MIAOW Whitepaper
Hardware Description and Four Research Case Studies

Abstract

GPU based general purpose computing is developing as
a viable alternative to CPU based computing in many do-
mains. Today’s tools for GPU analysis include simulators like
GPGPU-Sim, Multi2Sim and Barra. While useful for modeling
first-order effects, these tools do not provide a detailed view
of GPU microarchitecture and physical design. Further, as
GPGPU research evolves, design ideas and modifications de-
mand detailed estimates of impact on overall area and power.
Fueled by this need, we introduce MIAOW, an open source RTL
implementation of the AMD Southern Islands GPGPU ISA, ca-
pable of running unmodified OpenCL-based applications. We
present our design motivated by our goals to create a realistic,
flexible, OpenCL compatible GPGPU capable of emulating a
full system. We first explore if MIAOW is realistic and then use
four case studies to show that MIAOW enables the following:
physical design perspective to “traditional” microarchitecture,
new types of research exploration, validation/calibration of
simulator-based characterization of hardware. The findings
and ideas are contributions in their own right, in addition to
MIAOW's utility as a tool for others’ research.

1. Introduction

There is active and widespread ongoing research on GPU
architecture and more specifically on GPGPU architecture.
Tools are necessary for such explorations. First, we compare
and contrast GPU tools with CPU tools.

On the CPU side, tools span performance simulators, em-
ulators, compilers, profiling tools, modeling tools, and more
recently a multitude of RTL-level implementations of micro-
processors - these include OpenSPARC [39], OpenRISC [38],
Illinois Verilog Model [56], LEON [18], and more recently
FabScalar [11] and PERSim [7]. In other efforts, clean slate
CPU designs have been built to demonstrate research ideas.
These RTL-level implementations allow detailed microarchi-
tecture exploration, understanding and quantifying effects of
area and power, technology-driven studies, prototype building
studies on CPUs, exploring power-efficient design ideas that
span CAD and microarchitecture, understanding the effects
of transient faults on hardware structures, analyzing di/dt
noise, and hardware reliability analysis. Some specific exam-
ple research ideas include the following: Argus [30] showed —
with a prototype implementation on OpenRISC how to build
lightweight fault detectors; Blueshift [19] and power bal-
anced pipelines [46] consider the OpenRISC and OpenSPARC
pipelines for novel CAD/microarchitecture work.

On the GPU side, a number of performance simula-
tors [5, 2, 12, 28], emulators [53, 2], compilers [29, 13, 54],

r

Ultra-threaded
Dispatcher

Fetch Decode Schedule

by

Vector ALU || Scalar
Integer+FP ALU

A t Q A % A
Yy Y \

Host Processor
Memories Dispal

o 2

o G

3 g L2 Cache Vector General | [o oo

0 s LDS Purpose GPR
Py N

Registers (VGPR)

Memory Controllers [™Memory [JLogic [P
(a) GPU Architecture (b) Compute Unit

Figure 1: Canonical GPU Organization

profiling tools [13, 37], and modeling tools [22, 21, 47, 26]
are prevalent. However RTL-level implementations and low-
level detailed microarchitecture specification is lacking. As
discussed by others [10, 52, 42, 23, 32], GPUs are beginning
to see many of the same technology and device-reliability chal-
lenges that have driven some of the aforementioned RTL-based
CPU research topics. The lack of an RTL level implementa-
tion of a GPU hampers similar efforts in the GPU space. As
CPU approaches do not directly translate to GPUs, a detailed
exploration of such ideas is required. Hence, we argue that an
RTL level GPU framework will provide significant value in
exploration of novel ideas and is necessary for GPU evolution
complementing the current tools ecosystem.

This paper reports on the design, development, character-
ization, and research utility of an RTL implementation of a
GPGPU called MIAOW (acronymized and anonymized for
blind review as Many-core Integrated Accelerator Of the
Waterdeep). Figure 1 shows a canonical GPGPU architec-
ture resembling what MIAOW targets (borrowed from the
AMD ST specification, we define a few GPU terms in Table 3).
Specifically, we focus on a design that delivers GPU com-
pute capability and ignores graphics functionality. MIAOW is
driven by the following key goals and non-goals.

Goals The primary driving goals for MIAOW are: i) Re-
alism: it should be a realistic implementation of a GPU re-
sembling principles and implementation tradeoffs in industry
GPUs; ii) Flexible: it should be flexible to accommodate
research studies of various types, the exploration of forward-
looking ideas, and form an end-to-end open source tool; iii)
Software-compatible: 1t should use standard and widely avail-
able software stacks like OpenCL or CUDA compilers to en-
able executing various applications and not be tied to in-house
compiler technologies and languages.

Ultra-threaded Ultra-threaded Ultra-threaded
Dispatcher Dispatcher Dispatcher
[euf] | [ouT] | | [cull |[oull | | [eul] | [ou]

T ——

[eu]] |[euT] | | [=ull |[eull | | [eul]| [euTl
—T—— | e — | 71—
[eull | [euT] | |[eull|[eull| |[evl|[evd
—T— —T— | e |
[euT] | [ouT] | | [eull |[evll| | [ouT] | [eul]
L2 Cache
mlm 2]

CU: Compute Unit; MO, M1, M2 : Memory Controllers

high flexibility,
low cost, short design
medium realism time, flexible realism
(a) Full ASIC design (b) Mapped to FPGA (c) Hybrid design

Figure 2: Target platforms for a GPGPU RTL Implementation
Non-Goals We also explain non-goals that set up the context
of MIAOW’s capability. We do not seek to implement graphics
functionality. We do not aim to be compatible with every
application written for GPUs (i.e. sub-setting of features is
acceptable). We give ourselves the freedom of leaving some
chip functionality as PLI-based behavioral RTL - for example,
we do not seek to implement memory controllers, On-Chip
Networks (OCN), etc. in RTL. MIAOW is not meant to be
an ASIC implementable standalone GPGPU. Finally, being
competitive with commercial designs was a non-goal.

Driven by these goals and non-goals, we have developed
MIAOW as an implementation of a subset of AMD’s Southern
Islands(SI) ISA [3]. While we pick one ISA and design style,
we feel it is representative of GPGPU design [15] — AMD and
NVIDIA’s approaches have some commonalities [57]. This
delivers on all three primary goals. It is a real ISA (machine’s
internal ISA compared to PTX or AMD-IL which are external
ISAs) found in products launched in 2012, is a clean-slate
design so likely to remain relevant for a few years, and has a
complete ecosystem of OpenCL compilers and applications.
In concrete terms, MIAOW focuses on microarchitecture of
the compute units and implements them in synthesizable Ver-
ilog RTL, and leaves the memory hierarchy and memory con-
trollers as behavioral (emulated) models.

Figure 2 describes a spectrum of implementation strategies
and the tradeoffs. We show how a canonical GPU organiza-
tion can be implemented in these three strategies (the shaded
portion of the CU denotes the register file and SRAM stor-
age as indicated in Figure 1(b)). First, observe that in all
three designs, the register files need some special treatment
besides writing Verilog RTL. A full ASIC design results in
reduced flexibility, long design cycle and high cost, and makes
it a poor research platform, since memory controller IP and
hard macros for SRAM and register files may not be redis-
tributable. Synthesizing for FPGA sounds attractive, but there
are several resource constraints that must be accommodated

Low erX|b|I|ty, hlgh
cost, high realism

medium flexibility, low
cost, long design time,

Name # cores GFLOPS Coreclock Tech node
7350 (Jan *12) 80 104 650 MHz 40nm
7990 (Apr *13) 4096 8192 1 GHz 28nm
MIAOW (Now) 64-2048 57-1820 222 MHZ 32nm

Table 1: MIAOW RTL vs. state-of-art products (Radeon HD)
and which can impact realism. In the hybrid strategy some

components, namely L2 cache, OCN, and memory controller
are behavioral C/C++ modules. This strikes a good balance
between realism, flexibility and a framework that can be re-
leased. MIAOW takes this third approach as it satisfies all
three goals. A modified design can also be synthesized for
the Virtex7 FPGA though its limitations will be discussed in
a later section. Table | compares MIAOW to state-of-the-art
commercial products. The contributions of this paper include
methodological techniques and ideas.

Methodology Methodologically, we provide detailed mi-
croarchitecture description and design tradeoff of a GPGPU
We also demonstrate that MIAOW is realistic along with char-
acterization and comparison of area, power, and performance
to industry designsl. Further, the RTL, entire tool suite, and
case study implementations are released as open source.

Ideas In terms of ideas, we examine three perspectives of
MIAOW's transformative capability in advancing GPU re-
search as summarized in Table 2. First it adds a physical
design perspective to “traditional” microarchitecture research
- here we revisit and implement in RTL a previously pro-
posed warp scheduler technique [17] called thread block com-
paction to understand the design complexity issues. Or put
another way, we see if an idea (previously done in high-level
simulation only) still holds up when considering its “actual”
implementation complexity. The second perspective is new
types of research exploration, thus far infeasible for GPU
research (in academia) - here we look at two examples: 1)
We take the Virtually Aged Sampling-DMR [6] work pro-
posed for fault-prediction in CPUs and implement a design
for GPUs and evaluate complexity, area, and power overheads.
ii) We examine the feasibility of timing speculation and its
error-rate/energy savings tradeoff. The final perspective is
validation/calibration of simulator-based characterization of
hardware. Here we perform transient fault injection analysis
and compare our findings to simulator studies.

The paper is organized as follows. Section 2 describes the
MIAOW design and architecture, Section 3 describes the im-
plementation strategy, and Section 4 investigates the question
of whether MIAOW is realistic. Sections 5, 6, and 7 inves-
tigate case studies along the three perspectives. Section 8

! MIAOW was not designed to be a replica of existing commercial GPG-
PUs. Building a model that is an exact match of an industry implementation
requires reverse engineering of low level design choices and hence was not
our goal. The aim when comparing MIAOW to commercial designs was
to show that our design is reasonable and that the quantitative results are in
similar range. We are not quantifying accuracy since we are defining a new
microarchitecture and thus there is no reference to compare to. Instead we
compare to a nearest neighbor to show trends are similar.

Direction Research idea MIAOW-enabled findings
Traditional Thread-block ~ ° [mplemented TBC in RTL

. o Significant design complexity
parch compaction

o Increase in critical path length

Circuit-failure o Implemented entirely in parch

New directions prediction o Idea works elegantly in GPUs
(Aged-SDMR) o Small area, power overheads
Timing . o Quantified TS error-rate on GPU
speculation .
(TS) o TS framework for future studies

o RTL-level fault injection

o More gray area than CPUs (due
to large RegFile)

o More silent structures

Transient fault
injection

Validation of sim-
ulator studies

Table 2: Case studies summary

concludes. The authors have no affiliation with AMD or GPU
manufacturers. All information about AMD products used and
described is either publicly available (and cited) or reverse-
engineered by authors from public documents.

2. MIAOW Architecture

This section describes MIAOW’s ISA, processor organization,
microarchitecture of compute units and pipeline organization,
and provides a discussion of design choices.

2.1. ISA
MIAOW implements a subset of the Southern Islands ISA

which we summarize below. The architecture state and regis-
ters defined by MIAOW’s ISA includes the program counter,
execute mask, status registers, mode register, general purpose
registers (scalar s0-s103 and vector v0-v255), LDS, 32-bit
memory descriptor, scalar condition codes and vector con-
dition codes. Program control is defined using predication
and branch instructions. The instruction encoding is of vari-
able length having both 32-bit and 64-bit instructions. Scalar
instructions (both 32-bit and 64-bit) are organized in 5 for-
mats [SOPC, SOPK, SOP1, SOP2, SOPP]. Vector instructions
come in 4 formats of which three [VOP1, VOP2, VOPC] use
32-bit instructions and one [VOP3] uses 64-bit instructions
to address 3 operands. Scalar memory reads (SMRD) are
32-bit instructions involved only in memory read operations
and use 2 formats [LOAD, BUFFER_LOAD]. Vector memory
instructions use 2 formats [MUBUF, MTBUF], both being
64-bits wide. Data share operations are involved in reading
and writing to local data share (LDS) and global data share
(GDS). Four commonly used instruction encodings are shown
in Table 4. Two memory addressing modes are supported -
base+offset and base+register.

Of a total of over 400 instructions in SI, MIAOW'’s instruc-
tion set is a carefully chosen subset of 95 instructions and
the generic instruction set is summarized in Table 4. This
subset was chosen based on benchmark profiling, the type
of operations in the data path that could be practically im-
plemented in RTL by a small design team, and elimination
of graphics-related instructions. In short, the ISA defines a
processor which is a tightly integrated hybrid of an in-order
core and a vector core all fed by a single instruction supply

and memory supply with massive multi-threading capabil-
ity. The complete ST ISA judiciously merges decades of re-
search and advancements within each of those designs. From
a historical perspective, it combines the ideas of two classical
machines: the Cray-1 vector machine [45] and the HEP multi-
threaded processor [49]. The recent Maven [27] design is
most closely related to MIAOW and is arguably more flexible
and includes/explores a more diverse design space. From a
practical standpoint of exploring GPU architecture, we feel it
falls short on realism and software compatibility.

2.2. MIAOW Processor Design Overview

Figure 1 shows a high-level design of a canonical AMD South-
ern Islands compliant GPGPU. The system has a host CPU
that assigns a kernel to the GPGPU, which is handled by the
GPU’s ultra-threaded dispatcher. It computes kernel assign-
ments and schedules wavefronts to CUs, allocating wavefront
slots, registers and LDS space. The CUs shown in Figure 1(b)
execute the kernels and are organized as scalar ALUs, vector
ALUs, a load-store unit, and an internal scratch pad memory
(LDS). The CUs have access to the device memory through
the memory controller. There are L1 caches for both scalar
data accesses and instructions and a unified L2 cache. The
MIAOW GPGPU adheres to this design and consists of a
simple dispatcher, a configurable number of compute units,
memory controller, OCN, and a cached memory hierarchy”.
MIAOW allows scheduling up to 40 wavefronts on each CU.

2.3. MIAOW Compute Unit Microarchitecture
Figure 3 shows the high-level microarchitecture of MIAOW

with details of the most complex modules and Figure 4 shows
the pipeline organization. Below is a brief description of the
functionalities of each microarchitectural component — further
details are deferred to an accompanying technical report.

Fetch (Fig. 3b) Fetch is the interface unit between the Ultra-
Threaded Dispatcher and the Compute Unit. When a wave-
front is scheduled on a Compute Unit, the Fetch unit receives
the initial PC value, the range of registers and local memory
which it can use, and a unique identifier for that wavefront.
The same identifier is used to inform the Dispatcher when
execution of the wavefront is completed. It also keeps track of
the current PC for all executing wavefronts.

Wavepool (Fig. 3b) The wavepool unit serves as an instruc-
tion queue for all fetched instructions. Up to 40 wavefronts —
supported by 40 independent queues — can be resident in the
compute unit at any given time. The wavepool works closely
with the fetch unit and the issue unit to keep instructions flow-
ing through the compute unit.

Decode This unit handles instruction decoding. It also col-
lates the two 32-bit halves of 64-bit instructions. The Decode
Unit decides which unit will execute the instruction based on
the instruction type and also performs the translation of logical
register addresses to physical addresses.

2The reference design includes a 64KB GDS, which we omitted in our
design since it is rarely used in performance targeted benchmarks

SI Term nVidia term Description

Compute Unit (CU) SM A compute unit is the basic unit of computation and contains computation resources,
architectural storage resources (registers), and local memory.

Workitem Thread The basic unit of computation. It typically represents one input data point. Sometimes
referred to as a ’thread’ or a ’vector lane’.

Wavefront Warp A collection of 64 work-items grouped for efficient processing on the compute unit. Each
wavefront shares a single program counter.

Workgroup Thread-block A collection of work-items working together, capable of sharing data and synchronizing
with each other. Can comprise more than one wavefront, but is mapped to a single CU.

Local data store (LDS) Shared Memory space that enables low-latency communication between work-items within a work-

memory group, including between work-items in a wavefront. Size: 32kb limit per workgroup.
Global data share (GDS) Global memory Storage used for sharing data across multiple workgroups. Size: 64 KB.

Device memory Device memory

Off-chip memory provided by DRAM possibly cached in other on-chip storage.

Table 3: Definition of Southern Islands ISA terms and correspondence to NVIDIA/CUDA terminology

Type Instructions
ALU: {U32, 132, F32, F64} - add, addc, sub, mad, madmk, mac, mul, max, , max3, min, subrev
Vector Bitwise: {B32, B64} - and, or, xor, mov, Ishrrev, Ishlrev, ashlrev, ashrrev, bfe, bfi, cndmask
Compare: {U32, 132, F32} -cmp_{ It, eq, le, gt, 1g, ge, nge, nlg, ngt, nle, neq}
ALU: {U32, 132, F32, F64} - add, addc, sub, mad, madmk, mac, mul, max, , max3, min, subrev
Scalar Bitwise: {B32, B64} - and, or, xor, mov, Ishrrev, Ishlrev, ashlrev, ashrrev, bfe, bfi, cndmask
Compare: {U32, 132, F32} -cmp_{ It, eq, le, gt, 1g, ge, nge, nlg, ngt, nle, neq}
Conditional: {U32, 132, F32} -cmp_{ It, eq, le, gt, 1g, ge, nge, nlg, ngt, nle, neq}
SMRD|?]: {U32,132, F32, F64} - add, addc, sub, mad, madmk, mac, mul, max, , max3, min, subrev
Memory vector[?]: {U32, 132, F32} -cmp_{ It, eq, le, gt, 1g, ge, nge, nlg, ngt, nle, neq}
data share[?]: {U32, 132, F32} -cmp_{ It, eq, le, gt, 1g, ge, nge, nlg, ngt, nle, neq}
31 23 22 16 15 0 3130 25 24 17 16 9 7 0
sopp (101111111 [op7 SIMM-16) vor2 0 op6) vpsT | VSRCi-8) OFFSET)
31 23 22 16 15 8 7 0 31 2726 22 21 15 14 98 7 0
sop2 op-8 | sbst7) ssrci-8 | SSRCo-8) sMRD (11000 | oP-5 | sDST-7) SBASE-6 J§ OFFSET)
OP Operands for instruction. Each format has its own operands. SIMM 16 bit immediate value
VDST Vector destination register, can address only vector registers. SDST Scalar destination register, can address only scalar registers.
SRCO Source 2, can address vector, scalar and special registers, alsocan ~ VSRC1 Vector source 1, can address only vector registers.
indicate constants.
SSRC1 Scalar source 1, can address only scalar registers. SBASE Scalar register that contains the size and base address.
IMM Flag that marks whether OFFSET is an immediate value or the =~ OFFSET Offset to the base address specified in SBASE
address of a scalar register Table 4: Supported ISA
Issue/Schedule (Fig. 3¢) The issue unit keeps track of all . . . L Area/Power
. . . . Design choice Realistic Flexibility .
in-flight instructions and serves as a scoreboard to resolve impact
dependencies on general purpose and special registers. It Fetch bandwidth (1) Balanced’ Easy to change Low
ensures that all the operands of an instruction are ready before =~ Wavepool slots (6) Balanced” Parameterized Low
issue. It also handles the barrier and halt instructions. Issue bandwidth (1) Balanced” Hard to change Medium
#int FU (4) Realistic Easy to change High
Vector ALU (Fig. 3d) Vector ALUs perform arithmetic or #FP FU (4) Realistic Easy to change High
logical operation (integer and floating point) on the data for ~ Writeback queue (1) Simplified Parameterized Low
all 64 threads of the wavefront, depending on the execution RE ports (1,5) Realistic Easy to change Low
» dep g Types of FU Simplified Easy to change High

mask. We have 16-wide vector ALUs, four each of integer and
floating point — one wavefront is processed as 4 batches of 16.

Scalar ALU Scalar ALUs execute arithmetic and logic op-
erations on a single value per wavefront. Branch instructions
are also resolved here.

Load Store Unit (Fig. 3e) The Load Store unit handles both
vector and scalar memory instructions. It handles loads and
stores from the global GPU memory as well as from the LDS.

Register Files The CU accommodates 1024 vector registers
and 512 scalar registers separately, accessible by all wave-
fronts using a base register address local to the wavefront and
the virtual address that is used to calculate the physical reg-
ister address. Vector register files are organized as 64 pages
or banks, each page corresponding to the registers for one of

fFetch optimized for cache-hit, rest sized for balanced machine.
Table 5: Impact of Design Choices

the 64 threads of a wavefront. Each page of the register file is
further divided into a number of banks that varies according
to the design used. This will be further discussed in the design
choices section. The scalar register file is organized as 4 banks.
There are also a set of special registers associated with each
wavefront namely exec (a 64 bit mask which governs which of
the 64 threads will execute an instruction), vcc (a 64 bit value
which holds the condition code generated on execution of a
vector instruction), scc (a 1 bit value which holds the condition
code on execution of a scalar instruction) and the MO register
(a 32 bit temporary memory register).

!

Decode and Schedule ‘

[| s 3
s 2
> S
Fetch Fetch Round Robin WavePool Scoreboard | & a VALU
S o Controller Scheduler Controller Feeder £) Controller)
l PC gg Operand & Opcode 0 Output & VCC 0
£o F D Gen = Operand & Opcode 1 Output & VCC 1
Instruction Buffer = a ® ‘®.(Z Operand & Opcode 2 Output & VCC 2
E Operand & Opcode 3 Output & VCC 3
2 gq Vector
l Instruction Instr Q WFO o8 ALU
o E] TS]
- < E}
’ -— -—m Wavepool [Q39] 2 3
— | = Base0 o« i Ny Q
Basel Register File H
ase
L]

LDS, VGPR,
SGPR Base

exec_mask

]

(b) Fetch & Wavepool

LDS, VGPR,
SGPR Base

Base39

(d) Vector ALU/Vector FPU

o

> [Memory | [Stage Pipeline] (Fsm)
Scalal Vector 1; Vecto & E
ALU Intege FPU o x
B e }} B U e 2 3 !]
03 03 T % Funct unit SALU_Ready SALU_Arbiter| g buf_wr_en g ‘g §
o - | @ (] 2
Scoreboard VALU_Ready VALU_Arbiter | 8 > 3 G0 Obcods 5 = 8| e
Valids - - s | lexec_mask! a g L
SGPR VGPR DS Mem_wait FP_Ready FP_Arbiter % % -[WF_ID, PC] (=) 2
512x32 1024x32 Branh-wai SU_Ready (SU_Abier - > o destination 3
0-63 Barrier_wait _T ssued WE 1D _mask lj 2
(a) Compute Unit Microarchitecture (c) Issue: Wavefront Scheduling and Arbiter (e) Load Store Queue
Figure 3: MIAOW Compute Unit Block Diagram and Design of Submodules
| | | | | | | | |
LSU
MIAOW Blocks [Fetch Wavepool [Decode 1] Issue | Vector ALU |
Scoreboard Schedule
L | I U_. Scalar ALU |
| Buffer | | |
Reg Read Addr Calc Mem WB
MIAOW Pipeline | Fetch0 Fetch 1 Decode Issue 0 Issue 1 Reg Read Exec : 1-82 cycles WB
L
Reg Read Exec WB |
_________________________ 1 B Rl - -
Standard Pipeline | Feich Decode Issue Exec Mem WB
I I
Figure 4: MIAOW Compute Unit Pipeline stages

| ontro | until there is a with enough resources. The resource table

| Contel 1 | til th CU with h Th tabl

i ogic R i . .

1 M Allocator | registers all the allocated resources, clearing them after the
o Pending) Lo end of execution. It also updates the resource allocator CAMs,
8K > Host > workgroup . GPU <ﬁ>‘3
I Interface table) ntertace 10 allowing to use that information to select a CU. The control

| < Data path buses L, | Resource | unit is responsible for flow control and it blocks workgroup

I <— Control table I . .

‘ one ‘ allocation to CUs whose resource tables are busy. Finally,

Figure 5: MIAOW Ultra Threaded Dispatcher Block Diagram

2.4. MTAOW Ultra-threaded dispatcher
MIAOW's ultra-threaded dispatcher does global wavefront

scheduling, receiving workgroups from a host CPU and pass-
ing them to CUs. It also ensures that the wavefronts’ address-
ing spaces for LDS, GDS and the register files never overlap
on CUs. MIAOW features two versions for the ultra threaded
dispatcher: a synthesizable RTL model and a C/C++ model.
Figure 5 presents a block diagram of the RTL version of
the dispatcher. The workgroups arrive through the host inter-
face, which handles all communication between the host and
MIAOW. If there are empty slots in the pending workgroup
table (PWT), the host interface accepts the workgroup, other-
wise it informs the host that it cannot handle it. An accepted
workgroup can be selected by the control unit for allocation
and is passed to the resource allocator, which tries to find a
CU that has enough resources for it. If a free CU is found,
the CU id and allocation data are passed to the resource table
and to the GPU interface so that execution can begin. Work-
groups that cannot be allocated go back to the PWT and wait

the GPU interface divides a workgroup into wavefronts and
passes them to the CU, one wavefront at a time. Once exe-
cution starts, the ultra-threaded dispatcher will act again only
when the wavefront ends execution in the CU and is removed.

The RTL dispatcher provides basic mechanisms for work-
group allocation, leaving the allocation policy encapsulated
in the resource allocator. Currently the allocator selects the
CU with the lowest ID that has enough resources to run a
workgroup but this policy can be easily changed by modifying
the allocator, making the dispatcher very flexible.

2.5. Design choices
Table 5 summarizes the most important microarchitectural de-

sign choices organized in terms of how our choices impact our
two goals: realism and flexibility. We also discuss physical
design impact in terms of area and power. Commenting on
realism is hard, but AMD’s Graphics Core Next (GCN) ar-
chitecture [1], which outlines implementation of SI, provides
sufficient high-level details. Comments are based on our in-
terpretation of GCN and are not to be deemed authoritative.
We also comment on design decisions based on machine bal-

ance which uses evaluation content in Section 4. In short, our
design choices lead to a realistic and balanced design.

Fetch bandwidth (1) We optimized the design assuming
instruction cache hits and single instruction fetch. In contrast,
the GCN specification has fetch bandwidth on the order of 16
or 32 instructions per fetch, presumably matching a cache-line.
It includes an additional buffer between fetch and wavepool
to buffer the multiple fetched instructions for each wavefront.
MIAOW:’s design can be changed easily by changing the inter-
face between the Fetch module and Instruction memory.
Wavepool slots (6) Based on the back-of-the-envelope anal-
ysis of load balance, we decided on 6 wavepool slots. Our
design evaluations show that all 6 slots of the wavepool are
filled 50% of the time - suggesting that this is a reasonable and
balanced estimate considering our fetch bandwidth. We ex-
pect the GCN design has many more slots to accommodate the
wider fetch. The number of queue slots is parameterized and
can be easily changed. Since this pipeline stage has smaller
area, it has less impact on area and power.

Issue bandwidth (1) We designed this to match the fetch
bandwidth and provide a balanced machine as confirmed in
our evaluations. Increasing the number of instructions issued
per cycle would require changes to both the issue stage and the
register read stage, increasing register read ports. Compared
to our single-issue width, GCN’s documentation suggests an
issue bandwidth of 5. For GCN this seems an unbalanced de-
sign because it implies issuing 4 vector and 1 scalar instruction
every cycle, while each wavefront is generally composed of
64 threads and the vector ALU being 16 wide. We suspect the
actual issue width for GCN is lower.

of integer & floating point functional units (4, 4) We
incorporate four integer and four floating point vector func-
tional units to match industrial designs like the GCN and the
high utilization by Rodinia benchmarks indicate the number
is justified. These values are parameterizable in the top level
module and these are major contributors to area and power.

of register ports (1,5) We use two register file designs.
The first design is a single ported SRAM based register file
generated using synopsys design compiler which is heavily
banked to reduce contention. In simulations, we observed
that there was contention on less then 1% of the accesses
and hence we are using a behavioral module. This deci-
sion will result in a model with a small under-estimation of
area and power and over-estimation of performance. This
design, however, is likely to be similar to GCN and we report
the power/area/performance results based on this register file.
Since it includes proprietary information and the configuration
cannot be distributed, we have a second verison - a flip-flop
based register file design which has five ports. While we have
explored these two register file designs, many register compil-
ers, hard macros, and modeling tools like CACTI are available
providing a spectrum of accuracy and fidelity for MIAOW’s
users. Researchers can easily study various configurations [4]
by swapping out our module.

of slots in Writeback Queue per functional unit (1) To
simplify implementation we used one writeback queue slot,
which proved to be sufficient in design evaluation. The GCN
design indicates a queuing mechanism to arbitrate access to a
banked register file. Our design choice here probably impacts
realism significantly. The number of writeback queue slots
is parameterized and thus provides flexibility. The area and
power overhead of each slot is negligible.

Types of functional units GCN and other industry GPUs
have more specialized FUs to support graphic computations.
This choice restricts MIAOW'’s usefulness to model graph-
ics workloads. It has some impact on realism and flexibility
depending on the workloads studied. However this aspect is
extendable by creating new datapath modules.

3. Implementation

In this section we first describe MIAOW'’s hybrid implementa-
tion strategy of using synthesizable RTL and behavioral mod-
els and the tradeoffs introduced. We then briefly describe our
verification strategy, physical characteristics of the MIAOW
prototype, and a quantitative characterization of the prototype.

3.1. Implementation summary
Figure 2(c) shows our implementation denoting components
implemented in synthesizable RTL vs. PLI or C/C++ models.

Compute Unit, Ultra-threaded dispatcher As described
in AMD’s specification for SI implementations, “the heart of
GCN is the new Compute Unit (CU)” and so we focus our
attention to the CU which is implemented in synthesizable
Verilog RTL. There are two versions of the ultra threaded dis-
patcher, a synthesizable RTL module and a C/C++ model. The
C/C++ model can be used in simulations where dispatcher area
and power consumption are not relevant, saving simulation
time and easing the development process. The RTL design can
be used to evaluate complexity, area and power of different
scheduling policies.

OCN, L2-cache, Memory, Memory Controller Simpler
PLI models are used for the implementation of OCN and mem-
ory controller. The OCN is modeled as a cross-bar between
CUs and memory controllers. To provide flexibility we stick
to a behavioral memory system model, which includes device
memory (fixed delay), instruction buffer and LDS. This mem-
ory model handles coalescing by servicing diverging memory
requests. We model a simple and configurable cache which
is non-blocking (FIFO based simple MSHR design), set asso-
ciative and write back with a LRU replacement policy. The
size, associativity, block size, and hit and miss latencies are
programmable. A user has the option to integrate more sophis-
ticated memory sub-system techniques [48, 20].

3.2. Verification and Physical Design

We followed a standard verification flow of unit tests and
in-house developed random program generator based regres-
sion tests with architectural trace comparison to an instruction
emulator. Specifically, we used Multi2sim as our reference

instruction emulator and enhanced it in various ways with
bug-fixes and to handle challenges in the multithreaded nature
and out-of-order retirement of wavefronts. We used the AMD
OpenCL compiler and device drivers to generate binaries.

Physical design was relatively straight-forward using Syn-
opsys Design Compiler for synthesis and IC Compiler for
place-and-route with Synopsys 32nm library. Based on De-
sign Compiler synthesis, our CU design’s area is 15mm?> and
it consumes on average 1.1W of power across all benchmarks.
We are able to synthesize the design at an acceptable clock
period range of 4.5ns to 8ns, and for our study we have chosen
4.5ns. Layout introduces challenges because of the dominant
usage of SRAM and register files and automatic flat layout
without floorplanning fails. While blackboxing these produced
a layout, detailed physical design is future work.

3.3. FPGA Implementation
In addition to software emulation, MIAOW was successfully

synthesized on a state-of-art very large FPGA. This variant,
dubbed Neko, underwent significant modifications in order
to fit the FPGA technology process. We used a Xilinx Vir-
tex7 XC7VX485T, which has 303,600 LUTs and 1,030 block
RAMSs, mounted on a VC707 evaluation board

Design Neko is composed of a MIAOW compute unit at-
tached to an embedded Microblaze softcore processor via the
AXI interconnect bus. The Microblaze implements the ultra-
threaded dispatcher in software, handles pre-staging of data
into the register files, and serves as an intermediary for access-
ing memory (Neko does not interface directly to a memory
controller). Due to FPGA size limits, Neko’s compute unit
has a smaller number of ALUs (one SIMD and SIMF) than a
standard MIAOW compute unit which has four SIMD and four
SIMF units for vector integer and floating point operations
respectively. The consequence of this is that while Neko can
perform any operation a full compute unit can, its throughput
is lower due to the fewer computational resources. Mapping
the ALUs to Xilinx provided IP cores (or DSP slices) may
help in fitting more onto the FPGA as the SIMD and especially
SIMF units consume a large proportion of the LUTs. This
however changes the latencies of these significantly (multi-
plication using DSP slices is a 6 stage pipeline, while using
10 DSPs can create a 1 stage pipeline) and will end up re-
quiring modifications to the rest of the pipeline and takes
away from ASIC realism. We defer this for future work. One
other difference is Neko’s register file architecture. Mapping
MIAOW: s register files naively to flip-flops causes excessive
usage and routing difficulties considering, especially with the
vector ALU register file which has 65536 entries. Using block
RAMs is not straight-forward either, they only support two
ports each, fewer than what the register files need. This issue
was ultimately resolved by banking and double-clocking the
BRAMs to meet port and latency requirements.

Resource Utilization and Use Case Table 6 presents break-
downs of resource utilization by the various modules of the

Module LUT Count #BRAMs | Module LUT Count # BRAMs

Decode 3474 SGPR 647 8
Exec 8689 SIMD 36890 -
Fetch 22290 1 SIMF 55918 -
Issue 36142 VGPR 2162 128
SALU 1240 ‘Wavepool 27833 -
Total 195285 137

Table 6: Resource utilization

Thread Block
Compaction

Baseline 3 Thread Base

Address
Block IDs Table
CE

VGPR Addressing

Functional Functional

|
|
|
1
units | units
e — ! VGPR |
(64 pages) | |
'
|

Addresses. - -

VGPR

Offsets - D) (64 pages)

Dependency Check

i
i
|
: decoded wavefront/
| Gilobal
1 Regiter | thread block ID
Giobal e Decodedoperand | Busy Table Thread J+———— D:;:oded operand
Register address ' o e
Busy Table Busy flag ! ok o

Figure 6: Critical modifications in Thread block compaction

compute unit for LUTs and block RAMs respectively. Neko
consumes approximately 64% of the available LUTs and 16%
of the available block RAMs. Since Neko’s performance is
lower than MIAOW due to the trimmed down architecture,
one needs to consider this when interpreting research findings
from using Neko. Our paper’s reports results using the full
MIAOW design using long VCS simulations.

4. Is MIAOW Realistic?

We now seek to understand and demonstrate whether MIAOW
is a realistic implementation of a GPU. To accomplish this,
we compare it to industry GPUs on three metrics: area, power,
and performance. To reiterate the claim made in Section 1,
MIAOW does not aim to be an exact match of any industry
implementation. To check if quantitative results of the afore-
mentioned metrics follow trends similar to industry GPGPU
designs, we compare MIAOW with the AMD Tahiti GPU,
which is also a ST GPU. In cases where the relevant data is not
available for Tahiti, we use model data, simulator data, or data
from NVIDIA GPUs. Table 7 summarizes the methodology
and key results and show MIAOW is realistic.

For performance studies we choose six OpenCL bench-
marks that are part of the Multi2sim environment, which we
list along with three characteristics — # work groups, # wave-
fronts per workgroup, and # compute-cycles per work group:
BinarySearch (4, 1, 289), BitonicSort (1, 512, 97496), Matrix-
Transpose (4, 16, 4672), PrefixSum (1, 4, 3625), Reduction
(4, 1, 2150), ScanLargeArrays (2, 1, 4). MIAOW can also
run four Rodinia [9] benchmarks at this time — kmeans, nw,
backprop and gaussian. We use these longer benchmarks for
the case studies in Section 5 onward”.

5. Physical Design Perspective
Description: Fung et al. proposed Thread Block Com-
paction (TBC) [16]. which belongs in a large body of work

30thers don’t run because of they use instructions outsidle MIAOW’s
subset.

Area analysis

Goal o Is MIAOW’s total area and breakdown across modules
representative of industry designs?
Method o Synthesized with Synopsys 1-ported register-file

o For release, 5-ported flip-flop based regfile.

o Compare to AMD Tahiti (SI GPU) implemented at 28nm;
scaled to 32nm for absolute comparisons

Key o Area breakdown matches intuition; 30% in functional units
results & 54% in register files.

o Total area using 1-port Synopsys RegFile 9.31 mm? com-
pared to 6.92mm? for Tahiti CU
o Higher area is understandable: our design is not mature,
designers are not as experienced, our functional units are quite
inefficient (from Opencores.org), and not optimized as indus-
try functional units would be.

Power analysis
Goal o Is MIAOW's total power and breakdown across modules
representative of industry designs?
Method o Synopsys Power Compiler runs with SAIF activity file
generated by running benchmarks through VCS.

o Compared to GPU power models of NVIDIA GPU [22].
Breakdown and total power for industry GPUs not publicly
available.

Key o MIAOW breakdown: FQDS: 13.1%, RF: 16.9% FU: 69.9%
results o NVIDIA breakdown: FQDS: 36.7%, RF: 26.7% FU: 36.7%

o Compared to model more power in functional units (likely
because of MIAOW's inefficient FUs); FQDS and RF roughly
similar contributions in MIAOW and model.

o Total power is 1.1 Watts. No comparison reference avail-
able. But we feel this is low. Likely because Synopsys 32nm
technology library is targeted to low power design (1.05V,
300MH?z typical frequency

Performance analysis
Goal o Is MIAOW'’s performance realistic?
Method o Failed in comparing to AMD Tahiti performance using
AMD performance counters (bugs in vendor drivers).

o Compared to similar style NVIDIA GPU Fermi 1-SM GPU.

o Performance analysis done by obtaining CPI for each class
of instructions across benchmarks.

o Performed analysis to evaluate balance and sizing

Key o CPI breakdown across execution units is below.
results
CPI DMin DMax BinS BSort MatT PSum Red SLA
Scalar 1 3 3 3 3 3 3 3
Vector 1 6 54 21 3.1 55 54 55
Memory 1 100 141 3.8 4.6 60 68 55
Overall 1 100 5.1 1.2 1.7 36 44 3.0
NVidia 1 205 1.9 2.1 8 4.7 75

o MIAOW is close on 3 benchmarks.

o On another three, MIAOW’s CPI is 2 x lower, the reasons
for which are many: i) the instructions on the NVIDIA GPU
are PTX-level and not native assembly; ii) cycle measurement
itself introduces noise; and iii) microarchitectures are different,
so CPIs will be different.

o CPIs being in similar range shows MIAOW’s realism

o The # of wavepool queue slots was rarely the bottleneck:
in 50% of the cycles there was at least one free slot available
(with 2 available in 20% of cycles).

o The integer vector ALUs were all relatively fully occupied
across benchmarks, while utilization of the 3rd and 4th FP
vector ALU was less than 10%.

o MIAOW seems to be a balanced design.

Table 7: Summary of investigations of MIAOW’s realism

on warp scheduling [31, 44, 16, 43, 35, 25, 24], any of which
we could have picked as a case study. TBC, in particular, aims
to increase functional unit utilization on kernels with irregular
control flow. The fundamental idea of TBC is that, whenever
a group of wavefronts face a branch that forces its work-items
to follow the divergent program paths, the hardware should dy-
namically reorganize them in new re-formed wavefronts that
contain only those work-items following the same path. Thus,
we replace the idle work-items with active ones from other
wavefronts, reducing the number of idle SIMD lanes. Groups
of wavefronts that hit divergent branches are also forced to run
in similar paces, reducing even more work-item level diversion
on such kernels. Re-formed wavefronts are formed observing
the originating lane of all the work-items: if it occupies the
lane 0 in wavefront A, it must reoccupy the same lane O in
re-formed wavefront B. Wavefront forming mechanism is com-
pletely local to the CU, and it happens without intervention
from the ultra-threaded dispatcher. In this study we investigate
the level of complexity involved in the implementation of such
microarchitecture innovations in RTL.

Infrastructure and Methodology We follow the imple-
mentation methodology described in [16]. In MIAOW, the
modules that needed significant modifications were: fetch,
wavepool, decode, SALU, issue and the vector register file.
The fetch and wavepool modules had to be adapted to support
the fetching and storage of instructions from the re-formed
wavefronts. We added two instructions to the decode mod-
ule: fork and join which are used in SI to explicitly indicate
divergent branches. We added the PC stack (for recovery after
reconvergence) and modified the wavefront formation logic in
the SALU module, as it was responsible for handling branches.
Although this modification is significant, it does not have a
huge impact on complexity, as it does not interfere with any
other logic in the SALU apart from the branch unit.

The issue and VGPR modules suffered more drastic modifi-
cations, shown in figure 6. In SI, instructions provide register
addresses as an offset with the base address being zero. When
a wavefront is being dispatched to the CU, the dispatcher allo-
cates register file address space and calculates the base vector
and scalar registers. Thus, wavefronts access different register
spaces on the same register file. Normally, all work-items in
the wavefront access the same register but different pages of
the register file as shown in the upper-left corner of 6, and the
register absolute address is calculated during decode. But with
TBC, this assumption does not hold anymore. In a re-formed
wavefront all the work-items may access registers with the
same offset but different base values (from different originat-
ing wavefronts). This leads to modifications in the issue stage,
now having to maintain information about register occupancy
by offset for each re-formed wavefront, instead of absolute
global registers. In the worst case scenario, issue has to keep
track of 256 registers for each re-formed wavefront in contrast
to 1024 for the entire CU in the original implementation. In
figure 6, the baseline issue stage observed in the lower-left

corner and in the lower-right are the modifications for TBC,
adding a level of dereference to the busy table search. In
VGPR, we now must maintain a table with the base registers
from each work-item within a re-formed wavefront and reg-
ister address is calculated for each work-item in access time.
Thus, there are two major sources of complexity overheads in
VGPR, the calculation and the routing of different addresses
to each register page as shown in the upper-right corner of 6.

We had to impose some restrictions to our design due to ar-
chitectural limitations: first, we disallowed the scalar register
file and LDS accesses during divergence, and therefore, wave-
front level synchronization had to happen at GDS. We also
were not able to generate code snippets that induced the SI
compiler to use fork/join instructions, therefore we used hand-
written assembly resembling benchmarks in [16]. It featured a
loop with a divergent region inside, padded with vector instruc-
tions. We controlled both the number of vector instructions in
the divergent region and the level of diversion.

Our baseline used post-denominator stack-based reconver-
gence mechanism (PDOM) [33], without any kind of wave-
front formation. We compiled our tests and ran them on two
versions of MIAOW: one with PDOM and other with TBC.

Quantitative results The performance results obtained
matched the results from [16]: Similar performance was ob-
served when there was no divergence and a performance in-
crease was seen for divergent workloads. However, our most
important results came from synthesis. We observed that the
modifications made to implement TBC were mostly in the
regions in the critical paths of the design. The implementation
of TBC caused an increase of 32% in our critical path delay
from 8.00ns to 10.59ns. We also observed that the issue stage
area grew from 0.43mm? to 1.03mm?>.

Analysis Our performance results confirm the ones obtained
by Fung et al., however, the RTL model enabled us to imple-
ment TBC in further detail and determine that critical path
delay increases. In particular, we observed that TBC affects
the issue stage significantly where most of the CU control state
is present dealing with major microarchitectural events. TBC
reinforces the pressure over the issue stage making it harder
to track such events. We believe that the added complexity
suggests that a microarchitectural innovation may be needed
involving further design refinements and re-pipelining, not
just implementation modifications.

The goal of this case study is not to criticize the TBC work
or give a final word on its feasibility. Our goal here is to show
that, by having a detailed RTL model of a GPGPU, one can
better evaluate the complexity of any proposed novelties.

6. New types of research exploration

6.1. Sampling DMR on GPUs

Description: Balasubramanian et al. proposed a novel tech-
nique of unifying the circuit failure prediction and detection
in CPUs using Virtually Aged Sampling DMR [6] (Aged-
SDMR). They show that Aged-SDMR provides low design

complexity, low overheads, generality (supporting various
types of wearout including soft and hard breakdown) and high
accuracy. The key idea was to “virtually” age a processor by
reducing its voltage. This effectively slows down the gates,
mimicking the effect of wearout and exposes the fault, and
Sampling-DMR is used to detect the exposed fault. They
show that running in epochs and by sampling and virtually
aging 1% of the epochs provides an effective system. Their
design (shown in Figure 7) is developed in the context of multi-
core CPUs and requires the following: i) operating system
involvement to schedule the sampled threads, ii) some kind
of system-level checkpoints (like Revive [41], RevivelO [34],
Safetynet [51]) at the end of every epoch, iii) some system
and microarchitecture support for avoiding incoherence be-
tween the sampled threads [50], iv) some microarchitecture
support to compare the results of the two cores, and v) a subtle
but important piece, gate-level support to insert a clock-phase
shifting logic for fast paths. Because of these issues Aged-
SDMR’s ideas cannot directly be implemented for GPUs to
achieve circuit failure prediction. With reliability becoming
important for GPUs [10], having this capability is desirable.

Our Design: GPUs present an opportunity and problem in
adapting these ideas. They do not provide system-level check-
points nor do they lend themselves to the notion of epochs
making (i), (ii) and (iii) hard. However, the thread-blocks(or
workgroups) of compute kernels are natural candidates for a
piece of work that is implicitly checkpointed and whose gran-
ularity allows it to serve as a body of work that is sampled and
run redundantly. Furthermore, the ultra-threaded dispatcher
can implement all of this completely in the microarchitecture
without any OS support. Incoherence between the threads can
be avoided by simply disabling global writes from the sampled
thread since other writes are local to a workgroup/compute-
unit anyway. This assumption will break and cause correctness
issues when a single thread in a wavefront does read-modify-
writes to a global address. We have never observed this in
our workloads and believe programs rarely do this. Compari-
sion of results can be accomplished by looking at the global
stores instead of all retired instructions. Finally, we reuse the
clock-phase shifting circuit design as it is. This overall design,
of GPU-Aged-SDMR is a complete microarchitecture-only
solution for GPU circuit failure prediction.

Figure 7 shows the implemenation mechanism of GPU-
Aged-SDMR. Sampling is done at a workgroup granularity
with the ultra-threaded dispatcher issuing a redundant work-
group to two compute units (checker and checked compute
units) at a specified sampling rate, i.e for a sampling rate
of 1%, 1 out of 100 work groups are dispatched to another
compute unit called checker. This is run under the stressed
conditions and we disable the global writes so that it does not
affect the normal execution of the workgroups in the checked
CU. We could use a reliability manager module that compares
all retired instructions or we can compute a checksum of the
retiring stores written to global memory from the checker and

Microarchitecture CPU/GPU
CPU/GPU circuit

No Modifications to Critical Paths

Fault Exposure
Supply Voltage

Virtual Ager

Architecture & Scheduling - CPU

_ - Checker core
¥
= p) Checking

Qg Operating System

— managed scheduling

DMR
Mode
Age

DMR
Mode

Normal Operation .+ Age

Checked core
pad Occupied/Free Coupled
Checker core ﬁ_*—h%

Checking ti_n%

u

Checked cdre

Architecture & Scheduling - GPU

Sampling @1% of the cycles

= s et
's"m_hi - | Checker CU ’\EjglldF; \Lvavegrou\ps l\[/)lz\)/ldz
BB checkea cu phged o LN
CILIC L S < P Soupted
Toae , Checking Checking ti_rr%
Ultra-threaded Dispatcher
[Mo] [wi][M2] | (Hardware) managed scheduling Sampling @1% of the thread blocks
Figure 7: Virtually Aged SDMR implemenation on a GPU
MIAOW OpenSPARC [6]
Logic [CU Logic [Core'
Gates on fast paths 23% 30%
Area Overhead 18.09% | 8.69% 22.18% | 6.8%
Peak Power Increase | 5.96% | 4.68% 2.21% 0.99%

T OpenSPARC: with 16K L1 Instruction & 8K L1 Data cache.

Table 8: Overheads for fault exposure
the checked CU for the sampled workgroup. The checksums

are compared for correcteness and a mismatch detects a fault.
We have implemented this design in MIAOW’s RTL except
for the checksum — instead we behaviorally log all the stores
and compare them in the testbench. We also implemented the
clock-phase shifting logic and measured the area and power
overheads that this logic introduces.

The hardware changes involved minimal modifications to
the following modules: memory, compute unit, fetch, work-
group info and the testbench. An extra module called mem-
ory logger was added to track the global writes to GDS by
checked and checker CUs. Five interface changes had to be
made to support the metadata information about the compute
unit id, workgroup id and wavefront id. A total of 207 state
bits were added to support Aged SDMR implementation on
GPUs. Considering the baseline design, the modifications
done for implementing SDMR in MIAOW is relatively small
supporting and thus is of low design complexity.

Quantitative results and Analysis: The first important re-
sult obtained from this study is that a complete GPU-Aged-

10

SDMR technique is feasible with a pure microarchitecture
implementation. Second, identical to the Aged-SDMR study,
we can report area and power. As shown in Table 8, logic area
overheads are similar to CPUs and are small.

We also report on performance overheads of one patholog-
ical case. There could be non-trivial performance overheads
in cases where there is a very small number of wavefronts per
workgroup (just one in case of GaussianElim and nw). Hence,
even with 1% sampling, a second CU is active for a large num-
ber of cycles. We noticed in the Rodinia suite, guassianElim
and nw are written this way. In our study, we consider a two
CU system, therefore resource reduction when sampling is on
is quite significant. With 1% sampling, average performance
overhead for GaussianElim and nw is 35% and 50% and with
10% it becomes 80% and 103% respectively. Further tuning of
the scheduling policies can address this issue and also as the
number of CUs increase, this issue becomes less important.

Overall, GPU-Aged-SDMR is an effective circuit failure
prediction technique for GPUs with low design complexity.
MIAOW enables such new research perspectives that involve
gate-level analysis, which was thus far hard to evaluate.

6.2. Timing speculation in GPGPUs

Description: Timing speculation is a paradigm in which a
circuit is run at a clock-period or at a voltage level that is below
what it was designed for. Prior CPU works like Razor [14] and
Blueshift [19] have explored timing speculation in CPUs to
reduce power and handle process variations. In this case study,
we quantitatively explore timing speculation for GPUs and
quantify the error rate. While CPUs use pipeline flush for re-
covery, GPUs lack this. We have also implemented in MIAOW,
the modifications for idempotent re-execution [32] from the
iGPU design which supports timing speculation. Since these
are simple, details are omitted.

Infrastructure and Methodology: Our experimental goal
is to determine a voltage-to-error-rate-reduction (or clock pe-
riod reduction) relationship for different applications and com-
pare it to CPU trends adopting the approach of the Razor work.
First, we perform detailed delay- aware gate level simulations
at a period of 4.5ns and record the transition times at the D
input of each flip-flop in the design for each benchmark. Then
for different speculative clock periods, we can analyze the
arrival times of every flip-flop in every cycle and determine
if there is a timing error — producing an error rate for each
speculative clock period. We then use SPICE simulations
to find Vy, vs. logic delay for a set of paths to determine
an empirical mapping of delay change to V,;; reduction, thus
obtain error-rate vs. Vy, reduction. Other approaches like
approximating delay-aware simulation and timing-speculation
emulation could also be used [36, 8, 40].

Quantitative results and analysis: Figure 8 shows the vari-
ation of error rate as a function of operating voltage for 9
benchmarks. Observed trends are similar to those from Ra-
zor [14] and suggest timing speculation could be of value to

100 T T

— BinarySearch
ﬁ 80H — MatrixTranspose i
% — PrefixSum
=y 60H — ScanlargeArrays i
=1 — Reduction
©
S 40} Kmeans |
> — Nw
kS 2ol — Backprop
B — GaussianElim 6% Error rate
0
1.2 1.1 1.0 0.9 0.8 0.7
VDD

Figure 8: Voltage level vs % of violating cycles.

GPUs as well. Error rate grows slowly at first with V,;; re-
duction before a rapid increase at some point - at 6% error
rate, there is a 115 mV voltage reduction, nominal voltage
being 1.15V. Thus, MIAOW RTL provides ways to explore
this paradigm further in ways a performance simulator cannot.
For example — exploring error tolerance of GPGPU workloads
and investigations of power overheads of the Razor flip-flops.

7. Validation of simulator characterization

Description: Previous hardware-based research studies on
transient faults have focused on CPUs [55] and a recent GPU
study focused on a simulator based evaluation [52]. Wang et
al., [55] show that simulator based studies miss many circuit
level phenomenon which in the CPU case mask most transient
faults resulting in “fewer than 15% of single bit corruptions
in processor state resulting in software visible errors.” Our
goal is to study this for GPUs, complementing simulator-based
studies and hardware measurement studies [42] which cannot
provide fine-grained susceptibility information.

Infrastructure and Methodology: Our experimental strat-
egy is similar to that of Wang et al. We ran our experiments
using our testbench and VCS (Verilog Compiler Simulator)
and report results for a single CU configuration. We simu-
late the effect of transient faults by injecting single bit-flips
into flip-flops of the MIAOW RTL. We run a total of 2000
independent experiments, where in each experiment we insert
one bit-flip into one flip-flop. Across the six AMDAPP and
four rodinia benchmarks, this allows us to study 200 randomly
selected flip-flops. The execution is terminated 5000 cycles
after fault injection. In every experiment, we capture changes
in all architecture state after fault injection (output trace of
RTL simulation) and the state of every flip-flop at the end of
the experiment. We gather this information for a reference run
which has no fault injection. Every experiment is classified

into one of four types:
o Microarchitectural Match: All flip-flop values match at the

end of the execution window and no trace mismatches.

e Silent Data Corruption (SDC): Mismatch in the output trace
= transient fault corrupted program output.

e Terminated: Deadlock in pipeline and execution hangs.

e Gray Area: Output trace match but mismatch in 1 or more
flip-flops = no corruption yet, but can’t rule out SDC.

11

100
80
60
40
20

I uArch match B SDC
[Gray Area [Terminated
1 1 I

Percentage of faults

o® %606 & & e 6\/2((@%“9 W %9(09 &

Figure 9: Fault injection results
Quantitative results and analysis: We run three variants

of this experiment and report in Figure 9, the detailed results
for the last variant. In the first variant, MIAOW-All, faults
are injected into all flip-flops, including our register file built
using flip-flops. Over 90% of faults fall in the Gray area and
of these faults over 93% are faults in the register files. In
MIAOW's design which uses a flip-flop based register file
design, about 95% of flops are in the register file. The second
variant, MIAOW-noRF is run without the register file. Though
there is a considerable reduction in number of runs classified as
Gray Area, benchmarks like BinarySearch, MatrixTranspose,
Reduction, Kmeans and Nw still have more than 50% runs
in Gray Area. 4. The last variant, MIAOW-noRF/VF: exclude
the Vector FP units also since our benchmarks only light
exercise them. Gray area is now approximately 20-35% of fault
sites which is closer to CPUs but larger. This is unexpected —
the reason for the Gray area in CPUs is the large amount of
speculative state which a GPU lacks. Also, the Gray area in
Rodinia suite workloads corresponds to an uneven number of
wavefronts present in each workgroup. Our analysis shows
that several structures such as the scoreboard entries in the
issue stage and the workgroup information storage in the fetch
stage are lightly exercised due to the underutilized compute
units. When transient faults occur in the unused areas, they
do not translate to architectural errors. We conclude with a
caveat that further analysis with many workloads is necessary
to generalize the result.

8. Conclusion

This paper has described the design, implementation and char-
acterization of a Southern Islands ISA based GPGPU imple-
mentation called MIAOW. We designed MIAOW as a tool for
the research community with three goals in mind: realism,
flexibility, and software compatibility. We have shown that it
delivers on these goals. We acknowledge it can be improved
in many ways and to facilitate this the RTL and case-study
implementations are released open source with this work. We
use four case studies to show MIAOW enables the following:
physical design perspective to “traditional” microarchitecture,
new types of research exploration, and validation/calibration
of simulator-based characterization of hardware. The findings
and ideas are contributions in their own right in addition to
MIAOW: s utility as a tool for others’ research.

4 Most of the flip-flops have enable signals turned on by a valid opcode.
So once a bit flip occurs, the error stays on leading to the Gray area.

References

[1]
[2]
[3]

[4

=

[5]
[6

—_

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]
(23]
[24]

[25]

[26]

“Amd graphics cores next architecture.” [Online]. Available: http:
/Iwww.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
“Barrasim: Nvidia g80 functional simulator.” [Online]. Available:
https://code.google.com/p/barra-sim/

“Reference guide: Southern islands series instruction set archi-
tecture, http://developer.amd.com/wordpress/media/2012/10/AMD_
Southern_Islands_Instruction_Set_Architecture.pdf.”

M. Abdel-Majeed and M. Annavaram, “Warped register file: A power
efficient register file for gpgpus,” in HPCA, 2013.

A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in ISPASS "09.

R. Balasubramanian and K. Sankaralingam, “Virtually-aged sampling
dmr: Unifying circuit failure prediction and circuit failure detection,”
in Proceedings of the 46th International Symposium on Microarchitec-
tures ”’(MICRO)”’, 2013.

——, “Understanding the impact of gate-level physical reliability ef-
fects on whole program execution,” in Proceedings of the 20th In-
ternational Symposium on High Performance Computer Architecture
”(HPCA)”’,2014.

P. Bernardi, M. Grosso, and M. S. Reorda, “Hardware-accelerated path-
delay fault grading of functional test programs for processor-based
systems,” in GLSVLSI "07.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. ISWC °09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 44-54. [Online].
Available: http://dx.doi.org/10.1109/IISWC.2009.5306797

J. Chen, “GPU technology trends and future requirements,” in IJEDM
’09.

N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi,
B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “Fab-
scalar: composing synthesizable rtl designs of arbitrary cores within a
canonical superscalar template,” in ISCA ’11.

V. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and E. Espasa,
“Attila: A cycle-level execution-driven simulator for modern gpu archi-
tectures,” in ISPASS ’06.

G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A dy-
namic compiler for bulk-synchronous applications in heterogeneous
systems,” in PACT ’10.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” in MICRO
03

M. Fried, “Gpgpu architecture comparison of ati and nvidia gpus.”
[Online]. Available: www.microway.com/pdfs/GPGPU_Architecture_
and_Performance_Comparison.pdf

W. W. L. Fung and T. M. Aamodt, “Thread block compaction for
efficient simt control flow,” in HPCA ’12.

, “Thread block compaction for efficient simt control flow,” in
Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, ser. HPCA °11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 25-36. [Online].
Available: http://dl.acm.org/citation.cfm?id=2014698.2014893

J. Gaisler, “Leon sparc processor,” 2001.

B. Greskamp, L. Wan, U. Karpuzcu, J. Cook, J. Torrellas, D. Chen,
and C. Zilles, “Blueshift: Designing processors for timing speculation
from the ground up.” in HPCA ’09.

B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for
massively-threaded throughput-oriented processors,” in ISCA, 2013.
S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in ISCA ’09.
——, “An integrated gpu power and performance model,” in ISCA ’10.
H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error detec-
tion for gpgpu,” in MICRO ’12.

A.Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated scheduling and prefetching for gpgpus,”
in ISCA, 2013.

A.Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “Owl: cooperative thread array aware
scheduling techniques for improving gpgpu performance,” in ASPLOS,
2013.

H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W. mei Hwu, Per-
formance analysis and tuning for GPGPUs. Synthesis Lectures on
Computer Architecture. Morgan & Claypool.

12

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

(371
(38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]

[57]

Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanovié, “Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators,” in ISCA "11.

J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in ISCA ’13.

“User guide for nvptx back-end.” [Online]. Available:
/Mlvm.org/docs/NVPTXUsage.html

A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in MICRO ’07.

J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for
integrated branch and memory divergence tolerance,” in ISCA ’10.

J. Menon, M. De Kruijf, and K. Sankaralingam, “igpu: exception
support and speculative execution on gpus,” in ISCA "12.
S. S. Muchnick, Advanced compiler design implementation.
Kaufmann, 1997.

J. Nakano, P. Montesinos, K. Gharachorloo, and J.Torrellas, “Revivei/o:
efficient handling of i/o in highly-available rollback-recovery servers,”
in HPCA ’06.

V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving gpu performance via large warps and two-
level warp scheduling,” in MICRO ’11.

S. Nomura, K. Sankaralingam, and R. Sankaralingam, “A fast and
highly accurate path delay emulation framework for logic-emulation
of timing speculation,” in ITC ’11.

“Nvidia cuda profiler user guide.” [Online]. Available:
/ldocs.nvidia.com/cuda/profiler-users-guide/index.html
“Openrisc project, http://opencores.org/project,orlk.”
“OpenSPARC T1, http://www.opensparc.net.”

A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. Austin, “Crashtest: A fast high-fidelity fpga-based resiliency
analysis framework,” in CICC "08.

M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: cost-effective archi-
tectural support for rollback recovery in shared-memory multiproces-
sors,” in ISCA ’02.

P. Rech, C. Aguiar, R. Ferreira, C. Frost, and L. Carro, “Neutron
radiation test of graphic processing units,” in JOLTS "12.

M. Rhu and M. Erez, “Capri: Prediction of compaction-adequacy for
handling control-divergence in gpgpu architectures,” in I[SCA ’12.

T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in MICRO ’12.

R. M. Russell, “The CRAY-1 Computer System,” Communications of
the ACM, vol. 22, no. 1, pp. 6472, January 1978.

J. Sartori, B. Ahrens, and R. Kumar, “Power balanced pipelines,” in
HPCA ’12.

J. W. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance
analysis framework for identifying performance benefits in gpgpu
applications,” in PPOPP ’12.

I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M.
Aamodt, “Cache coherence for gpu architectures,” in HPCA, 2013.

B. Smith, “Architecture and applications of the HEP multiprocessor
computer system. In SPIE Real Time Signal Processing IV, pages
241-248, 1981.”

J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Reunion:
Complexity-effective multicore redundancy,” in MICRO 39, 2006.

D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” in ISCA ’02.

J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerabil-
ity on gpgpu microarchitecture,” in ZISWC ’11.

R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A
Simulation Framework for CPU-GPU Computing ,” in PACT ’12.

W. J. van der Laan, “Decuda SM 1.1 (G80) disassembler,”
https://github.com/laanwj/decuda.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,”
in DSN "04.

N. Wang and S. Patel, “Restore: Symptom-based soft error detec-
tion in microprocessors,” Dependable and Secure Computing, IEEE
Transactions on, vol. 3, no. 3, pp. 188 —201, 2006.

Y. Zhang, L. Peng, B. Li, J.-K. Peir, and J. Chen, “Architecture com-
parisons between nvidia and ati gpus: Computation parallelism and
data communications,” in IISWC ’11.

http:

Morgan

http:

http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
https://code.google.com/p/barra-sim/
http://developer.amd.com/wordpress/media/2012/10/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://dx.doi.org/10.1109/IISWC.2009.5306797
www.microway.com/pdfs/GPGPU_Architecture_and_Performance_Comparison.pdf
www.microway.com/pdfs/GPGPU_Architecture_and_Performance_Comparison.pdf
http://dl.acm.org/citation.cfm?id=2014698.2014893
http://llvm.org/docs/NVPTXUsage.html
http://llvm.org/docs/NVPTXUsage.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

	Introduction
	MIAOW Architecture
	ISA
	MIAOW Processor Design Overview
	MIAOW Compute Unit Microarchitecture
	MIAOW Ultra-threaded dispatcher
	Design choices

	Implementation
	Implementation summary
	Verification and Physical Design
	FPGA Implementation

	Is MIAOW Realistic?
	Physical Design Perspective
	New types of research exploration
	Sampling DMR on GPUs
	Timing speculation in GPGPUs

	Validation of simulator characterization
	Conclusion

