accessible.

We implemented an analytical model, E-MOS,
that can take application characteristics and system
power requirements and would suggest an optimum

CPU frequency setting. E-MOS was designed to
balance performance and energy consumption and
our results show that we can achieve up to 2x energy
efficiency with a performance loss of 13%. Con-
sidering that our data does not include Intel’s turbo
frequency boost, there is some room for performance
improvements as well. Overall, a user-space power
governor implementation that takes these application
features into account has the potential to be more
energy efficient than current defaults like the on-
demand governor, even if it means a small loss in
performance.
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