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Abstract

Applications with large amount of data level paral-
lelism can benefit from General Purpose based Graphics
Processing Units (GPGPUs) because of better energy
efficiency and performance compared to a CPU. Due to
GPGPUs’ impressive computing throughput and memory
bandwidth, many applications with enough parallelism
can take advantage of acceleration using GPGPU. Com-
puter vision algorithms are one such workload domain
which can better utilize the large number of cores in GPU,
and hence meet their real-time requirements of the appli-
cations. One such application is Face Detection which
has real-time constraint on its execution. Sequential
processing of image windows with image downsampling
and classifiers on CPU is difficult to meet the real-time
requirements.

In this project, we have implemented the face detec-
tion acceleration algorithm based on Viola-Jones cas-
cade classifier on the GPGPU CUDA platform. We have
considered different portions of the viola jones algo-
rithm which include nearest neighbor, integral image
and HAAR classifier that can be parallelized. We identify
different bottlenecks in GPU implementation and include
optimizations which gives the performance benefit. We
explain each of these optimizations in detail for all the
kernels. We finally compare the execution of the same
algorithm executed on the CPU and analyze the gains
from the GPU. We achieve a speedup upto 5.35x (includ-
ing the inclusive time) compared to the single threaded
performance of CPU.

1. Introduction

With recent advances in computing technology, and new
computing capabilities with GPGPU hardware [6] and
programming models [5], a trend of mapping many im-
age processing applications on GPU is seen. Compute
Unified Device Architecture (CUDA) has enabled map-
ping generic parallel implementations of image process-
ing algorithms [11] easier and benefits with good amount
of performance and energy efficiency. Face detection is
one such application which has lots of fine-grained data

parallelism available and exploit the execution resources
of GPU. It is processing of taking an image and detecting
and locating the faces in the given image. It is an im-
portant application used world-wide for public security,
airports, video conferencing and video surveillance.

Most of face detection systems today use cascade clas-
sifier algorithm based on Viola and Jones [9]. It has three
important concepts tied to it – integral image calculation,
Adaboost classifier training algorithm [3] and cascade
classifier. Although, many of them have implemented
these algorithm in CPUs, due to the inherent serial nature
of CPU execution, you cannot get much of the perfor-
mance benefit and may not be able to meet hard real-
time constraints, even when executed on a multi-core
CPU. With face detection algorithm’s inherent parallel
characteristics, GPGPU parallel computing substrate is
a good candidate to gain performance benefits. With
recent advances in NVIDIA CUDA programming model
for scientific application acceleration [1], we aim to use
GPGPU execution model for accelerating face detection
algorithm.

In this project, we have implemented the face detection
algorithm based on the Viola Jones classifier on GPU. As
a starting point, we take the GNU licensed C++ program
that has the algorithm implemented to detect faces in
images. We also take the already trained classifier net-
work which includes different HAAR classifier features
trained based on thousands of images. We have identified
the different portions of the algorithm that can be paral-
lelized and leverage the execution with abundant GPU
resources efficiently. We have implemented all the three
phases of the face detection – nearest neighbor, integral
image calculation and scanning window stage along with
classifying the output from each classifying stage. As a
course project we limited the implementation to these 3
stages mentioned above, and not focus on the training
of classifier itself. We take some insights and principles
based on previous implementations of face detection on
GPGPUs, FPGA done here [4, 8, 2]. The main focus of
this project was to gain performance benefits out of face
detection acceleration and characterize the bottlenecks
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if there are any. Based on those principles, we found
many bottlenecks in the GPU implementation and add
optimizations to address these bottlenecks. We evalu-
ate our GPU implementation performance with respect
to single threaded CPU performance and we achieve a
speedup upto 5.35x including the GPU inclusive time of
copying.

We present the overview of our paper here: Section
2 explains the Viola Jones algorithm briefly and Sec-
tion 3 explains the our implementation of face detection.
Section 4 and Sectionsec:haar explain the three parallel
versions of the algorithm we have implemented. Section6
details the bottlenecks we came across in these kernels
and explain the optimizations added and the benefits we
get out of it. Section 7 presents our evaluation framework
and Section 8 explains the detailed results including the
performance and utilization factors. We finally end with
conclusion in Section 9.

2. Viola Jones Face Detection Algorithm

Before we proceed into the actual details of the imple-
mentation, we discuss the background of viola-Jones
Object detection framework in this section. Human
faces share some similar properties. These properties are
mapped mathematically to the HAAR features, which
are explained in detail below.

The algorithm has four stages as described below:
• Haar feature selection The Viola Jones classifier

method is based on Haar-like features. The features
consist of white and black rectangles as shown in Fig-
ure 1. These features can be thought of as pixel in-
tensity evaluation sets. For each feature, we subtract
black region’s pixel value sum from white region’s
pixel value sum. If this sum is greater than some
threshold, it is decided that the region has this feature.
This is the characteristic value of a feature. We have
the Haar features to be used for face detection.

Figure 1: Four kinds of HAAR feature rectangles

• Integral Image The calculation of characteristic value
of a feature is an important step in face detection. It
has to be calculated for every possible pixel region in
the given image. In order to efficiently determine the
value, integral image of the given image is used. For
any given pixel (x, y), the integral value is the sum of
all the pixels above and to the left of (x, y), inclusive.
i,e., If v(x’, y’) is the value of a pixel at (x’, y’), then
the Integral Sum is given by:

IS = ∑
x′6x′y′6y′

v(x′,y′)

Now, the sum of any given region with corner integral
pixels A, B, C, D is Sum = D + A - B - C as shown in
Figure 2.

Figure 2: Sum of a sub-window using Integral Image

As shown in Figure 3, if we want to obtain the sum
of 2x3 sub-window, integral image involves just 2
additions and 2 subtractions instead of 6 additions.

Figure 3: Example of Integral Image calculation

• Adaboost Algorithm Adaboost or Adaptive Boosting
is a machine learning algorithm where the output of
weak classifiers is combined into a weighted sum that
represents the output of a boosted (strong) classifier.
This algorithm is used to combine features that cover
facial characteristics to form a weak classifier. It then
creates a string classifier using a group of weak classi-
fiers. It further concatenates the strong classifiers to a
cascade classifier.

2



 

Figure 4: Face detection implementation flow

• Cascade Classifier A sub-window in the image that
passes through the entire cascade classifier is detected
as human face (Figure 5). In this project, we used 25
stages in cascade classifier.

Figure 5: Cascade Classifier

3. Our Implementation

Figure 4 shows the overall flow of the data. First, we
read the input image and the cascade classifier param-
eters into CPU side data structures. Then compute the
downscaled image and perform the integral sum in step
1 and 2 respectively. Next, we determine the downscaled
image co-ordinates required for each HAAR features
in step three. These are the relative positions of each
HAAR rectangle boundaries in a 25 x 25 window. For a

shifted position of the detection window,(in step 4) the
shifted offset is added to get the new co-ordinates. In
step 4, the window is processed through each stage of
cascade classifier. For a given stage if the integral sum is
less than the threshold for that stage, then the remaining
stages are skipped for this window(no face detected in
this window). If the integral sum exceeds the threshold
limit of a stage, in all the stages, then it is qualified as a
face. In that case, the window position and image scale
are stored. Once window is processed as above, it shifted
by 1 pixel and then passed through step 4 for face detec-
tion. This process is continued until the total image is
scanned at that particular scale. Then the whole process
is repeated by downscaling the image in step 1 through
face detection in step 4. The input image runs through
this series of steps from 1 through 4 until its downscaled
to the size of detection window(here, 25 X 25). Finally,
we have all the window positions and the scale at which
they face detected. The faces are indicated in the final
image with a rectangle around them. If two or more faces
overlap in a window they are taken care by the ’Group
rectangles’ function.

In this project, we considered the sections in the algo-
rithm shown in Figure 4 that can be parallelized, wrote
kernels for each of them in CUDA and offloaded them to
execute on GPU. The sections that can be parallelized are
Nearest Neighbor, Integral Image and Scan Window Pro-
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cessing (referred to ’Set Image for HAAR Detection’ &
’Run Cascade Classifier’ together) which are explained
below.

• Nearest Neighbor We have fixed size window
(25x25) for each feature. But the face in the image can
be of any scale. To make the face detection scale in-
variant, we have used pyramid of images that contain
downscaled versions of the original image. Since each
pixel can be processed separately, we produced image
pyramid on GPU. Example of an image pyramid is
shown in Figure 6.

Figure 6: Image Pyramid

• Integral Image Calculation Integral image calcula-
tion is essentially 2-dimensional inclusive scan. To
avoid data dependency of image integral calculation,
we adopted the algorithm of first row integral and then
column integral calculation.

• Scan Window Processing Since each 25x25 image
sub-window has to pass through all the features, each
thread in the GPU can perform parallely on a sub-
window. But the design of cascade classifier is such
that after each stage the doubtless non-face scan sub-
windows are eliminated as much as possible. Hence
we considered each stage separately and sequentially,
and executed group of stages as a different kernel.
Figure 7 show the principle of using parallel scan
windows.

4. Nearest Neighbor and Integral Image

In this section, we overview the desired functionality of
nearest neighbor, integral Image functions at a higher
level implementation and their scope for parallelization
on a GPU in tandem. Next, we discuss their kernel level
implementation details and strategies employed.

 

Figure 7: Scan Window Processing

4.1. Nearest Neighbor (NN)

We have seen the significance of downscaling in the back-
ground of image pyramid, to make the face detection in-
dependent of the detection window size. The downscaled
image is calculated by the nearest neighbor function. Ev-
ery time the image’s width and height are downscaled
by a factor of 1.2 until one of them reaches the detection
window’s width or height of 25 pixels. Figure 8 shows
the nearest neighbor output with scaling factor of 2 on a
source image of 8 X 8 pixels (relate to final image pixels
in the source using red color coding).

 

Figure 8: Image downscaling using nearest neighbor

Parallelization Scope we can see that each pixel in
the downscaled image can be calculated by scale factor
offset, width and height of the source image. So we map
each (or more) pixel positions to be fetched by a single
thread. Here, we map two pixels each separated by a
block dimension, to each thread.

4.2. Integral Image (II)

For each X & Y in the downscaled image, Integral Image
computes the sum of all the pixels above & to the left
of (X, Y). We split it into two separate operations as
RowScan(RS) and columnScan(CS) of the image, where,
RowScan(RS) is inclusive prefix scan along the row for
all the rows and ColumnScan(CS) is inclusive prefix scan
along the column for all the columns. Figure 9 shows the
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output image generated for RS and CS implementation
on a downscaled image (relate to the integral sum of
highlighted pixels in source with the pixel value ’36’ in
final image).

 

Figure 9: Image integral sum calculation

Parallelization Scope In RowScan, prefix scan of
each row is independent of the other rows in the image
and same is the case with columns in the ColumnScan
operation. So we can leverage the block level parallelism
here. Prefix scan for a row/column by itself seems to be
a sequential operation, but we can paralleize that too !!
(discussed in kernel implementation).

Similarly we compute the square integral sum (integral
sum of the squared pixel values) for doing the variance.
We need the variance of the pixels for the haar rectan-
gle co-ordinates, in the Cascade classifier stage. Vari-
ance can be determined as Var(X) = E(X2) - (E(X)*E(X))
where, E(X) is the mean(here, integral sum) and E(X2) is
the mean of X squared(here, square integral sum).

4.3. Implementation of Nearest Neighbor and Inte-
gral Image

The implementation of nearest neighbor and integral
Image(RowScan(RS) & ColumnScan(CS)) was split into
four separate kernels as below.

• Kernel 1→ Nearest Neighbor(NN) & RowScan (RS)-
downscaled image ready
• Kernel 2→Matrix Transpose
• Kernel 3→ RowScan
• Kernel 4→Matrix Transpose

Integral sum & square integral sum are ready at the
end of kernel 4. ColumnScan itself is broke down as
Kernels 2, 3 and 4.

Kernel 1 - Nearest Neighbor(NN) & RowScan(RS)
We accomplish the nearest neighbor and rowscan func-
tionality in a single kernel to avoid storing the down-
scaled image to global memory between kernel launches.
Instead, we store each downsampled row of the source
image in the shared memory and call the ‘__sync-
threads()__’ function before we proceed to RowScan
on that respective row. Effectively we eliminate a global

memory read of the down scaled image. we used
the Harris-Sengupta-Owen algorithm to parallelize the
RowScan operation within each row. Figure 10 walks
you through the flow of this kernel.

 

Figure 10: Kernel1: NN & RS

Kernels 2, 3 & 4 - ColumnScan(CS) First we trans-
pose the image matrix output of Kernel 1, then do a
RowScan on it and finally transpose it back to obtain
the integral Image sum. Effectively, the Kernels 2,3 & 4
together form the CoumnScan operation. Let’s analyze
the rationale behind this split up. In a straightforward
implementation of ColumnScan, each thread brings the
first element in each row of the image matrix to the
shared memory and does a inclusive prefix scan on it.
Figure 11 shows the access pattern in the image matrix
and Figure 12 gives the corresponding global memory
layout.

 

Figure 11: Image matrix data access in ColumnScan

 

Figure 12: Global memory layout of the Image matrix

We see from Figure 12 that global memory reads aren’t
coalesced. Each access to global memory takes about
400 – 500 cycles and every thread needs separate access
in this case. So we bypass this problem by splitting the
ColumnScan into kernels 2,3 & 4 where each of them
does a coalesced global memory read/write. Figure 13
shows the columnScan functionality broken down and
implemented in three separate kernels.
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Figure 13: ColumnScan kernel breakdown

5. Scan Window Processing

Once the classifiers are obtained, the next step is to apply
these classifiers to detect faces in the image.

• Specification of classifiers Each Haar classifier has
up to 3 rectangles and has a fixed size of 25x25 as
shown in Figure 14. Several weak Haar Classifiers
are combined in weighted sum to form Strong Clas-
sifiers. Our algorithm consists of 25 stages of strong
classifiers with a total of 2913 Haar classifiers. The in-
formation about the classifiers is completely provided
by (x,y) coordinates of the starting pixel of a rectangle
in Haar classifier, width, height, weight of each rect-
angle, threshold for Haar classifier and threshold for
each stage.

 
Figure 14: Example of Classifier with three rectangles

(Classifier Size: 25 x 25)

• Overview of scan window processing For a given
image, we consider a scan window of size 25 x 25
starting from the top left corner. The scan window
is identified by (x,y) coordinates of its starting pixel.
Each scan window is then passed through the stages
of strong classifiers to detect if they contain the haar
features.
Each Haar classifier of Stage ’x’ contains up to three
rectangles. The rectangle is defined by (x,y) coordi-
nates of its starting pixel, its width and height. This
data is used to calculate the four corners of the region
in scan window corresponding to this rectangle. Then,

we use the integral image to calculate the sum of the
pixels of the rectangle’s region. Each Haar rectangle
is also associated with a weight that is used to calcu-
late the weighted sum of the scan window for Haar
classifier. The accumulated sum is determined for all
the Haar classifiers in Stage ’x’. If the sum is greater
than threshold[x], the scan window is considered to
pass Stage ’x’.

The scan window that passes through all the stages
is considered to be a face. The next scan window is
chosen by incrementing the pixel number. The process
is repeated for all the scan windows of the image. As
an example, for a 1024 x 1024 image, there are 1000
x 1000 = 106 scan windows (excluding the right and
bottom 24 pixels) as shown in Figure 15.

Figure 15: An image with scan window

• Baseline implementation As seen in the overview,
each scan window is processed independently. Hence
one thread is assigned to process a scan window. For
1024x1024 image, we require 106 threads. Hence there

6



is a huge scope for parallelism. Each scan window is
processed through all 25 stages to detect a face.

Bit Vector We keep a bit vector to keep track of
rejected scan windows. The bit vector is set true ini-
tially and copied to device memory of GPU. If a scan
window is rejected at any stage, the bit corresponding
to this scan window is set false. If a bit in bitvector
is true at the end of the scan window processing, the
scan window is considered to have face. After the
processing of all the scan windows, the bit vector is
copied back to Host Memory. From this bit vector, on
host, we identify the starting address of scan windows
that contain faces and push the coordinates to vector.

6. Optimizations

In this section, we discuss the various optimizations done
across all the steps mentioned in section 3. Firstly, we
explain the optimizations in Nearest Neighbor, Integral
Image calculation and then we move on to those done in
Scan Window Processing.

6.1. Optimizations in Nearest neighbor and Integral
Image calculation

• Coalescence of Global Memory Writes To coalesce
the reads & writes to global memory the image ma-
trix transpose was implemented in a tiled fashion in
kernels 2 and 4 from Section 4.3. Figures 16 and
17 show the naive and optimized implementation of
the matrix transpose respectively from a memory ac-
cess point of view. As the shared memory access are
discrete(each word from a bank) and global memory
accesses are coalesced(cache-line) by nature, we im-
plemented the transpose as shown in figure 17. Once
the data tile is brought into the shared memory, it
was read column wise from it and then written row
wise into global memory. Effectively, SM[Ty][Tx] is
changed to SM[Tx][Ty].
However, changing the reading pattern from a
shared memory from row wise(Figure 16) to column
wise(Figure 17), we need to make sure there aren’t any
shared memory bank conflicts.

• Elimination of Shared Memory Bank Conflicts SM
bank conflicts occur when two or more threads in the
same warp try to access the same memory bank. Let’s
analyze the thread mapping to shared memory banks
for this situation. Here in our implementation, we use
a BLOCKSIZE of 16. Each (Tx, Ty) map to (Tx * 16

 

Figure 16: Naive Implementation of Matrix Transpose

 

Figure 17: Optimized Implementation of Matrix
Transpose

+ Ty) % 32 bank of an SM. (Tx, Ty) for (0, 0) & (2,
0) (have global thread indices of 0 and 2 respectively,
so belong to the same warp) map to bank 0. So, we
have a 2-way bank conflict introduced with the change
in access pattern to SM. However, it is eliminated by
making the (Tx * 16 + Ty) not a multiple of 32. Shared
memory [BLOCKSIZE] [BLOCKSIZE + 1] was used
to tackle this problem. Increasing the row width by 1
makes each mapping offset by one bank position.

• Use Extern To Declare Shared Memory: Hard cod-
ing the shared memory size tends to make it an inher-
ent occupancy constraint though in practice it can be
avoided. Instead, we can make it as extern, determine
the size during runtime and pass it in kernel launch.
Let’s analyze the RowScan kernel configuration to
brief this situation.
Kernel configuration(w, h – width & height of down-
scaled Image):
– Threads per block → smallestpower2(w) - Con-

straint from RowScan algorithm
– Blocks→ h
– shared memory size → 2 * (width of image + 1)

(factor 2: One for integral sum & other for square
Integral sum).
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At downscale of 256 X 256 image size (from source
of 1024 X 1024 pixels), we launch a 1 dimensional
grid of 256 blocks with 256 Threads Per Block(TPB).
For this configuration, 6 blocks can be alive, giving
a 100% occupancy(1536 threads). Hardcoding the
shared memory to that of max case of 1024 TPB (8kB
SM) decreases it to 5 blocks giving 84% occupancy
only.

6.2. Optimizations for Scan Window Processing

• Using Shared Memory Information about the clas-
sifiers as mentioned in Section 5 are common to all
the scan windows. Hence the first optimization is to
bring the data related to classifiers. But since there are
2913 classifiers for the entire face detection process,
it requires 209.836kB of storage for the data. But a
maximum of 48kB shared memory is available. Hence
we split the scan window processing into multiple ker-
nels with n stages in each kernel that correspond to
around 320 Haar classifiers. This requires 12 kernels
with around 19kB of shared memory each. Using
Pinned Host Memory: When allocating memory on
CPU for the data that needs to be transferred to GPU,
there are two types of memory to choose from: Pinned
and Non-Pinned. Pinned memory is not swapped out
from the memory by the OS for any reason and hence
provides improved transfer speeds. CUDA provides
cudaMallocHost API that can be used instead of usual
malloc to achieve this.

• Using Fast Math Our algorithm makes use of calcu-
lating standard deviation which is the square root of
variance. If we make use of -use_fast_math flag while
compiling using nvcc, we explicitly instruct GPU to
use its Special Functional Unit to calculate square root.
This provides lesser precision but at a greater speed.

• Not using restriction on maximum registers per
thread In our baseline implementation, we had re-
stricted maximum register count per thread to 20 to
increase occupancy. But scanning window kernel re-
quires 28 registers. Because of the restriction there
was spilling of registers that increased the execution
time. Hence we removed the imposition and observed
decreased execution time even though occupancy de-
creased. This showed occupancy is not always a mea-
sure of performance.

• Using block divergence In the baseline implementa-

tion, each thread continued execution up to 25 stages
even if the scan window failed any previous stage. Re-
jecting a thread as early as possible leads to thread
divergence that leads to under-utilization as in Fig-
ure 18. But if all the threads in a block are rejected,
block divergence occurs and the entire block will not
be launched at all thus increasing performance as in
Figure 19. Since each kernel can consist of multiple
stages, we reject a scan window at kernel-level gran-
ularity. Images that have one or two faces have only
few scan windows that have face. Using this optimiza-
tion, we have made the common case faster. Hence
according to Amdahl’s law we observe huge increase
in performance.

Figure 18: Example of Thread Divergence

Figure 19: Example of Block Divergence

7. Evaluation framework

For this project, we evaluate the performance and re-
source utilization of face detection algorithm on GPGPU
implementation with that of a CPU. We are not consid-
ering the cascade classifier training part and are directly
taking a CPU version of previously trained classifier.
Offline training of the classifier network for different im-
ages on GPU will be implemented as part of our future
work. For now, the trained cascade classifier consists of
number of stages needed for face detection, HAAR fea-
tures needed in each stage, the rectangles of each feature,
threshold values for each stage and classifier.
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Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Classifiers 9 16 27 32 52 53 62 72 83 91 99 115 127 135 136 137 159 155 169 196 197 181 199 211 200
Rectangles 18 48 81 96 156 159 186 216 249 273 297 345 381 405 408 411 477 465 507 588 591 543 597 633 600

Table 1: HAAR cascade classifier and its features

Kernel Registers Shared memory (KB) Constant Memory (Bytes) Occupancy (%)
With Maxreg w/o Maxreg With Maxreg w/o Maxreg

NN + RowScan 18 18 8.2 88 100 100
Transpose 1 12 12 2.1 60 100 100
RowScan Only 17 18 8.2 72 100 66.67
Transpose 2 12 12 2.1 60 100 100
HAAR Cascade Classifiers 20 28 19.5 156 66.67 66.67

Table 2: Registers, Shared Memory, Constant Memory and Occupancy for all the kernels

CUDA runtime version 7000
CUDA driver version 7050

Device Name GeForce GTX 480
Compute Capability 2.0
Global Memory (MB 1535
Total Const Memory (KB 64
Shared Memory per Block (KB) 48
Shared Memory per SM (KB) 48
L2 Cache Size (KB) 768
Registers per Block 32768
Registers per SM 32768
SM Count 15
max threads per SM 1536
Max threads per block 1024
Max thread dims (1024, 1024, 64)
Max grid size (65535, 65535, 65535)
Num copy engines 1

Table 3: Arch. details of the GPU card used

Architecture x86_64
CPU(s) 16
On-line CPU(s) list 0-15
Thread(s) per core 2
Core(s) per socket 4
Socket(s) 2
Model name: Intel Xeon(R) CPU E5520 @ 2.27 GHz
CPU MHz 1600
L1d cache (KB) 32
L1i cache (32KB) 32
L2 cache (KB) 256
L3 cache (MB) 8

Table 4: Arch. details of the CPU used

Table 1 gives an overview and information of the to-
tal number of stages used, number of filers/classifiers
in each stage and rectangle features used in each stage.
Apart form that, each rectangle has a weight associated
with it, each classifier has a threshold value and each
stage also has a threshold value. These threshold val-
ues are used at each step of scan window processing

and would determine whether the face is present in the
downsampled image.

We compared the GPU exclusive time (kernel time),
inclusive time (kernel + CPU to GPU copy time) with the
CPU execution time for face detection in an image. As
mentioned in Section 3, we have parallelized three differ-
ent portions in the algorithm and in Section 8 we analyze
the results of each of this kernel. We evaluated our face
detection implementation on an NVIDIA GTX 480 GPU
card with 15 SMs and 1.5GB global memory. Table 3
gives the architecture details of the device on which we
evaluated the kernels. For comparison with CPU, we
used 16 core Intel Xeon CPU, but since the Viola Jones
code was a single threaded code, the comparison is only
with 1 core of CPU. Table 4 gives the architecture details
of the CPU used for comparison. We also use all the op-
timizations applied for the kernels (Section 6) and show
the results for these optimizations.

We considered different image sizes during our evalu-
ation and our kernels can fit and detect the largest image
of size 1024 x 1024. For all our further performance
analysis, we use this the image size of 1024 x 1024 and
it involves 21 iterations of downsampling until it reaches
the minimum size of 25 x 25.

For profiling and bottleneck analysis, we used
NVIDIA Visual Profiler [7] and then take corresponding
decisions for performance boost. CUDA profilers also
helped us to gain an understanding of the kernel occu-
pancy and their shared memory usage. We use CUDA
events [10] for timing analysis of GPGPU (both exclu-
sive and inclusive) and CPU execution.

8. Results

In this section, we overview the performance results and
the resource utilization all the kernels implemented on
GPU for face detection. Although, occupancy is not a
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direct measure of performance, it is important to have full
occupancy for the GPU SMs. Based on the utilization
analysis done for all the kernels,

Table 2 shows the occupancy of each of the kernels.
This includes the registers, shared memory and constant
memory used for the kernels. As discussed in Section 6.2,
relaxing the maximum registers used by thread is an
optimization. We apply this optimization and check for
the occupancy of each kernel. However, this constraint
can be relaxed only if all the threads in the thread block
can accommodated with that register usage. In our case,
relaxing this constraint did not put a constraint on the
threads that can be launched with each kernel. We see
that for RowScan Only kernel the occupancy reduces due
to this relaxation. However, the results of that kernel
show that it did not impact for the performance.

8.1. Performance of Nearest Neighbor and Integral
Image Kernels

Figure 20 shows the performance of individual kernels of
NN and II stage. We apply the 3 optimizations discussed
in Section 6.1 here. Since, NN and II kernels contributed
to only 3% of the overall parallelization scope, we di-
rectly implemented the Shared memory version of the
kernels and that act as the baseline for NN and II kernels.
When we applied the No bank conflicts optimization,
only the Transpose 1 and Transpose 2 kernel showed the
benefit in reducing the execution time. This is because,
transpose kernels are tiled implementations, and are ini-
tially brought from global memory to shared memory (by
reading row wise) and are then read column wise from
shared memory. While reading column wise, you en-
counter bank conflicts and to reduce this, we applied No
bank conflicts optimization. NN + RowScan and RowS-
can kernels do not show any improvement as they do not
suffer from bank conflicts.

Second optimization we applied was the external dec-
laration of shared memory to reduce the shared memory
constraint on thread blocks and thus performance. Here
in this case, NN + RowScan and RowScan kernels show
benefit after iteration 9 at which the size of the down-
sampled image is 256 x 256. At this scale of image,
external declaring the shared memory reduced the pres-
sure on shared memory usage and more thread blocks
could be launched. However, Transpose 1 and Trans-
pose 2 kernels do not show any benefit as they are tiled
implementation and have fixed 16 x 16 thread block size

across all the downsampled image sizes.

Figure 21 a) shows the performance of all 4 NN and
II kernels with the optimizations applied. In overall,
we see that NN + RowScan, RowScan kernels benefit
from extern shared memory declaration optimization and
Transpose 1, Transpose 2 kernels take significant benefit
from No bank conflicts optimization.

Figure 21 b) shows the combined kernels speedup on
GPU over CPU. Here, we just consider the GPU exclu-
sive time as these kernels don’t have any data copying.
In overall, we see around 1.46x speedup for NN and II
kernels over CPU. We take the these best performing
NN and II kernels for all future evaluations with HAAR
classifier kernels.

8.2. Performance of HAAR Classifier Kernels

This section overviews the performance of HAAR classi-
fier kernels which has 97% of parallelization scope for
our face detection implementation. Figure 22 a) shows
the performance of 12 HAAR kernels for the image 1024
x 1024 (1 iteration) with optimizations detailed in Sec-
tion 6.2. Figure 22 b) is the magnified version showing
the lower level speedup is detail. The overall speedup
of each kernel is mentioned in the top. We see that the
shared memory gives around 1.7x benefit over the base-
line GPU implementation. Pinned host memory gives
almost no benefit due to the fact that there is very less
copying involved in between the kernels. Fast math li-
brary optimization also gives very negligent performance
as the HAAR kernel involves only 1 sqrt function. By
removing the maximum registers constraint (no maxreg
optimization), we get around 1.8x performance benefit
over baseline. Finally, the biggest performance boost we
get is from the thread block divergence, which ranges
from 29x to 220x speedup. Kernel 1 sees no benefit be-
cause most of the heavy lifting is done here and it sees no
thread block divergence. Whereas, all the other kernels
see divergence and get benefited from that.

Figure 23 a) shows the performance of combined 12
HAAR kernels performance for all the 21 iterations of
the 1024 x 1024 image face detection with all the opti-
mizations explained above. Here, the baseline is CPU
and we compare the performance of all 21 iterations
with single threaded performance of CPU. We see sim-
ilar trend of performance benefit added from the opti-
mizations and we get speedup upto 8.4x over CPU (this
includes the copy time between each kernel). However,
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Figure 20: Performance of NN and II kernels; a) NN + RowScan; b) Transpose 1; c) RowScan Only; d) Transpose 2
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Figure 21: a) NN and II kernels performance for all optimizations; b) Overall NN + II performance over CPU

it is interesting to see that after iteration 17 GPU has
worse performance than the CPU. This is because of
the reason that, from that stages the kernel launch and
thread creation overhead if more than the benefit you
can get from parallelization. This is an indicator that for
smaller images and when there is low data or thread level
parallelism available GPU performs worse than CPU.

Figure 23 b) shows the combined performance of the
entire scanning window stage (12 HAAR kernels with all
21 iterations) with each optimization added. We see that
thread block divergence gives us the largest benefit of
speedup upto 5.47x (inclusive time) compared to CPU.
We use this optimized kernel for the final face detection
speedup comparison.

11



  

 

   
  

 

 

 

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11 

Sp
e

e
d

U
p

 O
ve

r 
B

as
e

lin
e

 G
P

U
 

HAAR Classifier Kernels 

TB divergence

No Maxregcount

Fast Math

Pinned Host Mem

Shared Mem

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11 

Sp
e

e
d

U
p

 O
ve

r 
B

as
e

lin
e

 G
P

U
  

HAAR Classifier Kernels 

TB divergence

No Maxregcount

Fast Math

Pinned Host Mem

Shared Mem

Baseline

a)                                        b) 

29.7x     82.7x       128.8x     155.9x    161.1x    135.1x    137.8x   139.2x    144x       221.3x    212.7x 

Figure 22: a) HAAR kernels performance; b) Speedup with baseline GPU implementation and magnified version of a)
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Figure 23: a)Performance of HAAR kernels over 21 iterations of 1024 x 1024 image face detection; b) HAAR kernels
speedup over CPU for all the iterations

8.3. Face Detection Speedup

We now explain the overall speedup we achieved for the
entire face detection algorithm implemented on GPU.
This includes the optimized version of NN + II kernels
and optimized version of the HAAR kernel.
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Figure 24: Overall face detection speedup on GPU

Figure 24 shows the overall face detection speedup
of our implementation on GPU. We get a speedup upto

Number of Faces 1 2 4 8 16 32 Average Detection Rate (%)
Detection Rate (%) 100 100 100 87.5 100 93.75 96.875

Table 5: Face Detection Accuracy on GPU

5.35x overall over CPU and this includes the inclusive
time of copying the original source image to GPU. We
believe this is a good speedup given the amount of serial
dependency among HAAR classifier kernels. We believe
that if parallel scan window processing could be imple-
mented an extra 2-3x speedup can easily be achieved.

8.4. Scalability and Detection Accuracy

Figure 25 shows GPU face detection speedup over CPU
with increasing image sizes. As seen in previous results,
GPU’s parallelization benefit kicks in only after 128 x
128 image size as there is abundant amount of data and
thread level parallelism. As the image size increases
GPU easily outperforms CPU and we see upto 535x
speedup with 1024 x 1024 image size. We expect that
the speedup increases linearly as we scale up the image.

We also performed a small experiment of the algorithm
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Figure 25: GPU speedup with varying image sizes

accuracy. Although this is an algorithmic perspective
and not the implementation outcome, we wanted to see
how well the Viola Jones algorithm performs on GPU
in detecting faces. Table 5 shows the detection accuracy
for different number of faces in the image. With random
selection of images and number of faces, we see upto
96.875% accuracy in detecting faces. Figure 26 shows
some example faces detected and as the accuracy test
confirm, one of the faces did not get detected in the
test. This could be because of tilted face, or some of the
features not present in the classifier filters. But still given
the simple classifier information, face detection can be
easily be extended on GPU for better speedups and with
more robust face detection algorithms we expect to get
better speedups and detection rate.

           
        

Figure 26: Examples of faces detected on GPU

9. Conclusion

Face detection was a good candidate for parallelism and
our project aimed to implement it on GPU. We found out
that face detection algorithm has goo amount of data and
thread level parallelism and implemented three portions
of the algorithm. Over the course, we found bottlenecks
associated with each of the kernel and added optimiza-
tions for them. We compare our GPU implementation
performance with that of single threaded CPU version.
We achieve an overall speedup of 5.35x compared to
CPU with all the optimizations added. We believe that

with more robust version of the algorithm and more opti-
mizations we can still achieve a better speedup.
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