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Graphic processing unit (GPU)-based general-purpose computing is developing as a viable alternative to
CPU-based computing in many domains. Today’s tools for GPU analysis include simulators like GPGPU-
Sim, Multi2Sim, and Barra. While useful for modeling first-order effects, these tools do not provide a detailed
view of GPU microarchitecture and physical design. Further, as GPGPU research evolves, design ideas and
modifications demand detailed estimates of impact on overall area and power. Fueled by this need, we
introduce MIAOW (Many-core Integrated Accelerator Of Wisconsin), an open-source RTL implementation
of the AMD Southern Islands GPGPU ISA, capable of running unmodified OpenCL-based applications.
We present our design motivated by our goals to create a realistic, flexible, OpenCL-compatible GPGPU,
capable of emulating a full system. We first explore if MIAOW is realistic and then use four case studies to
show that MIAOW enables the following: physical design perspective to “traditional” microarchitecture, new
types of research exploration, and validation/calibration of simulator-based characterization of hardware.
The findings and ideas are contributions in their own right, in addition to MIAOW’s utility as a tool for
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1. INTRODUCTION

The trend for the last several years in computer architecture has been the effort to
extract more performance from available silicon. One such approach has been to exploit
the massive parallelism of graphics cards and use their execution units for general
computation instead of simply graphics operations. In light of this trend, much work
has been done to improve GPU microarchitecture with novel ideas or modification of
existing designs to boost performance or ease their use. To support this work, proper
tooling is essential. To this end, we propose MIAOW as another addition to the stable
of tools available to researchers.

Related Work. A variety of tools exist to support microarchitecture research for
both CPUs and GPUs. On the CPU side, tools span performance simulators, emu-
lators, compilers, profiling tools, modeling tools, and recently a multitude of RTL-
level implementations of microprocessors; these include OpenSPARC [opensparc 2006],
OpenRISC [openrisc 2010], Illinois Verilog Model [Wang and Patel 2006], LEON
[Gaisler 2001], and more recently FabScalar [Choudhary et al. 2011] and PERSim
[Balasubramanian and Sankaralingam 2014]. In other efforts, clean-slate CPU de-
signs have been built to demonstrate research ideas. These RTL-level implementa-
tions allow detailed microarchitecture exploration, understanding and quantifying the
effects of area and power, technology-driven studies, prototype-building studies on
CPUs, exploring power-efficient design ideas that span CAD and microarchitecture,
understanding the effects of transient faults on hardware structures, analyzing di/dt
noise, and hardware reliability analysis. Some specific example research ideas include
the following: Argus [Meixner et al. 2007] showed, with a prototype implementation
on OpenRISC, how to build lightweight fault detectors; Blueshift [Greskamp et al.
2009] and power-balanced pipelines [Sartori et al. 2012] consider the OpenRISC and
OpenSPARC pipelines for novel CAD/microarchitecture work.

On the GPU side, a number of performance simulators [bar 2009; Bakhoda et al. 2009;
del Barrio et al. 2006; Leng et al. 2013], emulators [Ubal et al. 2012; bar 2009], compilers
[Diamos et al. 2010; llvmcuda 2009; van der Laan 2010], profiling tools [Diamos et al.
2010; nvprof 2008], and modeling tools [Hong and Kim 2009, 2010; Kim et al. 2012; Sim
et al. 2012] are prevalent. However, RTL-level implementations and low-level detailed
microarchitecture specification are lacking. As discussed by others [Chen 2009; Jeon
and Annavaram 2012; Menon et al. 2012; Rech et al. 2012; Tan et al. 2011], GPUs are
beginning to see many of the same technology and device reliability challenges that
have driven some of the aforementioned RTL-based CPU research topics. The lack of
an RTL-level implementation of a GPU hampers similar efforts in the GPU space. As
CPU approaches do not directly translate to GPUs, a detailed exploration of such ideas
is required. Hence, we argue that an RTL-level GPU framework will provide significant
value in exploration of novel ideas and is necessary for GPU evolution complementing
the current tools ecosystem. While a few efforts have been made in the past such as
the Open Graphics Project and Project VGA, we are not aware of any that actually
achieved a release of the RTL code.

This article reports on the design, development, characterization, and research
utility of an RTL implementation of a GPGPU called MIAOW (acronymized as
Many-core Integrated Accelerator Of Wisconsin). MIAOW’s RTL source code, sim-
ulation infrastructure, and benchmarks are available for download on github:
https://github.com/VerticalResearchGroup/miaow.1 Figure 1 shows a canonical GPGPU

1The source code release also includes a publicly available technical report (white paper) version of this
publication. The authors have not released to any external entity the copyright to that white paper and
therefore are within the guidelines of submission to TACO.
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Fig. 1. Canonical GPU organization.

architecture resembling what MIAOW targets (borrowed from the AMD SI specifica-
tion, we define a few GPU terms in Table III). Specifically, we focus on a design that
delivers GPU compute capability and ignores graphics functionality. MIAOW is driven
by the following key goals and nongoals.

Goals. The primary driving goals for MIAOW are as follows: (1) realism: it should
be a realistic implementation of a GPU resembling principles and implementation
tradeoffs in industry GPUs; (2) flexible: it should be flexible to accommodate research
studies of various types and the exploration of forward-looking ideas and to form an
end-to-end open-source tool; (3) software compatible: it should use standard and widely
available software stacks like OpenCL or CUDA compilers to enable executing various
applications and not be tied to in-house compiler technologies and languages.

It must be emphasized that MIAOW is not a simulator by any conventional definition.
As an actual RTL implementation, MIAOW is not attempting to mimic the behavior of
a GPU’s microarchitecture; MIAOW is a GPU, and the results of program execution on
it are little different than execution on a physical AMD or NVIDIA GPU.

Nongoals. We also explain nongoals that set up the context of MIAOW’s capability.
We do not seek to implement graphics functionality. We do not aim to be compatible
with every application written for GPUs (i.e., subsetting of features is acceptable). We
give ourselves the freedom of leaving some chip functionality as PLI-based behavioral
RTL; for example, we do not seek to implement memory controllers, on-chip networks
(OCNs), and so forth in RTL. MIAOW is not meant to be an ASIC implementable
standalone GPGPU. Finally, being competitive with commercial designs was a nongoal.

Driven by these goals and nongoals, we have developed MIAOW as an implementa-
tion of a subset of AMD’s Southern Islands (SI) ISA [amd 2012b]. While we pick one
ISA and design style, we feel it is representative of GPGPU design [Fried 2012]—AMD
and NVIDIA’s approaches have some commonalities [Zhang et al. 2011]. This delivers
on all three primary goals. It is a real ISA (machine’s internal ISA compared to PTX or
AMD-IL, which are external ISAs found in products launched in 2012), is a clean-slate
design so likely to remain relevant for a few years, and has a complete ecosystem of
OpenCL compilers and applications. In concrete terms, MIAOW focuses on microarchi-
tecture of compute units (CUs) and implements them in synthesizable Verilog RTL and
leaves the memory hierarchy and memory controllers as behavioral (emulated) models.

Figure 2 describes a spectrum of implementation strategies and the tradeoffs. We
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Fig. 2. Target platforms for a GPGPU RTL implementation.

Table I. MIAOW RTL Versus State-of-the-Art Products (Radeon HD)

Name # Cores GFLOPS Core Clock Tech Node Freq. in FO4 Delay
7350 (Jan ’12) 80 104 650MHz 40nm -
7990 (Apr ’13) 4,096 8,192 1GHz 28nm -
MIAOW (Now) 64-2,048 57-1,820 222MHZ 32nm 310

show how a canonical GPU organization can be implemented in these three strategies
(the shaded portion of the CU denotes the register file and SRAM storage as indicated
in Figure 1(b)). First, observe that in all three designs, the register files need some
special treatment besides writing Verilog RTL. A full ASIC design results in reduced
flexibility, long design cycle, and high cost and makes it a poor research platform,
since memory controller IP and hard macros for SRAM and register files may not
be redistributable. Synthesizing for FPGA sounds attractive, but there are several
resource constraints that must be accommodated and that can impact realism. In the
hybrid strategy, some components, namely, L2 cache, OCN, and memory controller, are
behavioral C/C++ modules. This strikes a good balance between realism, flexibility,
and a framework that can be released. MIAOW takes this third approach. A modified
design can also be synthesized for the Virtex7 FPGA, though its limitations will be
discussed in a later section. Table I compares MIAOW to state-of-the-art commercial
products. Our contribution includes methodological techniques and ideas.

Methodology. Methodologically, we provide a detailed microarchitecture description
and design tradeoff of a GPGPU. We also demonstrate that MIAOW is realistic along
with characterization and comparison of area, power, and performance to industry
designs. MIAOW was not designed to be a replica of existing commercial GPGPUs.
Building a model that is an exact match of an industry implementation requires reverse
engineering of low-level design choices and hence was not our goal. The aim when
comparing MIAOW to commercial designs was to show that our design is reasonable
and that the quantitative results are in similar range. We are not quantifying accuracy
since we are defining a new microarchitecture and thus there is no reference to compare
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Table II. Case Studies Summary

Direction Research Idea MIAOW-Enabled Findings

Traditional
μarch

Thread-block
compaction

◦ Implemented TBC in RTL
◦ Significant design complexity
◦ Increase in critical path length

New directions Circuit-failure
prediction (Aged-SDMR)

◦ Implemented entirely in μarch
◦ Idea works elegantly in GPUs
◦ Small area, power overheads

Timing
speculation (TS)

◦ Quantified TS error rate on GPU
◦ TS framework for future studies

Validation of
simulator studies

Transient fault
injection

◦ RTL-level fault injection
◦ More gray area than CPUs (due to large RegFile)
◦ More silent structures

Table III. Definition of Southern Islands ISA Terms and Correspondence to NVIDIA/CUDA Terminology

SI Term NVIDIA Term Description
Compute
unit (CU)

SM A compute unit is the basic unit of computation and contains
computation resources, architectural storage resources
(registers), and local memory.

Workitem Thread The basic unit of computation. It typically represents one input
data point. Sometimes referred to as a “thread” or a “vector lane.”

Wavefront Warp A collection of 64 work items grouped for efficient processing on
the compute unit. Each wavefront shares a single program
counter.

Workgroup Thread-block A collection of work items working together, capable of sharing
data and synchronizing with each other. Can consist of more
than one wavefront but is mapped to a single CU.

Local data
share (LDS)

Shared memory Memory space that enables low-latency communication between
work items within a workgroup, including between work items in
a wavefront. Size: 32KB limit per workgroup.

Global data
share (GDS)

Global memory Storage used for sharing data across multiple workgroups. Size:
64KB.

Device
memory

Device memory Off-chip memory provided by DRAM possibly cached in other
on-chip storage.

to. Instead, we compare to a nearest neighbor to show trends are similar. Further, the
RTL, entire tool suite, and case study implementations are released as open source.

Ideas. In terms of ideas, we examine three perspectives of MIAOW’s transforma-
tive capability in advancing GPU research as summarized in Table II. First, it adds
a physical design perspective to “traditional” microarchitecture research; here we re-
visit and implement in RTL a previously proposed warp scheduler technique [Fung
and Aamodt 2011] called thread block compaction to understand the design complexity
issues. Or, put another way, we see if an idea (previously done in high-level simula-
tion only) still holds up when considering its “actual” implementation complexity. The
second perspective is new types of research exploration, thus far infeasible for GPU
research (in academia); here we look at two examples: (1) we take the Virtually Aged
Sampling-DMR [Balasubramanian and Sankaralingam 2013] work proposed for fault
prediction in CPUs and implement a design for GPUs and evaluate complexity, area,
and power overheads; and (2) we examine the feasibility of timing speculation and its
error rate/energy savings tradeoff. The final perspective is validation/calibration of
simulator-based characterization of hardware. Here, we perform transient fault injec-
tion analysis and compare our findings to simulator studies.

The article is organized as follows. Section 2 describes the MIAOW design and archi-
tecture, Section 3 describes the implementation strategy, and Section 4 investigates the
question of whether MIAOW is realistic. Sections 5, 6, and 7 investigate case studies
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Table IV. Supported ISA

along the three perspectives. Section 8 concludes. The authors have no affiliation with
AMD or GPU manufacturers. All information about AMD products used and described
is either publicly available (and cited) or reverse-engineered by authors from public
documents.

2. MIAOW ARCHITECTURE

This section describes MIAOW’s ISA support, processor organization, microarchitec-
ture of compute units, and pipeline organization and provides a discussion of design
choices.

2.1. ISA Support

MIAOW implements a subset of the Southern Islands ISA, which we summarize later.
The architecture state and registers defined by MIAOW’s ISA include the program
counter, execute mask, status registers, mode register, general-purpose registers (scalar
s0-s103 and vector v0-v255), local data share (LDS), 32-bit memory descriptor, scalar
condition codes, and vector condition codes. Program control is defined using predica-
tion and branch instructions. The instruction encoding is of variable length having both
32-bit and 64-bit instructions. Scalar instructions are organized in five formats [SOPC,
SOPK, SOP1, SOP2, SOPP]. Vector instructions come in four formats, of which three
[VOP1, VOP2, VOPC] use 32-bit instructions and one [VOP3] uses 64-bit instructions
to address three operands. Scalar memory reads (SMRD) are 32-bit instructions in-
volved only in memory read operations and use two formats [LOAD, BUFFER_LOAD].
Vector memory instructions use two formats [MUBUF, MTBUF], both being 64 bits
wide. Data share operations are involved in reading and writing to LDS and global
data share (GDS). Four commonly used instruction encodings are shown in Table IV.
Two memory addressing modes are supported: base+offset and base+register.

Of a total of over 400 instructions in SI, MIAOW’s instruction set is a carefully chosen
subset of 95 instructions and the generic instruction set is summarized in Table IV.
This subset was chosen based on benchmark profiling, the type of operations in the
data path that could be practically implemented in RTL by a small design team, and
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Fig. 3. MIAOW compute unit block diagram and design of submodules.

elimination of graphics-related instructions. MIAOW does not support 64-bit integer
and floating operations as of now, and this is one of the limitations of MIAOW. But the
AMD APP kernels [amd 2013] do not use 64-bit operations aggressively and all of them
could be run on MIAOW, thus making MIAOW 32-bit software compatible with OpenCL
applications. In short, the ISA defines a processor that is a tightly integrated hybrid
of an in-order core and a vector core all fed by a single instruction supply and memory
supply with massive multithreading capability. The complete SI ISA judiciously merges
decades of research and advancements within each of those designs. From a historical
perspective, it combines the ideas of two classical machines: the Cray-1 vector machine
[Russell 1978] and the HEP multithreaded processor [Smith 1981]. The recent Maven
[Lee et al. 2011] design is most closely related to MIAOW and is arguably more flexible
and includes/explores a more diverse design space. From a practical standpoint of
exploring GPU architecture, we feel it falls short on realism and software compatibility.

2.2. MIAOW Processor Design Overview

Figure 1 shows a high-level design of a canonical AMD Southern-Islands-compliant
GPGPU. The system has a host CPU that assigns a kernel to the GPGPU, which is
handled by the GPU’s ultra-threaded dispatcher. It computes kernel assignments and
schedules wavefronts to CUs, allocating wavefront slots, registers, and LDS space. The
CUs shown in Figure 1(b) execute the kernels and are organized as scalar ALUs, vector
ALUs, a load-store unit, and an internal scratch pad memory (LDS). The CUs have
access to the device memory through the memory controller. There are L1 caches for
both scalar data accesses and instructions and a unified L2 cache. The MIAOW GPGPU
adheres to this design and consists of a simple dispatcher, a configurable number of
compute units, a memory controller, an OCN, and a cached memory hierarchy.2 MIAOW
allows scheduling up to 40 wavefronts on each CU, which may belong to different
workgroups.

2.3. MIAOW Compute Unit Microarchitecture

Figure 3 shows the high-level microarchitecture of MIAOW with details of the most
complex modules, and Figure 4 shows the pipeline organization. To follow is a brief

2The reference design includes a 64KB GDS, which we omitted in our design since it is rarely used in
performance-targeted benchmarks.
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Fig. 4. MIAOW compute unit pipeline stages.

description of the functionalities of each microarchitectural component; further details
are deferred to an accompanying technical report.

Fetch (Figure 3(b)). Fetch is the interface unit between the ultra-threaded dispatcher
and the compute unit. When a wavefront is scheduled on a compute unit, the fetch
unit receives the initial PC value, the range of registers and local memory it can use,
and a unique identifier for that wavefront. The same identifier is used to inform the
dispatcher when execution of the wavefront is completed. It also keeps track of the
current PC for all executing wavefronts.

Wavepool (Figure 3(b)). The Wavepool unit serves as an instruction queue for all
fetched instructions. Up to 40 wavefronts—supported by 40 independent queues—can
be resident in the compute unit at any given time. The wavepool works closely with the
fetch unit and the issue unit to keep instructions flowing through the compute unit.

Decode. This unit handles instruction decoding. It also collates the two 32-bit halves
of 64-bit instructions. The decode unit decides which unit will execute the instruction
based on the instruction type and also performs the translation of logical register
addresses to physical addresses.

Issue/Schedule (Figure 3(c)). The issue unit keeps track of all in-flight instructions
and serves as a scoreboard to resolve dependencies on general-purpose and special
registers. It ensures that all the operands of an instruction are ready before issue. It
also handles the barrier and halt instructions.

Vector ALU (Figure 3(d)). Vector ALUs perform arithmetic or logical operations (in-
teger and floating point) on the data for all 64 threads of the wavefront, depending on
the execution mask. We have four integer (SIMD—Single Instruction Multiple Data)
and four floating point (SIMF—Single Instruction Multiple Floating point) ALUs, each
being 16-wide: one wavefront is processed as four batches of 16.

Scalar ALU. Scalar ALUs (SALUs) execute arithmetic and logic operations on a
single value per wavefront. Branch instructions are also resolved here.

Load Store Unit (Figure 3(e)). The load store unit handles both vector and scalar
memory instructions. It handles loads and stores from the global GPU memory as well
as from the LDS.

Register Files. The CU accommodates 1,024 vector registers and 512 scalar registers
separately, accessible by all wavefronts using a base register address local to the wave-
front and the virtual address that is used to calculate the physical register address.
Both register files are banked for the purpose of parallel data access, allowing a read
or write to operate on a word from each bank in a single operation.

Vector register files are organized as 64 pages or banks, each page corresponding to
the registers for one of the 64 threads of a wavefront. Each page of the register file is
further divided into a number of banks that varies according to the design used. The
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Fig. 5. MIAOW ultra-threaded dispatcher block diagram.

scalar register file is organized as four banks. There are also a set of special registers
associated with each wavefront, namely, exec (a 64-bit mask that governs which of the
64 threads will execute an instruction), vcc (a 64-bit value that holds the condition
code generated on execution of a vector instruction), scc (a 1 bit value which holds
the condition code on execution of a scalar instruction), and the M0 register (a 32-bit
temporary memory register).

2.4. MIAOW Ultra-Threaded Dispatcher

MIAOW’s ultra-threaded dispatcher does global wavefront scheduling, receiving work-
groups from a host CPU and passing them to CUs. It also ensures that the wavefronts’
addressing spaces for LDS, GDS, and the register files never overlap on CUs. MIAOW
features two versions for the ultra-threaded dispatcher: a synthesizable RTL model
and a C/C++ model.

Figure 5 presents a block diagram of the RTL version of the dispatcher. The work-
groups arrive through the host interface, which handles all communication between
the host and MIAOW. If there are empty slots in the pending workgroup table (PWT),
the host interface accepts the workgroup; otherwise, it informs the host that it cannot
handle it. An accepted workgroup can be selected by the control unit for allocation and
is passed to the resource allocator, which tries to find a CU that has enough resources
for it. If a free CU is found, the CU ID and allocation data are passed to the resource
table and to the GPU interface so that execution can begin. Workgroups that cannot
be allocated go back to the PWT and wait until there is a CU with enough resources.
The resource table registers all the allocated resources, clearing them after the end
of execution. It also updates the resource allocator CAMs, allowing one to use that
information to select a CU. The control unit is responsible for flow control and it blocks
workgroup allocation to CUs whose resource tables are busy. Finally, the GPU interface
divides a workgroup into wavefronts and passes them to the CU, one wavefront at a
time. Once the execution starts, the ultra-threaded dispatcher will act again only when
the wavefront ends execution in the CU and is removed.

The RTL dispatcher provides basic mechanisms for workgroup allocation, leaving
the allocation policy encapsulated in the resource allocator. Currently the allocator
selects the CU with the lowest ID that has enough resources to run a workgroup, but
this policy can be easily changed by modifying the allocator.

2.5. Design Choices

Table V summarizes the important microarchitectural design choices organized in
terms of how our choices impact our two goals: realism and flexibility. We also discuss
physical design impact in terms of area and power. Commenting on realism is hard,
but AMD’s Graphics Core Next (GCN) architecture [amd 2012a], which outlines im-
plementation of SI, provides sufficient high-level details. Comments are based on our
interpretation of GCN and are not to be deemed authoritative. We also comment on
design decisions based on machine balance, which uses content from Section 4.
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Table V. Impact of Design Choices

Design Choice Realistic Flexibility
Area/Power

Impact
Fetch bandwidth (1) Balanced† Easy to change Low
Wavepool slots (6) Balanced† Parameterized Low
Issue bandwidth (1) Balanced† Hard to change Medium
# int FU (4) Realistic Easy to change High
# FP FU (4) Realistic Easy to change High
Writeback queue (1) Simplified Parameterized Low
RF ports (5,4) Simplified Hard to change High
RF ports (SRAM) (1) Realistic Hard to change Low
Types of FU Simplified Easy to change High
†Fetch optimized for cache hit, rest sized for balanced machine. Numbers in
parenthesis indicate the design parameters.

Fig. 6. MIAOW comparison to Kaveri [BOUVIER and SANDER 2014].

Summary. In short, our design choices lead to a realistic and balanced design. Many
of the decisions for parameters such as fetch width or number of functional units were
influenced by the desire to have one instruction complete per cycle, a throughput rate
that we felt was adequate performance wise. As such, the parameters selected com-
plement each other, with the fetch and issue units readying one instruction per cycle
and the writeback queue also accommodating one instruction per cycle. The vector
functional units are also pipelined in such a way as to allow one operation to com-
plete per cycle. This analysis serves the purpose of researchers seeking to understand
the MIAOW’s strengths and weaknesses relative to “real” GPU implementations. Our
language and choice of words is intentionally nonauthoritative as there is no concrete
or publicly available information about GPUs. Figure 6 shows that at the block level
MIAOW has similarities, from which the strongest possible statement we can make is:
“MIAOW is a reasonable design.” To place this in context, Fabscalar, a recently released
and pioneering OOO design, is very different from any commercial OOO design but
has served researchers well. More details follow.

Impossible Goal. Some researchers may feel there is a need for a comparison to
pipeline-level details of MIAOW to real GPUs. We argue that this is probably impossi-
ble, and obtaining detailed pipeline-level understanding of a real GPU is a publication
in its own right. Our description is sufficient for researchers to understand MIAOW’s
similarity to other “high level” pipeline organizations, as described in GPGPUSim for
example. Researchers must ultimately decide for themselves whether or not the nature
of their research exploration is intimately tied to a commercial “real” microarchitec-
ture, and in such case, using MIAOW is NOT recommended. Our case studies comment
about these in further sections.

Fetch Bandwidth (1). We optimized the design assuming instruction cache hits and
single instruction fetch. In contrast, the GCN specification has a fetch bandwidth
in the order of 16 or 32 instructions per fetch, presumably matching a cache line.
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The fetch bandwidth chosen to be 1 (optimized for cache hit) is not limited in case
of cache misses too. The instruction cache of each CU is a nonblocking cache, and it
continues accepting requests while it services the misses from lower-level hierarchy.
The fetch unit can store up to 40 PCs (instructions). To handle the miss latency and to
not affect performance, there are enough instructions of other wavefronts to feed the
following issue, SIMD, SIMF, and SALU units to continue execution. MIAOW includes
an additional buffer between fetch and wavepool to buffer the multiple instructions
fetched for each wavefront. The design can be changed easily by changing the interface
between the fetch module and the instruction memory.

Wavepool Slots (6). Based on the back-of-the-envelope analysis of load balance, we
decided on six wavepool slots. Our design evaluations show that all six slots of the
wavepool are filled 50% of the time, suggesting that this is a reasonable and balanced
estimate considering our fetch bandwidth. We expect the GCN design to have many
more slots to accommodate the wider fetch. The number of slots is parameterized and
can be easily changed. Since this pipeline stage has a smaller area, it has less impact
on area and power.

Issue Bandwidth (1). We designed this to match the fetch bandwidth and provide a
balanced machine as confirmed in our evaluations. Increasing the number of instruc-
tions issued per cycle would require changes to both the issue stage and the register
read stage, increasing the register read ports. Compared to our single-issue width,
GCN’s documentation suggests an issue bandwidth of 5. For GCN, this seems an un-
balanced design because it implies issuing four vector and one scalar instruction every
cycle, while each wavefront is generally composed of 64 threads and the vector ALU is
16 wide (needs four cycles to process 64 threads and five such wavefronts need to be
handled).

Number of Integer and Floating-Point Functional Units (4, 4). We incorporate four
integer and four floating-point vector functional units to match industrial designs like
the GCN, and the high utilization of FUs by Rodinia benchmarks indicates the number
is justified. These values are parameterizable in the top-level module, and these are
the major contributors to area and power.

Number of Register Ports (5,4,1). The register file as provided in MIAOW is a generic
flip-flop-based design with five ports for the SGPR and four for the VGPR. The SGPR
possesses three read ports and two write ports, whereas the VGPR possesses three
read ports and one write port. Storage elements like register files are often dependent
on the technology process used for fabrication. We thus provide the generic version for
general-purpose use of MIAOW. Only for the purpose of area analysis, we utilized a
single-ported SRAM-based version generated using the Synopsys Design Compiler. We
have refrained from developing dedicated logic for handling contention as the purpose
of the SRAM-based register was only area analysis, and not functional correctness. This
decision will result in a model with a small underestimation of area. We believe future
versions would have a functionally correct SRAM-based RF design along with neces-
sary stalling logic and operand collectors. Note that all our simulations and detailed
power analysis use our functionally correct multiported RF. For those interested in
performing power analysis using a specific technology process for the register elements
(including SRAM based), many register compilers, hard macros, and modeling tools like
CACTI are available, providing a spectrum of accuracy and fidelity for MIAOW’s users.
Researchers can easily study various configurations [Abdel-Majeed and Annavaram
2013] by swapping out our module. For another such technology-process-specific im-
plementation of the register files produced by us, please refer to the FPGA section.

Number of Slots in Writeback Queue per Functional Unit (1). To simplify imple-
mentation, we used one writeback queue slot, which proved to be sufficient in design
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evaluation. The GCN design indicates a queuing mechanism to arbitrate access to a
banked register file. Each FU has the capability to process only one instruction per
cycle, and hence the writeback slot for each FU was enough to hold one instruction.
Also, the register file access (RFA) unit makes sure there is no contention in writing
to the register file (SGPR or VGPR) with a back-pressure signal going to the issue
unit and ensuring that the next instruction is not issued to SIMD and SIMF until the
existing one is written. Our design choice here probably impacts realism significantly.
The number of writeback queue slots is parameterized and thus provides flexibility.
The area and power overhead of each slot are negligible.

3. IMPLEMENTATION

In this section, we first describe MIAOW’s hybrid implementation strategy of using
synthesizable RTL and behavioral models and the tradeoffs introduced. We then briefly
describe our verification strategy, physical characteristics of the MIAOW prototype, and
a quantitative characterization of the prototype.

3.1. Implementation Summary

Figure 2(c) shows our implementation denoting components implemented in synthe-
sizable RTL versus PLI or C/C++ models.

Compute Unit, Ultra-Threaded Dispatcher. As described in AMD’s specification for
SI implementations, “the heart of GCN is the new Compute Unit (CU),” and so we
focus our attention on the CU, which is implemented in synthesizable Verilog RTL.
There are two versions of the ultra-threaded dispatcher, a synthesizable RTL module
and a C/C++ model. The C/C++ model can be used in simulations where dispatcher
area and power consumption are not relevant, saving simulation time and easing the
development process. The RTL design can be used to evaluate the complexity, area,
and power of different scheduling policies.

On-Chip Network (OCN), L2 Cache, Memory, Memory Controller. Simpler PLI mod-
els are used for the implementation of the OCN and memory controller. The OCN is
modeled as a cross-bar between CUs and memory controllers. To provide flexibility,
we stick to a behavioral memory system model, which includes device memory (fixed
delay), instruction buffer, and LDS. This memory model handles coalescing by ser-
vicing diverging memory requests. We model a simple and configurable cache that is
nonblocking (FIFO-based simple MSHR design), set associative, and write-back with
a LRU replacement policy. The size, associativity, block size, and hit and miss laten-
cies are programmable. A user has the option to integrate more sophisticated memory
subsystem techniques [Singh et al. 2013; Hechtman and Sorin 2013]. These behav-
ioral modules constitute only a small part of the overall chips’ area/power consumption
compared to all of the functional units.

3.2. Verification

Figure 7 shows the verification flow of MIAOW. A standard flow of unit tests and ran-
domly generated regression tests (generated using a random program generator that
produces assembly) are passed through a compiler (AMD OpenCL compiler) to pro-
duce AMD-IL, then the device driver to produce binaries (AMD GPU device drivers).
These binaries are fed to the RTL through a PLI module that populates the memories.
Verification hooks are inserted in the RTL to produce an architectural trace of commit-
ted instructions. This architecture trace is compared with a reference trace produced
by an instruction emulator (Multi2sim [Ubal et al. 2012]). Figure 7 also shows which
pieces of the design are implemented using C/C++ behavioral models that interact with
the Verilog RTL through PLI. Our workhorse for verification was a random program
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Fig. 7. MIAOW verification (LDS: local data share, Trace Mon: trace monitor unit).

generator that is parameterizable to produce different instruction mixes. The multi-
threaded nature and out-of-order retirement of wavefront introduces some challenges
in trace comparison. The environment uses PLIs that should work on any Verilog
simulator. MIAOW used Synopsys VCS as the Verilog simulator for verification.

3.3. Physical Design

Physical design was relatively straightforward using the Synopsys Design Compiler
for synthesis and the IC Compiler for place and route with the Synopsys 32nm library.
Based on Design Compiler synthesis, our CU design’s area is 15mm2 using multiported
register file design and it consumes on average 1.1W of power across all benchmarks
(detailed analysis in Section 4). We are able to synthesize the design at a clock period of
4.5ns (FO4 delay being 14.5ps at 32nm node and thus frequency of 310 FO4s). The main
critical path of the design is in the instruction arbiter of the issue unit, which chooses
one wavefront to issue every cycle. The issue unit has to wait for ready bits from all the
wavefronts and execution units and then choose a wavefront’s instruction for execution.
The single longest path of the design is difficult to determine because of back-pressure
signals to all units. Layout introduces challenges because of the dominant usage of
SRAM and register files. The automatic flat layout without floorplanning fails. While
blackboxing these produced a layout, detailed physical design is pushed to future work.

3.4. FPGA Implementation

In addition to software emulation, MIAOW was successfully synthesized on a state-of-
the-art very large FPGA. This variant, dubbed Neko, underwent significant modifica-
tions in order to fit the FPGA technology process. We used a Xilinx Virtex7 XC7VX485T,
which has 303,600 LUTs and 1,030 block RAMs, mounted on a VC707 evaluation board.
Prototyping MIAOW on the FPGA provided a useful measurement of how feasible the
basic design is when it comes to physical hardware implementation.

Design. Neko is composed of a MIAOW compute unit attached to an embedded Mi-
croblaze soft-core processor via the AXI interconnect bus. The Microblaze implements
the ultra-threaded dispatcher in the software, handles prestaging of data into the reg-
ister files, and serves as an intermediary for accessing memory (Neko does not interface
directly to a memory controller). Due to FPGA size limits, Neko’s compute unit has a
smaller number of ALUs, one-vector integer (SIMD), and floating-point (SIMF) mod-
ules, respectively, than a standard MIAOW compute unit, which has four-vector integer
and floating-point modules, respectively. The consequence of this is that, while Neko
can perform any operation that a full compute unit can, its throughput is lower due to
the fewer computational resources. It must be noted that a significant percentage of
the resource consumption for MIAOW came from the use of flip-flops to hold state infor-
mation due to pipelining. Therefore, attempting to use onboard resources such as DSP
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Table VI. Resource Utilization

Module LUT Count # BRAMs Module LUT Count # BRAMs
Decode 3,474 - SGPR 647 8
Exec 8,689 - SIMD 36,890 -
Fetch 22,290 1 SIMF 55,918 -
Issue 36,142 - VGPR 2,162 128
SALU 1,240 - Wavepool 27,833 -
Total 195,285 137

slices and the like would not have reduced the resource consumption of the modules
enough to fit more ALUs on the design. One other difference is Neko’s register file ar-
chitecture. Mapping MIAOW’s register files naively to flip-flops causes excessive usage
and routing difficulties, especially considering the vector ALU register file, which has
65,536 entries. Using block RAMs is not straightforward either; they only support two
ports each, fewer than what the register files need. This issue was ultimately resolved
by banking and double-clocking the BRAMs to meet port and latency requirements.

Resource Utilization and Use Case. Table VI presents breakdowns of resource utiliza-
tion by the various modules of the compute unit for LUTs and block RAMs, respectively.
Neko consumes approximately 64% of the available LUTs and 16% of the available
block RAMs. Since Neko’s performance is lower than MIAOW due to the trimmed-down
architecture, one needs to consider this when interpreting research findings from Neko.
Our article reports results using the full MIAOW design using VCS simulations.

4. IS MIAOW REALISTIC?

We now seek to understand and demonstrate whether MIAOW is a realistic implemen-
tation of a GPU. To accomplish this, we compare it to industry GPUs on three metrics:
area, power, and performance. To reiterate the claim made in Section 1, MIAOW does
not aim to be an exact match of any industry implementation. To check if quantita-
tive results of the aforementioned metrics follow trends similar to industry GPGPU
designs, we compare MIAOW with the AMD Tahiti GPU, which is also an SI GPU. In
cases where the relevant data is not available for Tahiti, we use model data, simulator
data, or data from NVIDIA GPUs. Table VII summarizes the methodology and key
results and shows that MIAOW is realistic.

Area. When comparing the area of MIAOW CUs to Tahiti CUs, MIAOW’s is larger.
This is not surprising as MIAOW is still a relatively immature design and its functional
units are nowhere as optimized. MIAOW’s single-ported SRAM-based RF design (func-
tionally incorrect) has an area estimate of 9.31mm2 and the multiported RF design
has an area of 15mm2. Both RF designs were considered to get an idea of MIAOW’s
area if evaluated with a realistic SRAM design. Figure 8 presents a detailed total area
breakdown of MIAOW’s CU with multiported RF design. Fetch/queue/decode/schedule
(FQDS), functional units (FUs), and register file (RF) area contribution are also shown.

Power. The MIAOW RTL model allows accurate runtime power measurements across
each component in the CU. Again, multiported RF design is used for the power anal-
ysis for all benchmarks and the total area is 1.1W. Figure 9 presents the total power
breakdown of MIAOW’s CU and individual power numbers of the submodules. Since
the variation of power breakdown at the CU level across different benchmarks was
found to be small, the figure shows the average across all the AMD APP benchmarks.

Performance. Performance analysis is somewhat complicated due to a variety of
factors. We initially planned to compare the performance with execution of the same
kernels on an AMD SI-based GPU but were not successful due to the lack of compute
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Table VII. Summary of Investigations of MIAOW’s Realism

Area Analysis
Goal ◦ Is MIAOW’s total area and breakdown across modules representative of industry designs?
Method ◦ Perform MIAOW synthesis using Synopsys Design Compiler.

◦ Synthesized with multiported RF and functionally incorrect one-ported SRAM register file.
◦ For release, multiported flip-flop-based register file.
◦ Compare to AMD Tahiti (SI GPU) implemented at 28nm; scaled to 32nm for absolute comparisons.

Key
results

◦ Total area using one-port Synopsys RegFile - 9.31mm2 compared to 6.92mm2 for Tahiti CU.
◦ Total area using multiported flip-flop-based RegFile - 15mm2.
◦ Area breakdown (multiported RF) matches intuition; 34% in functional units & 54% in RFs.
◦ More area details in Figure 8.

Power Analysis
Goal ◦ Is MIAOW’s total power and breakdown across modules representative of industry designs?
Method ◦ Synopsys Power Compiler runs with SAIF activity file generated by running benchmarks through

VCS.
◦ Compared to GPU power models of NVIDIA GPU [Hong and Kim 2010]. Breakdown and total

power for industry GPUs not publicly available.
Key
results

◦ MIAOW breakdown (multiported RF): FQDS: 11.86%, RF: 19.71%, FU: 55.94%.
◦ NVIDIA breakdown: FQDS: 36.7%, RF: 26.7%, FU: 36.7%.
◦ MIAOW CU’s total power: 867.87mW; CU + Local Cache modules: 1102mW ≈ 1.1W.
◦ Compared to NVIDIA model, more power in functional units.
◦ FQDS and RFs roughly have similar contributions compared to NVIDIA model.
◦ Total power is 1.1 watts. No comparison reference available.
◦ We feel 1.1W is low. Likely because Synopsys 32nm technology library is targeted to low-power

design (1.05V, 300MHz typical frequency).
◦ More power details in Figure 9.

Performance Analysis
Goal ◦ Is MIAOW’s performance realistic?
Method ◦ Failed in comparing to AMD Tahiti performance using AMD performance counters (bugs in

vendor drivers).
◦ Compared to similar style NVIDIA GPU Fermi 1-SM GPU.
◦ Performance analysis done by obtaining CPI for each class of instructions across benchmarks.
◦ Performed analysis to evaluate balanceand sizing.

Key
results

◦ CPI breakdown across execution units is below.

CPI DMin DMax BinS BSort MatT PSum Red SLA
Scalar 1 3 3 3 3 3 3 3
Vector 1 6 5.4 2.1 3.1 5.5 5.4 5.5

Memory 1 100 14.1 3.8 4.6 6.0 6.8 5.5
Overall 1 100 5.1 1.2 1.7 3.6 4.4 3.0
NVIDIA 1 20.5 1.9 2.1 8 4.7 7.5

◦ MIAOW is close on three benchmarks.
◦ CPIs being in similar range shows MIAOW’s realism.
◦ MIAOW seems to be a balanced design.

performance profiling tools and bugs in vendor-provided drivers. Instead, we compare
instruction latencies to a single SM of an NVIDIA Fermi-based GPU using NVVP
(NVIDIA Visual Profiler). The last row in the performance analysis section of Table VII
shows measured CPI for this processor for the selected benchmarks. Six OpenCL
benchmarks as part of the Multi2sim environment were chosen, which we list along
with three characteristics: - # of work groups, # of wavefronts per workgroup, and # of
compute cycles per workgroup: BinarySearch (4, 1, 289), BitonicSort (1, 512, 97,496),
MatrixTranspose (4, 16, 4,672), PrefixSum (1, 4, 3,625), Reduction (4, 1, 2,150),
ScanLargeArrays (2, 1, 4). Overall, MIAOW is close on three benchmarks. On another
three, MIAOW’s CPI is two times lower, the primary reasons for which are (1) the
instruction count after finalization of PTX on the NVIDIA GPU is different from the
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Fig. 8. (a) CU area breakdown with multiported RF (15mm2); (b) FQDS area; (c) FUs area; (d) RF area
(FQDS: fetch/queue/decode/schedule; LSU: load store unit; Others: execute mask, register file access). (All
the area numbers above are in mm2.)

Fig. 9. (a) CU power breakdown with multiported RF (1.1W); (b) FQDS power; (c) FUs power; (d) RF power
(FQDS: fetch/queue/decode/schedule; LSU: load store unit; Others: execute mask, register file access). (All
the power numbers above are in mW.)

SI device code; (2) cycle measurement itself introduces noise; and (3) the microarchi-
tectures implemented by AMD and NVIDIA are quite different. MIAOW can also run
four Rodinia [Che et al. 2009] benchmarks at this time: kmeans, nw, backprop, and
gaussian. We use these longer benchmarks for the case studies in Section 5 onward.3

Despite the caveats mentioned previously, the quantitative results from the bench-
marks indicate that MIAOW is a balanced design when compared to a commercial GPU
design. Again, we emphasize that our goal is not to produce a GPU design capable of
matching a commercial GPU in raw performance; we simply conducted this comparison
to ensure that the fundamental architecture of our design is sound.

5. PHYSICAL DESIGN PERSPECTIVE OF TRADITIONAL MICROARCHITECTURE RESEARCH

Description. Fung et al. proposed Thread Block Compaction (TBC) [Fung and Aamodt
2012], which belongs to a group of work done on warp scheduling [Fung and Aamodt
2012; Jog et al. 2013a, 2013b; Meng et al. 2010; Narasiman et al. 2011; Rhu and Erez
2012; Rogers et al. 2012], any of which we could have picked as a case study. TBC, in
particular, aims to increase functional unit utilization on kernels with irregular control
flow. The fundamental idea of TBC is that, whenever a group of wavefronts face a
branch that forces its work items to follow the divergent program paths, the hardware
should dynamically reorganize them in new re-formed wavefronts that contain only
those work items following the same path. Thus, we replace the idle work items with
active ones from other wavefronts, reducing the number of idle SIMD lanes. Groups
of wavefronts that hit divergent branches are also forced to run in similar paces,
reducing even more work-item-level diversion on such kernels. Re-formed wavefronts

3Others don’t run because they use instructions outside MIAOW’s subset and because of a lack of 64-bit
execution support.
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Fig. 10. Critical modifications in thread block compaction.

are constructed observing the originating lane of all the work items: if it occupies the
lane 0 in wavefront A, it must reoccupy the same lane 0 in re-formed wavefront B. The
wavefront-forming mechanism is completely local to the CU, and it happens without
intervention from the ultra-threaded dispatcher. In this study, we investigate the level
of complexity involved in the implementation of such microarchitecture innovations in
RTL.

Infrastructure and Methodology. We follow the implementation methodology de-
scribed in Fung and Aamodt [2012]. In MIAOW, the modules that needed significant
modifications were fetch, wavepool, decode, Scalar ALU (SALU), issue, and the vector
register file. The fetch and wavepool modules had to be adapted to support the fetching
and storage of instructions from the re-formed wavefronts. We added two instructions
to the decode module: fork and join, which are used in SI to explicitly indicate divergent
branches. We added the PC stack (for recovery) and modified the wavefront formation
logic in the SALU module, as it was responsible for handling branches. Although this
modification is significant, it does not have a huge impact on complexity, as no other
logic is involved, apart from SALU’s branch unit.

The issue and VGPR modules required more drastic modifications, shown in
Figure 10. In SI, instructions provide register addresses as an offset with the base
address being zero. When a wavefront is being dispatched to the CU, the dispatcher
allocates register file address space and calculates the base vector and scalar registers.
Thus, wavefronts access different register spaces on the same register file. Normally,
all work items in the wavefront access the same register, but different pages of the
register file as shown in the upper left corner of Figure 10, and the register absolute
address is calculated during decode. But with TBC, this assumption does not hold any-
more. In a re-formed wavefront, all the work items may access registers with the same
offset but different base values (from different originating wavefronts). This leads to
modifications in the issue stage, now having to maintain information about register
occupancy by offset for each re-formed wavefront, instead of absolute global registers.
In the worst-case scenario, issue has to keep track of 256 registers for each re-formed
wavefront, in contrast to 1,024 for the entire CU in the original implementation. In
Figure 10, the baseline issue stage observed in the lower left and lower right corner
are the modifications for TBC, adding a level of dereference to the busy table search.
In VGPR, we now must maintain a table with the base registers from each work item
within a re-formed wavefront, and the register address is calculated for each work-item
in access time. Thus, there are two major sources of complexity overheads in VGPR,
the calculation and the routing of different addresses to each register page, as shown
in the upper right corner of Figure 10.

We had to impose some restrictions to our design due to architectural limitations:
first, we disallowed the scalar register file and LDS accesses during divergence, and
therefore, wavefront-level synchronization had to happen at GDS. We also were not
able to generate code snippets that induced the SI compiler to use fork/join instruc-
tions; therefore, we used handwritten assembly resembling benchmarks in Fung and
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Aamodt [2012]. It featured a loop with a divergent region inside, padded with vector
instructions. We controlled both the number of vector instructions in the divergent
region and the level of diversion. Our baseline used a postdenominator stack-based
re-convergence mechanism (PDOM) [Muchnick 1997] without any kind of wavefront
formation. We compiled our tests and ran them on two versions of MIAOW: one with
PDOM and the other with TBC.

Quantitative Results. The performance results obtained matched the results from
Fung and Aamodt [2012]: similar performance was observed when there was no di-
vergence, and a performance increase was seen for divergent workloads. However,
our most important results came from synthesis. We observed that the modifications
made to implement TBC were mostly in the regions in the critical paths of the de-
sign. The implementation of TBC caused an increase of 32% in our critical path delay.
We also observed that the issue stage area grew from 0.43mm2 to 1.03mm2. Overall
performance, however, remained the same because of the reduced number of cycles
needed to complete workloads.

Analysis. Our performance results confirm the ones obtained by Fung et al.; however,
the RTL model enabled us to implement TBC in further detail and determine that the
critical path delay increases. In particular, we observed that TBC affects the issue
stage significantly where most of the CU control state is present dealing with major
microarchitectural events. TBC reinforces the pressure over the issue stage, making
it harder to track such events. We believe that the added complexity suggests that a
microarchitectural innovation may be needed involving further design refinements and
repipelining, not just implementation modifications.

The goal of this case study is not to criticize the TBC work or give a final word on its
feasibility. Our goal here is to show that, by having a detailed RTL model of a GPGPU,
one can better evaluate the complexity of any proposed novelties.

6. NEW TYPES OF RESEARCH EXPLORATION

6.1. Sampling DMR on GPUs

Description. Balasubramanian et al. proposed a novel technique of unifying the cir-
cuit failure prediction and detection in CPUs using Virtually Aged Sampling DMR
[Balasubramanian and Sankaralingam 2013] (Aged-SDMR). They show that Aged-
SDMR provides low design complexity, low overheads, generality, and high accuracy.
The key idea was to “virtually” age a processor by reducing its voltage. This effec-
tively slows down the gates, mimicking the effect of wearout, and exposes the fault,
and Sampling-DMR is used to detect the exposed fault. They show that running in
epochs4 and by sampling and virtually aging 1% of the epochs provide an effective sys-
tem. Their design (shown in Figure 11) is developed in the context of multicore CPUs
and requires the following: (1) operating system involvement to schedule the sampled
threads, (2) some kind of system-level checkpoints (like Revive [Prvulovic et al. 2002],
ReviveIO [Nakano et al. 2006], and Safetynet [Sorin et al. 2002]) at the end of every
epoch, (3) system and microarchitecture support for avoiding incoherence between the
sampled threads [Smolens et al. 2006], (4) some microarchitecture support to compare
the results of the two cores, and (5) a subtle but important piece, gate-level support to
insert a clock-phase shifting logic for fast paths. Because of these issues, Aged-SDMR’s
ideas cannot directly be implemented for GPUs to achieve circuit failure prediction.
With reliability becoming important for GPUs [Chen 2009], this capability is desirable.

4Epochs are groups of workgroups belonging to a grid of a kernel, scheduled to different CUs. MIAOW uses
an epoch of 100 workgroups for the SMDR case study.
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Fig. 11. Virtually aged SDMR implementation on a GPU.

Our Design. GPUs present an opportunity and problem in adapting these ideas.
They do not provide system-level checkpoints, nor do they lend themselves to the
notion of epochs, making (1), (2), and (3) hard. However, the thread blocks (or work-
groups) of compute kernels are natural candidates for a piece of work that is implicitly
checkpointed and whose granularity allows it to serve as a body of work that is sam-
pled and run redundantly. Furthermore, the ultra-threaded dispatcher can implement
all of this completely in the microarchitecture without any OS support. Incoherence
between the threads can be avoided by simply disabling global writes from the sam-
pled thread since other writes are local to a workgroup/compute unit anyway. This
assumption will break and cause correctness issues when a single thread in a wave-
front does read-modify-writes to a global address. We have never observed this in
our workloads and believe programs rarely do this. Comparison of results can be
accomplished by looking at the global stores instead of all retired instructions. Fi-
nally, we reuse the clock-phase-shifting circuit design as it is. This overall design of
GPU-Aged-SDMR is a complete microarchitecture-only solution for GPU circuit failure
prediction.

Figure 11 shows the implementation mechanism of GPU-Aged-SDMR. Sampling
is done at a workgroup granularity with the ultra-threaded dispatcher issuing a re-
dundant workgroup to two compute units (checker and checked compute units) at a
specified sampling rate; that is, for a sampling rate of 1%, one out of 100 workgroups is
dispatched to another compute unit called the checker. This is run under the stressed
conditions and we disable the global writes so that they do not affect the normal execu-
tion of the workgroups in the checked CU. We can use a reliability manager module that
compares all retired instructions or we can compute a checksum of the retiring stores
written to global memory from the checker and the checked CU for the sampled work-
group. The checksums are compared for correctness and a mismatch detects a fault.
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Table VIII. Overheads for Fault Exposure

MIAOW OpenSPARC∗

Logic CU Logic Core†

Gates on fast paths 23% 30%
Area overhead 18.09% 8.69% 22.18% 6.8%

Peak power increase 5.96% 4.68% 2.21% 0.99%
∗Values reported in Balasubramanian and Sankaralingam
[2013].
†OpenSPARC: with 16K L1 instruction and 8K L1 data cache.

We have implemented this design in MIAOW’s RTL except for the checksum; instead,
we behaviorally log all the stores and compare them in the testbench. We also im-
plemented the clock-phase-shifting logic and measured the area and power overheads
that this logic introduces. The hardware changes involved minimal modifications to
the following modules: memory, compute unit, fetch, workgroup info, and testbench.
An extra module called memory logger was added to track the global writes to GDS
by checked and checker CUs. Five interface changes had to be made to support the
metadata information about the compute unit id, workgroup id, and wavefront id. A
total of 207 state bits were added to support Aged-SDMR implementation on GPUs.
Considering the baseline design, the modifications done for implementing SDMR in
MIAOW are relatively small and thus are of low design complexity.

Quantitative Results and Analysis. Our first important result is that a complete
GPU-Aged-SDMR technique is feasible with a pure microarchitecture implementation.
Second, identical to the Aged-SDMR study, we can report area and power. As shown in
Table VIII, logic area overheads are similar to CPUs and are small.

We also report on performance overheads of one pathological case. There could be
nontrivial performance overheads in cases where there is a very small number of
wavefronts per workgroup (just one in case of GaussianElim and nw). Hence, even
with 1% sampling, a second CU is active for a large number of cycles. We noticed in the
Rodinia suite that guassianElim and nw are written this way. In our study, we consider
a two-CU system; therefore, resource reduction when sampling is on is quite significant.
With 1% sampling, average performance overhead for GaussianElim and nw is 47% and
13%, and with 10% sampling it becomes 50% and 20%, respectively. Further tuning of
the scheduling policies can address this issue, and also, as the number of CUs increase,
this issue becomes less important.

Overall, GPU-Aged-SDMR is an effective circuit failure prediction technique for
GPUs with low design complexity. MIAOW enables such new research perspectives
that involve gate-level analysis, which was thus far hard to evaluate.

6.2. Timing Speculation in GPGPUs

Description. Timing speculation is a paradigm in which a circuit is run at a clock
period or at a voltage level that is below what it was designed for. Prior CPU works like
Razor [Ernst et al. 2003] and Blueshift [Greskamp et al. 2009] have explored timing
speculation in CPUs to reduce power and handle process variations. In this case study,
we quantitatively explore timing speculation for GPUs and quantify the error rate.
While CPUs use pipeline flush for recovery, GPUs lack this. We have also implemented
in MIAOW the modifications for idempotent re-execution [Menon et al. 2012] from
the iGPU design, which supports timing speculation. Since iGPU implementation is
simple, details are omitted.

Infrastructure and Methodology. Our experimental goal is to determine a voltage-to-
error-rate-reduction (or clock-period-reduction) relationship for different applications
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Fig. 12. Voltage level versus % of violating cycles.

and compare it to CPU trends adopting the approach of the Razor work. First, we
perform detailed delay-aware gate-level simulations at a period of 4.5ns and record
the transition times at the D input of each flip-flop in the design for each benchmark.
Then, for different speculative clock periods, we can analyze the arrival times of every
flip-flop in every cycle and determine if there is a timing error—producing an error rate
for each speculative clock period. We then use SPICE simulations to find Vdd versus
logic delay for a set of paths to determine an empirical mapping of delay change to
Vdd reduction, thus obtaining error rate versus Vdd reduction. Other approaches like
approximating delay-aware simulation and timing-speculation emulation could also be
used [Nomura et al. 2011; Bernardi et al. 2007; Pellegrini et al. 2008].

Quantitative Results and Analysis. Figure 12 shows the variation of error rate as
a function of operating voltage for nine benchmarks. Observed trends are similar to
those from Razor [Ernst et al. 2003] and suggest that timing speculation could be of
value to GPUs as well. The error rate grows slowly at first with Vdd reduction before a
rapid increase at some point—at a 6% error rate, there is a 115mV voltage reduction,
with nominal voltage being 1.15V. Thus, MIAOW RTL provides ways to explore this
paradigm further in ways a performance simulator cannot, for example, exploring error
tolerance of GPGPU workloads and investigations of power overheads of the Razor
flip-flops.

7. VALIDATION/CALIBRATION OF SIMULATOR-BASED CHARACTERIZATION OF HARDWARE

Description. Previous hardware-based research studies on transient faults have focused
on CPUs [Wang et al. 2004], and a recent GPU study focused on a simulator-based
evaluation [Tan et al. 2011]. Wang et al. [2004] show that simulator-based studies miss
many circuit-level phenomena, which in the CPU case mask most transient faults,
resulting in “fewer than 15% of single bit corruptions in processor state resulting in
software visible errors.” Our goal is to study this for GPUs, complementing simulator-
based studies and hardware measurement studies [Rech et al. 2012], which cannot
provide fine-grained susceptibility information.

Infrastructure and Methodology. Our experimental strategy is similar to that of
Wang et al. We ran our experiments using our testbench and VCS (Verilog Compiler
Simulator) and report results for a single CU configuration. We simulate the effect of
transient faults by injecting single bit-flips into flip-flops of the MIAOW RTL. We run a
total of 2,000 independent experiments, where in each experiment we insert one bit-flip
into one flip-flop. Across the six AMDAPP and four rodinia benchmarks, this allows
us to study 200 randomly selected flip-flops. The execution is terminated 5,000 cycles
after fault injection. In every experiment, we capture changes in all architecture states
after fault injection (output trace of RTL simulation) and the state of every flip-flop at
the end of the experiment. We gather this information for a reference run that has no
fault injection. Every experiment is classified into one of four types:
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Fig. 13. Fault injection results.

—Microarchitectural Match: All flip-flop values match at the end of the execution
window and no trace mismatches.

—Silent Data Corruption (SDC): Mismatch in the output trace ⇒ transient fault-
corrupted program output.

—Terminated: Deadlock in pipeline and execution hangs.
—Gray Area: Output trace match but mismatch in one or more flip-flops ⇒ no corrup-

tion yet, but can’t rule out SDC.

Quantitative Results and Analysis. We run three variants of this experiment and
report the detailed results for the third variant in Figure 13. In the first variant,
MIAOW-All, faults are injected into all flip-flops, including our register file built using
flip-flops. Over 90% of faults fall in the gray area, and of these faults, over 93% are
faults in the register files. In MIAOW’s design, which uses a flip-flop based register file
design, about 95% of flops are in the register file. The second variant, MIAOW-noRF:
exclude register file, is run without the register file. Though there is a considerable re-
duction in the number of runs classified as gray area, benchmarks like BinarySearch,
MatrixTranspose, Reduction, Kmeans, and Nw were still found to have more than 50%
runs in the gray area.5 The last variant is MIAOW-noRF/VF: exclude the Vector FP
units also since our benchmarks only lightly exercise them. The gray area is now ap-
proximately 20% to 35% of the fault sites, which is closer to CPUs but larger. Also,
the gray area in the Rodinia suite workloads corresponds to an uneven number of
wavefronts present in each workgroup. Our analysis shows that several structures,
such as the scoreboard entries in the issue stage and the workgroup information stor-
age in the fetch stage, are lightly exercised due to the underutilized compute units.
When transient faults occur in the unused areas, they do not translate to architectural
errors.

8. CONCLUSION

This article has described the design, implementation, and characterization of a South-
ern Islands ISA-based GPGPU implementation called MIAOW. We designed MIAOW
as a tool for the research community with three goals in mind: realism, flexibility, and
software compatibility. We have shown that it delivers on these goals. We acknowledge
that it can be improved in many ways, and to facilitate this, the RTL and case-study
implementations are released open source with this work. We use four case studies to
show that MIAOW enables the following: physical design perspective to “traditional”
microarchitecture, new types of research exploration, and validation/calibration
of simulator-based characterization of hardware. The findings and ideas are

5Most of the flip-flops have enable signals turned on by a valid opcode. So once a bit flip occurs, the error
stays on, leading to the gray area.
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contributions in their own right in addition to MIAOW’s utility as a tool for others’
research.
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