
...

A HETEROGENEOUS VON NEUMANN/
EXPLICIT DATAFLOW PROCESSOR

...

DECADES-OLD EXPLICIT DATAFLOW ARCHITECTURES ELIMINATE MANY OF THE OVERHEADS

OF GENERAL-PURPOSE PROCESSORS BUT HAVE NOT BEEN SUCCESSFUL BECAUSE OF THEIR

LACK OF SUFFICIENT CONTROL SPECULATION AND THE LATENCY OVERHEAD OF EXPLICIT

COMMUNICATION. THIS ARTICLE OBSERVES A SYNERGY BETWEEN OUT-OF-ORDER AND

EXPLICIT DATAFLOW PROCESSORS, IN WHICH DYNAMICALLY SWITCHING BETWEEN THEM

ACCORDING TO PROGRAM PHASES CAN GREATLY IMPROVE PERFORMANCE AND ENERGY

EFFICIENCY.

......As transistor scaling trends wor-
sen, improving the performance and energy
efficiency of general-purpose processors
(GPPs) has become ever more challenging.
Great strides have been made in targeting
regular codes through the development of
single-instruction, multiple-data (SIMD)
architectures and GPUs. However, codes
with either irregular control (divergent or
unpredictable branches) or irregular memory
(noncontiguous or indirect access) still
remain problematic.

Primarily, irregular codes are executed on
GPPs, which incur considerable overhead in
per-instruction processing, both in extracting
instruction-level parallelism (ILP) and main-
taining instruction-precise state. See the side-
bar, “Existing Approaches to Improve
General-Purpose Cores’ Energy Efficiency,”
for more information.

However, there exist well-known architec-
tures that eschew complex out-of-order
(OoO) hardware structures, yet can extract sig-
nificant ILP; these are called explicit dataflow
architectures. These include the early Tagged-

Token Dataflow,1 as well as the more recent
Trips,2 WaveScalar,3 and Tartan4 architectures.
But explicit dataflow architectures show no
signs of replacing conventional GPPs, for at
least three reasons. First, control speculation is
limited by the difficultly of implementing
dataflow-based squashing. Second, the latency
cost of explicit data communication can be
prohibitive.5 Third, compilation challenges
have proven hard to surmount.

Dataflow machines researched and imple-
mented thus far have failed to provide higher
instruction-level parallelism, and their theoreti-
cal promise of both low power and high per-
formance remains unrealized for irregular codes.

What remains unexplored thus far is the
fine-grained interleaving of explicit dataflow
with Von Neumann execution to adapt to
changing program behavior—that is, the theo-
retical and practical limits of being able to
switch, with low cost, between an explicit data-
flow hardware instruction set architecture (ISA)
and a Von Neumann ISA. Figure 1a shows a
logical view of such a heterogeneous architec-
ture, and Figure 1b shows this architecture’s

Tony Nowatzki

Vinay Gangadhar

Karthikeyan

Sankaralingam

University of

Wisconsin–Madison

...

20 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

capability to exploit fine-grained (thousands to
millions of instructions) application phases.

In this article, we explore the microarchi-
tecture of such a design, and the many
questions that arise: Are the benefits of fine-
grained interleaving of execution models sig-
nificant enough? How might one build a
practical and small-footprint dataflow engine
capable of serving as an offload engine?
Which types of GPP cores can substantially
benefit? Why are certain program region-
types suitable for explicit dataflow execution?

To answer these questions, we first analyze
the potential benefits of ideal dataflow heter-
ogeneity. We then design a specialization
engine for explicit dataflow (SEED), which is
simple but still widely applicable. We per-
form design space exploration by integrating
SEED with little (in-order), medium
(OoO2), and big (OoO4) cores, achieving
1.67, 1.33, and 1.14 times speedup, respec-
tively, always with more than 1.5 times
energy benefit. Our analysis shows that code
with high memory parallelism, instruction
parallelism, and branch unpredictability is
highly profitable for dataflow execution.

The Potential of Ideal Hybrid Dataflow
In this section, we consider an ideal hybrid
dataflow system to understand the potential
and the underlying reasons for the benefits.
We begin with Figure 2a, which shows the
potential speedup of such an architecture (ideal
dataflow plus four-wide OoO). Above each
bar is the percentage of execution time in data-
flow mode. Figure 2b shows the overall energy
and performance trends for three GPPs.

..

Existing Approaches to Improve General-Purpose Cores’ Energy Efficiency
Two broad specialization approaches have arisen to address general-

purpose inefficiencies.

The first is to use simple and serial low-power hardware in com-

monly used low instruction-level parallelism (ILP) code regions for bet-

ter energy efficiency. Examples architectures include big.LITTLE1 and

Composite Cores,2 which switch to an in-order core when ILP is

unavailable, and “accelerators” such as Bundled Execution of Recur-

ring Traces (BERET)3 and Conservation Cores.4 The latter approaches

are effective when integrated to small in-order cores, but they curtail

performance too much to be useful for out-of-order (OoO) general-

purpose processors (GPPs).

The other approach is to enhance the GPP for energy efficiency—

for example, by adding micro-op caches, loop caches, and in-place

loop execution techniques such as Revolver.5 These approaches

achieve only modest improvements because they fundamentally retain

complex OoO structures such as the instruction window, reorder buf-

fer, and multiported register files.

References
1. P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15

& Cortex-A7, white paper, ARM, 2011.

2. A. Lukefahr et al., “Composite Cores: Pushing Heterogeneity

into a Core,” Proc. 45th Ann. IEEE/ACM Int’l Symp. Micro-

architecture, 2012, pp. 317–328.

3. S. Gupta et al., “Bundled Execution of Recurring Traces for

Energy-Efficient General Purpose Processing,” Proc. 44th

Ann. IEEE/ACM Int’l Symp. Microarchitecture, 2011,

pp. 12–23.

4. G. Venkatesh et al., “Conservation Cores: Reducing the

Energy of Mature Computations,” Proc. 15th Conf. Architec-

tural Support for Programming Languages and Operating

Systems, 2010, pp. 205–218.

5. M. Hayenga, V.R.K. Naresh, and M.H. Lipasti, “Revolver:

Processor Architecture for Power Efficient Loop Execution,”

Proc. IEEE 20th Int’l Symp. High Performance Computer

Architecture, 2014, pp. 591–602.

Thousands to millions of instructions

App. 1

App. 2

App. 3

(a)

OoO
core Explicit

dataflow

live values

Vector

Cache hierarchy

Time(b)

Figure 1. Exploiting dynamic program behavior. (a) The logical view of a

heterogeneous architecture, where Von Neumann and dataflow are

substrates that are integrated to the same cache hierarchy. (b) The

architecture preference changes over time during application execution.

...

MAY/JUNE 2016 21

These results indicate that hybrid dataflow
has significant potential, up to 1.5 times per-
formance for an OoO4 GPP (two times for
OoO2), as well as more than two times aver-
age energy-efficiency improvement. Further-
more, the preference for explicit dataflow is
frequent, covering about 65 percent of execu-
tion time, but it is also intermittent and
application-phase dependent. The percentage
of execution time in dataflow mode varies
greatly, often between 20 to 80 percent, sug-
gesting that phase types can exist at a fine
grain inside an application.

To understand when and why explicit
dataflow can provide benefits, we consider
the program space along two dimensions:
control regularity and memory regularity.
Figure 3 shows our view on how different
programs in this space can be executed by
other architectures more efficiently than with
an OoO core. Naturally, vector architectures
are the most effective when memory access
and control is highly regular (see label 1 in
Figure 3). When programs are memory-
latency bound (label 2 in Figure 3), little ILP
will be available, and the simplest possible
hardware will be the best (for example, a low-

power engine like BERET6 or Conservation
Cores7). An explicit dataflow engine could
also fill this role.

There are two remaining regions in which
explicit dataflow has advantages over OoO.
First, when the OoO processor’s issue width
and instruction window size limit the achiev-
able ILP (label 3 in Figure 3), explicit dataflow
processors can exploit this through more effi-
cient hardware mechanisms, achieving higher
performance and energy efficiency. Second,
when control is not predictable, which would
serialize the execution of the OoO core (label
4 in Figure 3), explicit dataflow can execute
the same code with higher energy efficiency.

This suggests that a heterogeneous Von
Neumann and explicit dataflow architecture
with fine-granularity switching can provide
significant performance improvements along
with power reduction, and thus lower energy.

SEED: An Architecture for Fine-Grained
Dataflow Specialization
Our primary observation is that there is
potential for exploiting the heterogeneity of
execution models between Von Neumann

OoO2 OoO4IO2

GPP type:

(a) (b)

Relative performance

cj
p

eg
-1

d
jp

eg
-1

g
sm

d
ec

od
e

g
sm

en
co

d
e

cj
p

eg
-2

d
jp

eg
-2

h2
63

en
c

h2
64

d
ec

jp
g

20
00

d
ec

jp
g

20
00

en
c

m
p

eg
2d

ec
m

p
eg

2e
nc

16
4.

g
zi

p
18

1.
m

cf
17

5.
vp

r
19

7.
p

ar
se

r
25

6.
b

zi
p

2
42

9.
m

cf
40

3.
g

cc
45

8.
sj

en
g

47
3.

as
ta

r
45

6.
hm

m
er

40
1.

b
zi

p
2

46
4.

h2
64

re
f

G
M

E
A

N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

33
%

97
%

98
%

93
%

77
%

79
%

99
%

46
%

75
%

73
%

99
%

4% 27
%

33
%

86
%

57
%

0%
56

%
67

%
84

%
2%

88
%

64
% 92

%
64

%

... 1.
56

x

Heterogeneous ideal DF GPP only

% Explicit dataflow

1.0 1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

>2x performance
and energy

benefit

1.5x performance
2x energy

benefit

R
el

at
iv

e
en

er
g

y

Figure 2. Potential of ideal explicit dataflow specialization: (a) heterogeneous ideal dataflow performance and (b) overall

tradeoffs. The “ideal” dataflow processor is constrained only by the program’s control and data dependencies, but it is non-

control-speculative. For its energy model, only functional units and caches are considered.

..

TOP PICKS

..

22 IEEE MICRO

and dataflow at a fine grain. Attempting to
exploit this raises this article’s main concern:
how can we exploit dataflow specialization
with simple, efficient hardware? We argue
that any solution requires three properties:

1. It must have low area and power so that
integration with the GPP is feasible.

2. It must be general enough to target a
wide variety of workloads.

3. It must achieve the benefits of data-
flow execution with few overheads.

Our codesign approach involves exploiting
properties of frequently executed program
regions, using a combination of power-
efficient hardware structures and employing a
set of compiler techniques.

First, we propose that requirement 1, low
area and power, can be addressed by focusing
on a common yet simplifying case: fully
inlined nested loops with a limited total static
instruction count. Limiting the number of
per-region static instructions limits the size of
the dataflow tags and eliminates the need for
an instruction cache—both of which reduce
hardware complexity. In addition, ignoring
recursive regions and allowing only in-flight
instructions from a single context eliminates
the need for tag matching hardware—direct
communication can be used instead. Target-
ing nested loops also satisfies requirement 2:
these regions can cover a majority of real
applications’dynamic instructions.

To achieve low-overhead dataflow execu-
tion, requirement 3, we must lower the com-
munication costs. We achieve this through a
judicious set of microarchitectural features.
First, we use a distributed-issue architecture,
which enables high instruction throughput
with low-ported RAM structures. Second, we
use a multibus network for sustaining instruc-
tion communication throughput at low
latency. Third, we use compound instructions
to reduce the data communication overhead.

Using these insights creates two new com-
piler requirements: to create appropriately
sized inlined nested loops matching the hard-
ware constraints, and to create compound
instruction groupings that minimize the com-
munication overhead. For the first require-
ment, we can use aggressive inlining and loop
nest analysis, and for the second, we can
employ integer linear programming models.

Execution Model and Core Integration
To address the architecture and compiler
challenges, we propose SEED (shown in
Figure 4).8 In this article, we give an overview
of SEED’s execution model and integration.

Adaptive execution. The model we use for
adaptively applying explicit dataflow special-
ization is similar to big.LITTLE, except that
we restrict the entry points of acceleratable
regions to fully inlined or nested loops. This
lets us target custom hardware with a differ-
ent ISA, using statically generated instruc-
tions. Targeting longer nested-loop regions
also leads to a reduced overall cost of configu-
ration and GPP core synchronization.

GPP integration. We integrate the SEED
hardware with the same cache hierarchy as
the GPP, as shown in Figure 4. This approach
facilitates fast switching (no data copying
through memory), maintains cache coher-
ence, and eliminates the area of scratchpad

Vector
SIMD/GPU

(performance
+energy
benefit)

La
te

nc
y

b
ou

nd

 E
xp

lic
it d

a
taflo

w
 (energ

y b
en

efit)

 Simple core (energy benefit)

NoncriticalPredictableUnpredictable

Ir
re

g
ul

ar
ac

ce
ss

R

e
g

ul
a

r
ac

ce
ss

Higher
ILP

Explicit dataflow
 (perform

ance+energy benefit)

M
em

o
ry

 r
eg

u
la

ri
ty

1

2

4 3

Control regularity

Out of order

Figure 3. Architectures’ effectiveness based on application characteristics

of memory and control regularity. Regular program regions (1) are most

suited to vector processors, and latency-bound regions (2) are suited to

simple processors. In addition to (2), an explicit-dataflow processor is

especially apt for regions with high ILP (3) or significant unpredictable

control (4).

...

MAY/JUNE 2016 23

memories and the associated need for pro-
grammer intervention. SEED also adds
architectural state, which must be maintained
at context switches. Moreover, functional
units (FUs) could be shared with the GPP to
save area (by adding bypass paths); this article
considers stand-alone FUs.

Dataflow style. Similar to dataflow architec-
tures like WaveScalar,3 control dependen-
cies in the original program become data
dependencies. The control flow is imple-
mented by forwarding values to the appro-
priate location, depending on the branch
outcomes.

Dataflow Execution
Here, we discuss SEED’s internal execution
model, which resembles those of previous
dataflow architectures,2–4 in which the pri-
mary difference is that SEED’s instructions
are grouped into subgraphs.

Data dependence. Similar to other dataflow
representations, SEED programs follow the
dataflow firing rule: instructions execute when
their operands are ready. To initiate computa-
tion, live-in values are sent from the host.
During dataflow execution, each instruction
forwards its outputs to dependent instruc-
tions, either in the same iteration or in a

Table 1. Region-wise comparison of OoO4 to SEED,

Benchmark

SEED region

function

Percent of

program

executed

by SEED

Region

vectorized

by the GPP

OoO4

IPC

Effective

IPC of SEED

Perf.>OoO4 jpg2000dec jas_image_encode 50 2.5 12.8

429.mcf primal_bea_mpp 37 0.8 2.8

cjpeg-1 encode_mcu_AC_refine 24 2.5 5.9

181.mcf primal_bea_mpp 31 0.9 1.8

djpeg-2 ycc_rgb_convert 33 2.7 5.4

456.hmmer Viterbi* 73 2.9 5.4

458.sjeng std_eval 5 2.4 3.7

gsmdecode Gsm_Short_Term_Syn... 61 2.4 3.1

cjpeg-2 compress_data 48 � 2.2 2.7

Perf.�OoO4 gsmencode Gsm_Long_Term_Pred... 49 1.9 2.2

djpeg-1 decompress_onepass 39 2.6 2.7

h263enc MotionEstimation 98 2.0 1.9

164.gzip inflate 23 1.9 1.7

473.astar wayobj::fill 96 1.1 1.0

h264dec decode_one_macroblock 21 0.4 0.4

jpg2000enc jpc_enc_encpkt 3 2.1 1.8

Perf.<OoO4 403.gcc ggc_mark_trees 4 0.5 0.4

464.h264ref SetupFastFullPelSearch 29 1.5 1.3

175.vpr try_swap 49 1.4 1.2

mpeg2enc fullsearch.constprop.3 93 1.9 1.5

mpeg2dec conv422to444 31 2.7 2.1

197.parser restricted_expression 17 3.3 1.6

401.bzip2 BZ2_compressBlock 31 � 4.3 1.5

2560bzip2 compressStream 99 � 13.5 2.0

..

TOP PICKS

..

24 IEEE MICRO

showing only the top region per benchmark, highest to lowest relative performance.

IPC of

ideal

dataflow

SEED’s

energy

reduction

Branches

per 1,000

lops (BPKI)

Branch

misprediction

per 1,000 lops

(BMPKI)

Cache

misses

per 1,000

lops Explanation

21.8 9.1 101 0 0 High exploitable ILP

8.3 4.6 152 10 96 Higher memory parallelism

6.2 4.2 48 0 2 Indirect memory and high ILP

9.6 3.0 170 8 106 Higher memory parallelism

12.0 3.5 29 0 0 Indirect memory and high ILP

7.3 4.5 32 0 4 High exploitable ILP

4.1 3.8 126 5 0 High exploitable ILP

3.4 4.5 92 0 0 High exploitable ILP

4.9 3.5 58 8 0 High exploitable ILP

2.7 3.5 5 0 0 Moderate ILP, communication

overhead

3.6 3.6 18 1 0 Indirect memory and moderate ILP

8.7 3.2 18 0 0 Comparable performance

2.3 2.0 81 0 10 Moderate ILP, communication

overhead

1.1 3.3 114 31 2 Avoids branch misses, modest ILP

0.4 1.9 39 0 0 Comparable, low ILP

2.0 1.3 135 6 2 Comparable performance

0.4 1.0 66 2 2 Comparable, low ILP

1.7 2.7 40 0 0 Short region (340 dynamic instructions)

6.9 2.1 88 17 5 Avoids B-misses, communication

overhead

2.9 3.9 17 0 0 Moderate ILP, communication overhead

3.0 2.8 68 0 2 Moderate ILP, communication overhead

3.7 1.4 108 0 0 Short region (300 dynamic instructions)

1.5 0.8 97 3 3 Region vectorized

2.0 0.4 83 0 0 Region vectorized

subsequent iteration. Control dependencies
between instructions are converted into data
dependencies. SEED uses a switch instruction
that forwards values to different instructions.
Memory dependencies (aliasing memory
instructions) are serialized in SEED’s program
representation through explicit tokens.

Executing compound instructions. To miti-
gate communication overheads, the compiler
groups primitive instructions (such as adds,
shifts, and switches) into subgraphs and exe-
cutes them on compound functional units
(CFUs). These are logically executed
atomically.

SEED Microarchitecture
Our microarchitecture achieves high instruc-
tion parallelism and simplicity by using dis-
tributed computation units. The overall
design comprises eight SEED units, wherein
each SEED unit is organized around one
CFU. The SEED units communicate over a
network, as shown in Figure 4.

Compound functional unit. CFUs comprise
a fixed network of primitive FUs (such as
adders, multipliers, logical units, and switch
units) in which unused portions of the CFU
are bypassed when not in use. Long-latency
instructions (for example, loads) can be

...

MAY/JUNE 2016 25

buffered and passed by subsequent instruc-
tions. Our design uses a CFU mix from exist-
ing work6 in which CFUs contain two to five
operations.

CFUs with memory units will issue load
and store requests to the host’s memory man-
agement unit, which is still active while
SEED is executing. Load requests access a
store buffer for store-to-load forwarding.

Instruction management unit. The IMU has
three responsibilities. First, it stores instruc-
tions, operands, and destinations. The IMU
has storage locations for 32 compound instruc-
tions, each with a maximum of four operands,
and we keep operand storage space for four
concurrent loop iterations. The static instruc-
tion storage is roughly equivalent to a maxi-
mum of 1,024 noncompound instructions.

Second, the IMU fires instructions. Ready
logic monitors the operand storage unit and
picks a ready instruction (when all operands
are available), with priority to the oldest
instruction. Then, the compound instruction
and its operands and destinations are sent to
the CFU.

Third, the IMU directs incoming values.
The input control pulls values from the net-
work to appropriate storage locations on the
basis of the incoming instruction tag.

Output distribution unit. The ODU distrib-
utes the output values and destination pack-
ets (SEED unit, instruction location, and

iteration offset) to the bus network and buf-
fers them during bus conflicts.

Bus architecture and arbiter. SEED uses a
parallel bus interconnect to forward the out-
put packets from the ODU to a data-depend-
ent compound instruction that’s present in
either the same or another SEED unit. This
means dependent compound instructions
cannot execute in back-to-back cycles.

Evaluation Methodology
We employed a modeling methodology based
on the transformable dependence graph9 with
22-nm technology to evaluate SEED.

Benchmark Selection
We chose benchmarks from SPECint and
MediaBench that represent a variety of con-
trol and memory irregularity.

GPP Characteristics
All cores are x86, have 256-bit SIMD, and
are configured with the same cache hierarchy:
a two-way 32-Kbyte instruction cache and a
64-Kbyte level-1 data cache, both with four
cycle latencies, and an eight-way 2-Mbyte
level-2 cache with a 22-cycle hit latency. Also,
in order to exclude the effects of frequency
scaling, all cores run at 2 Ghz.

Evaluating Dataflow-Specialization
Potential
To understand dataflow specialization’s
potential and tradeoffs, we explore the preva-
lence and duration of nested loop regions,
their performance with dataflow execution,
and their interaction with different host
cores.

Nested Loop Prevalence
Figure 5 shows cumulative distributions of
dynamic instructions coverage with varying
dynamic region granularity, assuming a maxi-
mum static size of 1,024 instructions. Con-
sidering regions with a duration of 8K
dynamic instructions or longer (x-axis),
nested loops can cover 60 percent of the total
instructions, whereas inner loops cover only
20 percent. Nested loops also greatly increase
the region duration for a given percentage of

L1 cache

...

ODU

Specialization Engine for Explicit Dataflow
(SEED)

Store
buffer

CPU
transfer

ODU

IMU

CFU1

SEED unit 1

...

Config
& init

D
-c

ac
he

IMU

CFU8

Bus
arbiterOoO

GPP

I-c
ac

he SEED unit 8

Figure 4. High-level view of integration and

organization of SEED. (CFU: compound

functional unit; IMU: instruction management

unit; ODU: output distribution unit).

..

TOP PICKS

..

26 IEEE MICRO

coverage (1K to 64K for 40 percent
coverage).

Dataflow-Performance Analysis
First we compare the speedups of SEED to
our most aggressive design (OoO4) on the
most frequent nested-loop regions of pro-
grams (each greater than 1 percent of total
instructions). The results show that different
regions have vastly different performance
characteristics, and some are favored heavily
by one architecture (see Figure 6). Around
three to five times speedup is possible, and
many regions show significant speedup.

We next examine the reasons for perform-
ance differences. Table 1 presents details on
the highest-contributing region from each
benchmark. SEED IPC is an effective IPC
that uses the GPP’s instructions as total
instructions.

Performance and energy benefit regions. Com-
pared to the OoO4 wide core, SEED can
provide high speedups for certain applica-
tions, coming from the ability to exploit
higher ILP in computationally intensive
regions and from the breaking of the instruc-
tion window barrier in order to achieve
higher memory parallelism.

In the first category are jpg2000dec,
cjpeg, and djpeg, which can exploit ILP
past the processor’s issue width while simulta-
neously saving energy by using less-complex
structures. Often, these regions have indirect
memory access that precludes SIMD vectori-
zation. In the second category are 181.mcf
and 429.mcf, which experience high cache
miss rates and clog the OoO processor’s
instruction window. SEED is limited only by
the store buffer size on these benchmarks.

Energy-benefit-only regions. These regions
have similar performance to the OoO4, but
are more energy efficient by two to three
times. Overall, ILP tends to be lower, but
control is mostly off the critical path, allow-
ing dataflow to compete. This is the case for
djpeg-1 and h264dec. Benchmarks like
gsmencode and 164.gzip actually have
some potential ILP advantages but are bur-
dened by communication overhead. Bench-
mark h263enc has a high potential ILP but
requires multiple instances of the inner loop

(not just iterations) in parallel, which SEED
does not support.

Contrastingly, benchmarks 473.astar
and jpg2000enc have significant control
but still perform close to the OoO core.
These benchmarks make up for the lack of
speculation by avoiding branch misses and
relying on the control-equivalent spawning
that dataflow provides.

Performance loss regions. Several SEED
regions lose performance versus the OoO4
core, as shown in the last set of rows in Table 1.
The most common reason is additional com-
munication latency on the critical path,
affecting regions in 403.gcc, mpeg2dec,
and mpeg2enc. Also, certain benchmarks
have load-dependent control (for example,
401.bzip2), which causes low potential
performance for dataflow. These are funda-
mental dataflow limitations. In two cases,
configuration overhead hurt the benefit of a
short-duration region (464.h264ref and
197.parser). In practice, these regions
would not be executed on SEED. Finally,
some of these regions are vectorized on the
GPP, and SEED is not optimized to exploit
data parallelism. This affects 401.bzip2
and 256.bzip2.

In summary, speedups come from exploit-
ing higher memory parallelism and

0

10

20

30

40

50

60

70

80

32
 M 4
M

51
2

K

64
 K 8
K

1
K

12
8 16 2

D
yn

am
ic

 in
st

ru
ct

io
ns

 c
ov

er
ed

 (
%

)
Minimum allowed region duration (in dynamic instructions)

Inner loops
Nested loops

Figure 5. Cumulative contribution percentage for decreasing dynamic region

lengths. The static region size is a maximum of 1,024 instructions.

...

MAY/JUNE 2016 27

instruction parallelism and avoiding mispe-
culation overheads. Slowdowns come from
the extra latency cost on more serialized
computations.

Integration with GPPs
We consider integration with a little,
medium, and big core. To eliminate compiler
and runtime heuristics on when to use which

architecture, we consider using an oracle
scheduler, which uses advance knowledge of
region execution time to decide when to use
the OoO core, SEED, or SIMD. Figure 7
and Table 2 show the summary data.

For the little, medium, and big cores,
SEED provides 1.65, 1.33, and 1.14 times
speedup and 1.64, 1.70, and 1.53 times
energy efficiency, respectively. This is primar-
ily due to the prevalence of regions in which
dataflow execution can match the host core’s
performance 71, 64, and 42 percent of the
time, respectively.

Overall, all cores can achieve significant
energy benefits, little and medium cores can
achieve significant speedup, and big cores
receive modest performance improvement.

T his article has demonstrated the poten-
tially disruptive tradeoffs for heteroge-

neous cores, raising the bar of what is
possible given only a modestly complex core.
Beyond heterogeneous architectures, its
insights suggest opportunities for significant
advancement on a purely microarchitectural
level. Finally, it broadly contributes to the
focus of future research in hardware special-
ization: that specialization could more aptly
be performed along dimensions of program
behaviors, rather than just low or high poten-
tial ILP.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
cj

p
eg

-1

d
jp

eg
-1

g
sm

d
ec

od
e

g
sm

en
co

d
e

cj
p

eg
-2

d
jp

eg
-2

h2
63

en
c

h2
64

d
ec

jp
g

20
00

d
ec

jp
g

20
00

en
c

m
p

eg
2d

ec

m
p

eg
2e

nc
16

4.
g

zi
p

18
1.

m
cf

17
5.

vp
r

19
7.

p
ar

se
r

25
6.

b
zi

p
2

42
9.

m
cf

40
3.

g
cc

45
8.

sj
en

g

47
3.

as
ta

r

45
6.

hm
m

er

40
1.

b
zi

p
2

46
4.

h2
64

re
f

5.2

Figure 6. Per-region SEED speedups. Large slowdowns and speedups, three to five times, are possible.

Little (IO2)

Medium (OoO2)

Big (OoO4)

Core type:

+BigLITTLE

+In-place loop

+SEED

+Beret

+Cons-cores

Host GPP core

Design:

R
el

at
iv

e
en

er
g

y

0.85×
performance

2.3×
energy

efficiency 1.14× performance
1.54× energy efficiency

1.0 1.4 1.8 2.2

Relative performance

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 7. Comparison of SEED with other specialization techniques for

targeting irregular codes. Dataflow specialization with SEED significantly

pushes the performance and energy frontier.

..

TOP PICKS

..

28 IEEE MICRO

The potential for disruptive design trade-
offs is highlighted in Figure 7, which compares
SEED to existing techniques for targeting
irregular codes. SEED improves performance
and energy efficiency across GPP cores types,
significantly more than existing accelerator
and microarchitectural approaches do.

Perhaps more interesting are the disrup-
tive changes that a heterogeneous dataflow
system introduces for computer architects.
First, the OoO2þSEED is actually reason-
ably close in performance to an OoO4 pro-
cessor on average, within 15 percent, while
reducing energy 2.3 times. Additionally, our
McPAT-based estimates suggest that an
OoO2þSEED occupies less area than an
OoO4 GPP core. Therefore, a heterogeneous
dataflow system introduces an interesting
path toward a high-performance, low-energy
microprocessor: start with an easier-to-
engineer modest OoO core and add a simple,
non-general-purpose dataflow engine.

An equally interesting tradeoff is to add a
dataflow unit to a larger OoO core—this
improved the energy efficiency of the OoO4
core by 1.54 times, while improving the per-
formance by 1.14 times. This is a huge leap
for energy efficiency, especially considering
the difficulty of improving the efficiency for
complex, irregular workloads like SpecINT.
We intentionally chose SpecINT because it is
challenging, and we expect our results on
emerging workloads to be even better. Fur-
thermore, we argue that adding a dataflow
engine is not actually an exorbitant amount
of additional effort, because the design is
almost completely decoupled.

In addition, many of our observations
apply to more than just heterogeneous archi-
tectures—they can also be applied to the core

microarchitecture itself. For example, our
work demonstrated the energy efficiency of
explicit dataflow execution. Other micro-
architecture techniques have tried to exploit
this, such as ForwardFlow,10 which uses
pointer-based communication of instruction
operands. However, ForwardFlow still suffers
fetch and decode overheads and still must
dynamically build the dependence graph.
Thus, applying our configurable-dataflow
principles would enable the retention of the
generated dataflow graph across loop itera-
tions and could dramatically improve energy
efficiency.

Others have looked at in-place loop exe-
cution techniques in the context of OoO
hardware; for example, Revolver locks loop-
ing traces inside the OoO back end to elimi-
nate front-end energy.11 The insight we
uncover is that although looping traces com-
prise about half of the dynamic instructions
in our workloads, nested loops are much
more prevalent, comprising nearly 75 percent
of workloads even at a small static instruction
size. Creating microarchitectural mechanisms
for locking in these instructions could pro-
vide large benefits.

Beyond the particular microarchitecture
and insights uncovered, this article makes a
broader contribution to recent efforts in hard-
ware specialization. Most of the research in
general-purpose accelerators thus far has
focused on creating simple hardware sub-
strates that are more energy efficient when
there is low ILP available. In other words, they
specialize only along the dimensions of poten-
tial instruction parallelism, and thus manifest
specialized architectures that differ primarily
in terms of their hardware complexity. In con-
trast, this article supports the fact that there

Table 2. GPP core type details for the comparison in Figure 7.

GPP core type Characteristics

Little (IO2) Dual issue, 1 load/store port

Medium (OoO2) 64-entry reorder buffer, 32-entry instruction window (IW), load/store

queue (LSQ): 16 loads/20 stores, 1 load/store port, speculative scheduling

Big (OoO4) 168-entry reorder buffer, 48-entry IW, LSQ: 64 loads/36 stores,

2 load/store ports, speculative scheduling

...

MAY/JUNE 2016 29

are other properties besides performance with
which to specialize program regions. We dif-
ferentiate the underlying architecture in this
work mostly by the region’s control-flow crit-
icality, which leads to large benefits. The prin-
ciples here suggest a paradigm of behavior
specialization in which different specialized
hardware substrates target codes with certain
program behaviors. This paradigm could
eventually help merge the concepts of special-
ization and general-purpose computing by tar-
geting a wide spectrum of program behaviors.
If successful, it could ultimately obviate the
need for large general-purpose processors
altogether. MICR O

Acknowledgments
Support for this research was provided by
the US National Science Foundation under
grant CNS-1228782 and by a Google US/
Canada PhD Fellowship.

..
References
1. K. Arvind and R.S. Nikhil, “Executing a Pro-

gram on the MIT Tagged-Token Dataflow

Architecture,” IEEE Trans. Computers, vol.

39, no. 3, 1990, pp. 300–318.

2. D. Burger et al., “Scaling to the End of Sili-

con with EDGE Architectures,” Computer,

vol. 37, no. 7, 2004, pp. 44–55.

3. S. Swanson et al., “WaveScalar,” Proc.

36th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture, 2003, pp. 291–302.

4. M. Mishra et al., “Tartan: Evaluating Spatial

Computation for Whole Program Exe-

cution,” Proc. 12th Architectural Support for

Programming Languages and Operating

Systems, 2006, pp. 163–174.

5. M. Budiu, P.V. Artigas, and S.C. Goldstein,

“Dataflow: A Complement to Superscalar,”

Proc. IEEE Int’l Symp. Performance Analy-

sis of Systems and Software, 2005, pp.

177–186.

6. S. Gupta et al., “Bundled Execution of

Recurring Traces for Energy-Efficient Gen-

eral Purpose Processing,” Proc. 44th Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

2011, pp. 12–23.

7. G. Venkatesh et al., “Conservation Cores:

Reducing the Energy of Mature

Computations,” Proc. 15th Conf. Architec-

tural Support for Programming Languages

and Operating Systems, 2010, pp. 205–218.

8. T. Nowatzki, V. Gangadhar, and K. Sankara-

lingam, “Exploring the Potential of Hetero-

geneous Von Neumann/Dataflow Execution

Models,” Proc. 42nd Ann. Int’l Symp. Com-

puter Architecture, 2015, pp. 298–310.

9. T. Nowatzki, V. Govindaraju, and K. Sankara-

lingam, “A Graph-Based Program Represen-

tation for Analyzing Hardware Specialization

Approaches,” IEEE Computer Architecture

Letters, vol. 14, no. 2, 2015, pp. 94–98.

10. D. Gibson and D.A. Wood, “ForwardFlow: A

Scalable Core for Power-Constrained

CMPs,” Proc. 37th Ann. Int’l Symp. Com-

puter Architecture, 2010, pp. 14–25.

11. M. Hayenga, V.R.K. Naresh, and M.H.

Lipasti, “Revolver: Processor Architecture

for Power Efficient Loop Execution,” Proc.

IEEE 20th Int’l Symp. High Performance

Computer Architecture, 2014, pp. 591–602.

Tony Nowatzki is a PhD student in the
Department of Computer Sciences at the
University of Wisconsin–Madison. He
received an MS in computer science from
the University of Wisconsin–Madison. He is
a student member of IEEE. Contact him at
tjn@cs.wisc.edu.

Vinay Gangadhar is a PhD student in the
Department of Electrical and Computer
Engineering at the University of Wiscon-
sin–Madison. He received an MS in electri-
cal and computer engineering from the Uni-
versity of Wisconsin–Madison. He is a
student member of IEEE. Contact him at
vinay@cs.wisc.edu.

Karthikeyan Sankaralingam is an associate
professor in the Department of Computer
Sciences and the Department of Electrical
and Computer Engineering at the University
of Wisconsin–Madison. He received a PhD
in computer science from the University of
Texas at Austin. He is a senior member of
IEEE. Contact him at karu@cs.wisc.edu.

..

TOP PICKS

..

30 IEEE MICRO

	ref1a
	ref2a
	ref3a
	ref4a
	ref5a
	fig1
	fig2
	fig3
	table1
	fig4
	fig5
	fig6
	fig7
	table2
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	ref7
	ref8
	ref9
	ref10
	ref11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

