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Abstract
General purpose processors (GPPs), from small inorder

designs to many-issue out-of-order, incur large power over-
heads which must be addressed for future technology gener-
ations. Major sources of overhead include structures which
dynamically extract the data-dependence graph or maintain
precise state. Considering irregular workloads, current spe-
cialization approaches either heavily curtail performance, or
provide simply too little benefit. Interestingly, well known
explicit-dataflow architectures eliminate these overheads by
directly executing the data-dependence graph and eschew-
ing instruction-precise recoverability. However, even after
decades of research, dataflow architectures have yet to come
into prominence as a solution. We attribute this to a lack
of effective control speculation and the latency overhead of
explicit communication, which is crippling for certain codes.

This paper makes the observation that if both out-of-order
and explicit-dataflow were available in one processor, many
types of GPP cores can benefit from dynamically switching
during certain phases of an application’s lifetime. Analysis
reveals that an ideal explicit-dataflow engine could be prof-
itable for more than half of instructions, providing significant
performance and energy improvements. The challenge is to
achieve these benefits without introducing excess hardware
complexity. To this end, we propose the Specialization Engine
for Explicit-Dataflow (SEED). Integrated with an inorder core,
we see 1.67× performance and 1.65× energy benefits, with
an Out-Of-Order (OOO) dual-issue core we see 1.33× and
1.70×, and with a quad-issue OOO, 1.14× and 1.54×.

1. Introduction
As transistor scaling trends continue to worsen, causing severe
power limitations, improving the performance and energy effi-
ciency of general purpose processors has become ever more
challenging. Great strides have been made in targeting regular
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Figure 1: Energy/Perf. Tradeoffs of Related Techniques
(See Section 6 for methodology)

codes, through the development of SIMD, GPUs, and other
designs [6, 12, 19, 21, 30]. However, codes that are irregular,
either in terms of control or memory, still remain problem-
atic. Control irregularity includes divergent or unpredictable
branches, and memory irregularity includes non-contiguous
or indirect access1.

Existing Specialization Approaches Primarily, irregular
codes are executed on general purpose processors (GPPs),
which incur considerable overheads in per-instruction process-
ing, both in extracting instruction-level parallelism and for
maintaining instruction-precise state. Two broad specializa-
tion approaches have arisen to address these challenges. The
first is to use simplified and serialized low-power hardware in
commonly used low-ILP code regions for better energy effi-
ciency. Examples include architectures like bigLITTLE [13]
and Composite Cores [23], which switch to an inorder core
when ILP is unavailable, and “accelerators” like BERET [14],
Conservation Cores [35] and QsCores [36]. The other ap-
proach is to enhance the GPP for energy-efficiency, like adding
µop caches, loop caches, and in-place loop execution tech-
niques like Revolver [15].

To highlight the benefits and limitations of existing ap-
proaches targeting irregular codes, Figure 1(a) shows their en-
ergy and performance advantages when integrated into several
GPP cores2. Figure 1(b) is similar, but here an oracle scheduler

1This paper examines irregular workloads by restricting to SPECint/Medi-
abench. Observations here apply to irregular workloads, unless specified.

2Note here that we allow switching arbitrarily at a fine-granularity and
hence bigLITTLE subsumes Composite Cores.
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An “ideal” dataflow processor is only constrained by the program’s control
and data-dependencies, and not by any execution resources. It is also non-
speculative, and incurs latency when transferring values between control
regions. For its energy model, only functional units and caches are considered.

Figure 3: Potential of Ideal Explicit-Dataflow Specialization

only allows regions with slowdown of < 10%. These results
show that low-power hardware approaches are effective when
integrated to small inorder cores (1.5× energy-efficiency),
but usually cost too much performance to be useful for OOO
GPPs. Techniques like in-place loop execution are also ben-
eficial, but can only improve performance/energy by a few
percent, because they rely on expensive instruction window,
reorder-buffer and large multi-ported register-file access, even
during loop specialization mode. Overall, speedup and energy
benefits are limited to less than 1.1× on large GPPs.

Dataflow The common feature of the above architectures is
that they are fundamentally Von Neumann or “control flow”
machines. However, there exist well-known architectures
which eschew complex OOO hardware structures, yet can
extract significant ILP, called explicit-dataflow architectures.
These include early Tagged Token Dataflow [1], as well as
the more recent TRIPS [5], WaveScalar [33] and Tartan [24].
But explicit-dataflow architectures show no signs of replac-
ing conventional GPPs, for at least three reasons. First, con-
trol speculation is limited by the difficultly of implementing
dataflow-based squashing. Second, the latency cost of explicit
data communication can be prohibitive [3]. Third, compilation
challenges have proven hard to surmount [9].

Overall, dataflow machines researched and implemented
thus far have failed to provide higher instruction-level par-
allelism, and their theoretical promise of low power and yet
high performance remains unrealized for irregular codes.

Unexplored Opportunity What has thus far remained un-
explored is fine-grained interleaving of explicit-dataflow with
Von Neumann execution – i.e. the theoretical and practical
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Figure 4: Arch. Effectiveness based on App. Characteristics

limits of being able to switch with low cost between an explicit-
dataflow hardware/ISA and a Von Neumann ISA. Figure 2(a)
shows a logical view of such a hybrid architecture, and Fig-
ure 2(b) shows the capability of this architecture to exploit
fine-grain (several thousands to millions of instructions) appli-
cation phases.

The potential benefits of an ideal hybrid architecture (ideal
dataflow + four-wide OOO) are shown in Figure 3(a). Above
each bar is the percentage of execution time in dataflow mode.
Figure 3(b) shows the overall energy and performance trends
for three different GPPs.

These results indicate that hybrid dataflow has significant
potential, up to 1.5× performance for an OOO4 GPP (2×
for OOO2), as well as over 2× average energy-efficiency im-
provement, significantly higher than previous specialization
techniques. Furthermore, the preference for explicit-dataflow
is frequent, covering around 65% of execution time, but also
intermittent and application-phase dependent. The percentage
of execution time in dataflow mode varies greatly, often be-
tween 20% to 80%, suggesting that phase types can exist at a
fine grain inside an application.

When/Why Explicit-Dataflow? To understand when and
why explicit-dataflow can provide benefits, we consider the
program space along two dimensions: control regularity and
memory regularity. Figure 4 shows our view on how different
programs in this space can be executed by other architectures
more efficiently than with an OOO core. Naturally, vector-
architectures are the most effective when memory access and
control is highly regular (see 1 ). When memory latency
bound (see 2 ), little ILP will be available, and the simplest
possible hardware will be the best (a low-power engine like
BERET [14] or CCores [35]). An explicit-dataflow engine
could also fill this role.

There are two remaining regions where explicit-dataflow
has advantages over OOO. First, when the OOO processor’s



issue width and instruction window size limits the achiev-
able ILP (see 3 ), explicit-dataflow processors can exploit
this through more efficient hardware mechanisms, achieving
higher performance and energy efficiency. Second, when con-
trol is not predictable, which would serialize the execution of
the OOO core (see 4 ), explicit-dataflow can execute the same
code with higher energy efficiency.

Overall, this suggests that a heterogeneous Von
Neumann/explicit-dataflow architecture with fine-granularity
switching can provide significant performance improvements
along with power reduction, and thus lower energy.

This Paper’s Aims In this work, we explore the idea of
extending the micro-architecture and integrating a new ISA
for a simple dataflow-engine, where switching between the
conventional and explicit-dataflow architecture can take ad-
vantage of changing program behavior. With such a hardware
organization, many open questions arise – Are the benefits
of fine-grained interleaving of execution models significant
enough? How might one build a practical and small foot-
print dataflow engine capable of serving as an offload engine?
Which types of GPP cores can get substantial benefits? Why
are certain program region-types suitable for explicit-dataflow
execution? We attempt to answer these questions through the
following contributions:
• Fine-grain dataflow opportunity – Recognizing and quan-

tifying the potential benefits from switching between OOO
and explicit-dataflow at a fine grain.

• Design of the Specialization Engine for Explicit-
Dataflow (SEED) – A design which exploits nested loops
for simplicity, and yet is still widely applicable, and com-
bines known dataflow-architecture techniques for high en-
ergy efficiency and performance. We also propose and
evaluate essential compiler mechanisms.

• Design-space exploration across GPP cores – Exploring
the benefits of dataflow heterogeneity by integrating SEED
into little (Inorder), medium (OOO2) and big (OOO4) cores.
We show all design points achieve > 1.5× energy benefit
by power-gating the OOO core when SEED is active. For
speedup, little, medium and big cores achieve 1.67×, 1.33×
and 1.14× over the non-specialized design.

• Connecting workload properties to dataflow profitabil-
ity – Showing that code with high memory parallelism, in-
struction parallelism, and branch unpredictability is highly
profitable for dataflow execution.

Paper Organization We first develop the primitives re-
quired for fine-grain explicit-dataflow specialization (§2), then
describe SEED’s micro-architecture (§3) and compiler mecha-
nisms (§4). We then discuss related work (§5). To understand
the potential benefits, we present methodology (§6) and per-
form detailed evaluation and design space exploration (§7).
We conclude by quantitatively discussing the implications of
dataflow heterogeneity on future designs(§8).
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2. SEED: An Architecture for Fine-Grain
Dataflow Specialization

Our primary observation is the potential for exploiting the
heterogeneity of execution models between Von Neumann and
Dataflow at a fine grain. Attempting to exploit this raises this
paper’s main concern: how can we exploit dataflow special-
ization with simple, efficient hardware? We argue that any
solution requires three properties: 1 Has low-area and low-
power, so that integration with the GPP is feasible. 2 Is gen-
eral enough to target a wide variety of workloads. 3 Achieves
the benefits of dataflow execution with few overheads. Our
codesign approach involves exploiting properties of frequently
executed program regions, a combination of power-efficient
hardware structures, and a set of compiler techniques.

First, we propose that requirement 1 , low area and power,
can be addressed by focusing on a common, yet simplify-
ing case: fully-inlined nested loops with a limited total static
instruction count. Limiting the number of per-region static
instructions limits the size of the dataflow tags, and elimi-
nates the need for an instruction cache; both of which reduce
hardware complexity. In addition, ignoring recursive regions
and only allowing in-flight instructions from a single context
eliminates the need for tag matching hardware – direct com-
munication can be used instead. Targeting nested-loops also
satisfies requirement 2 : these regions can cover a majority of
real applications’ dynamic instructions.

To achieve low-overhead dataflow execution, require-
ment 3 , the cost of communication must be lowered as much
as possible. We achieve this through a judicious set of micro-
architectural features. First, we use a distributed-issue archi-
tecture, which enables high instruction throughput with low
ported RAM structures. Second, we use a multi-bus network
for sustaining instruction communication throughput at low
latency. Third, we use compound instructions to reduce the
data communication overhead.

Using the above insights creates new compiler requirements:



Arch. Parameter TRIPS [31] Wavescalar [33] CCA [7] DySER [11] BERET [14] SEED

Execution Units Homogeneous
FUs

Heterog. FUs and
tag matching 1

Triangular mesh +
heterog. FUs 2

Grid of heteroge-
neous FUs

Serialized com-
pound FUs 3

Compound Func-
tional Units (CFUs)

Storage Structures Multiple SRAMS
per Grid 1

Banked queues Pipelined FIFOs
2

Pipelined FIFOs
2

CRAM, Internal
Reg. Files

Single ported
SRAM structures

Interconnection
Network

Large 2D mesh
network 1

Large hierarchical
interconnect 1

Multi-level bus Switches Bus-based Bus-based + Ar-
biter

Communication Dynamic routing
1

Results, tokens
across clusters 3

Configuration,
results over bus

Tightly coupled
with GPP 3

Config. messages,
results

Fixed sized packet
based

Control Flow
Strategy

Dataflow predica-
tion 3

φ and φ−1 instruc-
tions

Control flow asser-
tion

Predication-only
2

Speculates hot
traces only 2

Switch instructions

Table 1: Suitability of Related Architectures for Explicit-Dataflow Specialization
1 : Low-area & low-power; 2 : Application Generality; 3 : Low-overhead Dataflow;

1. Ability to create appropriately sized inlined nested loops
matching the hardware constraints. 2. Algorithms for cre-
ating compound instruction groupings which minimize the
communication overhead. For the first requirement, we can
use aggressive inlining and loop nest analysis, and the second
by employing integer linear programming models.

To address the architecture and compiler challenges, we
propose SEED: Specialization Engine for Explicit-Dataflow,
shown at a high level in Figure 5. Below, we overview the
execution model and integration.

2.1. Execution Model and Core Integration

Adaptive Execution The model we use for adaptively ap-
plying explicit-dataflow specialization is similar to bigLIT-
TLE, except that we restrict the entry points of acceleratable
regions to fully-inlined loops or nested loops. This allows us
to target custom hardware with a different ISA, using statically
generated instructions. Targeting longer nested-loop regions
also means a reduced overall cost of configuration and GPP
core synchronization.

GPP Integration We integrate the SEED hardware with the
same cache hierarchy as the GPP, as shown in Figure 5. This
approach facilitates fast switching (no data-copying through
memory), maintains cache coherence, and also eliminates the
area of scratchpad memories and the associated need for pro-
grammer intervention. SEED also adds architectural state,
which must be maintained at context switches. Lastly, func-
tional units (FUs) could be shared with the GPP to save area
(by adding bypass paths); this work considers standalone FUs.

Dataflow Style Similar to dataflow architectures like
WaveScalar [33], control dependencies in the original program
become data dependencies. The control flow is implemented
by forwarding values to the appropriate location depending
on the branch outcomes. Section 3 shows a more detailed
dataflow example of a SEED program.

3. SEED Architecture
We begin the description of SEED by giving insight into why
some architectural innovation is required and how our solution
borrows mechanisms from related techniques. We then give an
example SEED program which elaborates the basic mechanics

of SEED execution. Subsequently, we detail the SEED micro-
architecture from the bottom-up by describing SEED’s sub-
modules, its interconnection network and GPP integration.

We emphasize here that the organization of SEED is not
the primary contribution of this paper, rather, it is a tool for
understanding the potential of dataflow specialization.

3.1. Architectural Innovation

In exploring the opportunity of fine-grain explicit-dataflow, it
is important to consider whether existing architectures would
be sufficient. We list five related architectures in Table 1, and
describe their execution and storage units and their strategy
for value-communication and control flow. Each cell also lists
our opinion of whether the design choice would not meet the
previously discussed requirements (low-area/power, generality,
and low-overhead dataflow).

TRIPS and Wavescalar are designed for whole-program
dataflow execution, and use higher-power, higher-area struc-
tures. TRIPS uses a large dynamically routed mesh network
and Wavescalar uses complex tag-matching and a large hierar-
chical interconnect. The remaining architectures have much
lower power and area, but are not general enough. None of
them can offload entire loop regions in general – only the com-
putation in CCA and DySER or hot loop-traces in BERET.

However, aspects of these architectures can be borrowed:
the principle of offloading to a dataflow processor from
DySER, the concept of efficient compound FUs from BERET
and mechanisms for efficient and general dataflow-based con-
trol from Wavescalar. The next section describes how SEED
combines these design aspects using an example program.

3.2. Example SEED Dataflow Program

Figure 6 shows an example loop for a simple linked-list traver-
sal, where a conditional computation is performed at each
node. This figure shows the original program, control flow
graph (CFG), and the SEED program. The SEED represen-
tation strongly resembles those of previous dataflow archi-
tectures, where the primary difference is that instructions are
grouped here into subgraphs. Familiar readers may skip ahead.

Data-Dependence Similar to other dataflow representations,
SEED programs follow the dataflow firing rule: instructions
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 struct A {
   int v1,v2;
   A* next;
 };
 …

 A* a = …
 while (anext != 0) {

     a = anext;

     int n_val = av2;
    
     if (n_val < 0) {
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       av2 = n_val+1;
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 }
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Figure 6: a) Example C loop; b) Control Flow Graph (CFG); c) SEED Program Representation;

execute when their operands are ready. To initiate computa-
tion, live-in values are sent. During dataflow execution, each
instruction forwards its outputs to dependent instructions, ei-
ther in the same iteration (solid line in Figure 6(c)), or in a
subsequent iteration (dotted line). For example, the a_next
value loaded from memory is passed on to the next iteration
for address computation.

Control-Flow Strategy Control dependencies between in-
structions are converted into data dependencies. SEED uses a
switch instruction, similar to other proposals, which forwards
the control or data values to one of two possible destinations,
depending on the input control signal. In the example, depend-
ing on the n_val comparison, v2 is forwarded to either the
if or else branch. This strategy enables control-equivalent
regions to spawn simultaneously.

Enforcing Memory-Ordering SEED uses a software ap-
proach to enforce correct memory-ordering semantics. When
the compiler identifies dependent (or aliasing) instructions, the
program must serialize these memory instructions through ex-
plicit tokens. In this example, the stores of n_val can conflict
with the load from the next iteration (e.g. when the linked list
contains a loop), and therefore, memory dependence edges are
required between these instructions.

Executing Compound Instructions To mitigate communi-
cation overheads, the compiler groups primitive instructions
(e.g. adds, shifts, switches, etc.) into subgraphs and executes
them on compound functional units (CFUs). These are logi-
cally executed atomically. The example program contains four
subgraphs, mapped to two CFUs.

3.3. SEED Micro-Architecture

Our micro-architecture achieves high instruction parallelism
and simplicity by using distributed computation units. The
overall design is composed of 8 SEED units, where each SEED
unit is organized around one CFU. The SEED units communi-
cate over a network, as shown in Figure 5. We describe SEED
unit internals and interconnect below (shown in Figure 7).

Compound Functional Unit (CFU) As mentioned previ-
ously, CFUs are composed of a fixed network of primitive FUs
(adders, multipliers, logical units, switch units etc.), where
unused portions of the CFU are bypassed when not in use.
Long latency instructions (e.g. loads) can be buffered, and
passed by subsequent instructions. An example CFU is shown
in Figure 7 (c). Our design uses the CFU mix from existing
work [14], where CFUs contain 2-5 operations. Our current
design embeds integer hardware, but floating point (FP) units
can be added either by instantiating new hardware or by adding
bypass paths into the host processor’s FP SIMD units.

CFUs which have memory units will issue load and store
requests to the host’s memory management unit, which is still
active while using SEED. Load requests access a 32-entry
store buffer for store-to-load forwarding.

Instruction Management Unit (IMU) The IMU, shown in
Figure 7 (b), has three responsibilities:
1. Storing instructions, operands & destinations: The

IMU has storage locations for 32 compound instructions,
each with a maximum of four operands each, and we keep
operand storage space for four concurrent loop iterations.
This results in storage of 2600 bytes of data. All IMUs in
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Figure 7: a) SEED Unit; b) IMU Micro-Architecture; c) CFU Micro-Architecture;

eight SEED units combined has ∼20KB of storage. The
static instruction storage is roughly equivalent to a maxi-
mum of 1024 non-compound instructions.

2. Firing instructions: Ready logic monitors the operand
storage unit, and picks a ready instruction (when all
operands are available), with priority to the oldest instruc-
tion. Then the compound instruction and its operands and
destinations are sent to the CFU.

3. Directing incoming values: The input control pulls values
from the network to appropriate storage locations based on
the incoming instruction tag.
The primary unique feature of the IMU is that it allows

“unrolled” operand storage for four iterations of the loop. This
allows instructions to directly communicate to dependent in-
structions without using power hungry tag-matching CAM
structures at each execution node.

Output Distribution Unit (ODU) The ODU is responsi-
ble for distributing the output values and destination packets
(SEED unit + instruction location + iteration offset), to the bus
network, and buffer them during bus conflicts.

Bus Architecture and Arbiter SEED uses a bus intercon-
nect for forwarding the output packets from the ODU to a
data dependent compound instruction, present in either the
same or another SEED unit. Note that this means dependent
instructions communicating over the bus cannot execute in
back-to-back cycles. To handle network congestion, the bus
arbiter monitors the packet requests, and forwards up to three
values on three parallel buses.

3.4. Integration With Core

The host core communicates with SEED to initialize config-
uration, send and receive input/output live values, and also
during context switching. We discuss these next.

Interface with Host Code When inserting SEED regions
into the GPP code, it is useful to keep both versions (e.g. in
case the SEED region does not last long enough to warrant
offloading). Therefore, two instructions are inserted into the
original code. The first, SEED_CONFIG, is inserted at the ear-
liest dominating basic block in the host code, which signals
the SEED unit to begin the Configuration Stage. This instruc-
tion contains the relevant memory addresses for configuration
bits. The second added instruction, SEED_BEGIN, is a type of
conditional branch, which transfers control to SEED if it is
predicted to run for long enough to mitigate overheads. This
instruction signals the live value transfer from GPP registers.

Configuration Stage This stage populates the instruction
and destination storage units for a particular region, as well as
initialize any loop-invariant constants in the operand storage
unit. Configuration data is read through the instruction cache,
and streamed to each IMU. After configuring storage, the
“live-in” packets can be sent to initiate dataflow computation.

Context Switching To handle context switching, the current
live operands must become part of the architectural state. To
mitigate the overhead, we delay context switches until the
current inner-loop iterations quiesce. In the worst case, we
estimate needing to save 2KB of data, though typically the
amount of live data is much less.

Region-Lifetime Prediction It may be unknown how long
a region lasts at compile time, and the overheads of switching
to SEED may be too high if the duration is too short. Also, if
the region lasts long enough, it will be worthwhile to power-
down the non-stateful parts of the OOO core. To enable these
decisions, we keep a simple direct-mapped table of the running
average times of different SEED regions. If it is predicted to
be short, we do not enter the SEED region, and if long, the
SEED_BEGIN will initiate the power-gating on non-stateful
parts of the GPP core.



3

1

1

41

+1

Output 
Cycle: 566

3

1

1

41

+1

964

Schedule 1 Schedule 2

Figure 8: CFU Scheduling Example. Each operation is labeled
with its latency, and compound insts. are circled.

4. SEED Compiler Design
The two main responsibilities of the compiler are determining
which regions to specialize and scheduling instructions into
CFUs inside SEED regions, which we describe in this section.

4.1. Region Selection

Finding Suitable Regions As SEED may only execute
fully-inlined nested-loops, the compiler must find or create
such regions. There are two main goals: 1. Finding small
enough regions to fit the hardware, and 2. Not hurting perfor-
mance by aggressively applying SEED, when either the OOO
core (through control speculation) or the SIMD units would
have performed better.

For the first goal, a bottom up traversal of the loop-nest tree
can be used to find appropriately sized regions. Enough space
can be left for unrolling inner loops.

For the second goal, either static or dynamic options are
possible. For the static approach, simple heuristics will likely
suffice – i.e. do not perform explicit-dataflow when control is
likely to be on the critical path. A dynamic approach can be
more flexible; for example, training on-line predictors to give
a runtime performance estimate based on per-region statistics.
Other works have shown such mechanisms to be highly effec-
tive [23, 28], and we therefore do not evaluate or implement
this aspect of the compiler/runtime. Instead, we use an oracle
scheduler, as described in the evaluation.

4.2. Instruction Scheduling

The goal of the instruction scheduler is to form compound
instructions such that expected execution time and energy
cost is minimized. The scheduler can affect performance in
two ways, either by minimizing communication cost or by
minimizing the expected critical path latency.

Figure 8 shows the importance of an effective scheduler
with two example schedules of the same region. Note here
that compound instructions can only begin execution once all
inputs arrive, and that each inter-CFU communication costs an
additional cycle. This example shows that small differences in
the schedule can effect the critical path by many cycles.

To solve this problem, we use a declarative approach by uti-
lizing an integer linear programming formulation. We specif-
ically extend a general scheduling framework for spatial ar-
chitectures [27] with the ability to model instruction bundling.
We formally describe this next and present brief results.
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Figure 9: Compound Instruction Size Histogram

Formulation of Integer Linear Program Consider a com-
putational graph made of vertices v ∈ V , where Gv1v2 repre-
sents data dependencies between vertices v1 and v2. Similarly,
consider a hardware graph of computational resources n ∈ N,
where Hn1n2 represents the connections of the hardware sub-
strate between n1 and n2. The compatibility between hardware
resources and computation vertices is given by the set Cvn.
The goal is to attain a mapping Mvn from computation ver-
tices to hardware resources, such that the expected latency is
minimized. The formulation3 is in Table 2, and variables and
parameters are summarized in Table 3.

Evaluation of CFU Scheduler Figure 9 is a histogram of
per-benchmark compound instruction sizes, showing on aver-
age 2-3 instructions. This is relatively high considering that
compound instructions cannot cross control regions. Some sin-
gletons are necessary, however, either because control regions
lack dependent computation, or because combining certain in-
structions would create additional critical-path dependencies.

5. Related Work

Dataflow Architectures The notion of merging the benefits
of Von Neumann with dataflow machines is far from new. A
large body of work in the dataflow paradigm is in executing
explicitly parallel programs, like TTDA does with the Id pro-
gramming language [1]. In that context, Iannucci proposes a
hybrid architecture which adds a program counter to the TTDA
to execute explicitly parallel programs more efficiently [18].
Along opposite lines, Buehrer and Ekanadham introduce an-
other hybrid architecture which introduces mechanisms to
support both sequential and explicitly parallel programming
languages [4] for ease of transitioning. These works are or-
thogonal to ours, as they are attempting to target different
programming models.

That said, SEED derives significant inspiration from the
previous decades of dataflow research. One example is the
Monsoon architecture [29], which improves the efficiency of
matching operands by using an Explicit Token Store. This es-
sentially eliminates complex matching hardware by allocating
memory frames for instruction tokens and using offsets into

3The formulation here omits some details from our implementation for
jointly optimizing communication and load balancing.



Integer-Linear Equation Explanation
∀v∈V ∑n∈Cvn

Mvn = 1
∀v∈V ∑n/∈Cvn

Mvn = 0
These equations enforce that all computational vertices are mapped to exactly one
compatible node.

∀
v1v2∈G

n∈N

Bv1v2 ≥Mv2n2 − ∑
n1∈Cv1n1
n1n2∈H

Mv1n1
This constraint enforces that either a vertex’s inputs are either directly routed through
a hardware input, or they are executed on separate instances of a CFU (indicated by
Bv1v2 = 1).

∀
v1,v2,v3∈P

(1−Bv1v2)+(1−Bv2v3)−1≤ (1−Bv1v3)

∀v1,v2∈G Bv1v2 = Bv2v1

This enforces boundary transitivity: if there is no boundaries between v1 and v2, and
v2 and v3, then there can not be a boundary between v1 and v3. This is only enforced
if all nodes can possibly map together, indicated by P.

∀
v1,v2,n∈Cv1n∩Cv2n∩Pv1v2

Mv1n +Mv2n ≤ Bv1v2 +1 This constraint makes sure that two nodes that could possibly map to each other are
only allowed to map to the same hardware node if they are on the same CFU instance.

∀v1,v2∈G Tv2 ≥ Bv1v2 +Lv1 +Tv2

∀
v1,v2∈P∩vi,v1∈G

Tv2 ≥ (Bviv1 −Bv1v2 −1)∗M+Lvi +Tvi

∀v LAT ≥ Tv

These equations model timing. The first enforces simple timing, with an extra cycle if
a boundary exists between CFUs. The second uses a Big-M formulation to enforce
that the CFU instance cannot start until all inputs arrive. The third computes the final
latency, which is the objective for minimization.

Table 2: Integer linear programming model for SEED Scheduling

Var/Param Explanation
Gv1v2 Graph of data dependencies.

Lv Latency of operation v.

Pv1v2

Describes whether v1 could possibly be grouped with
v2 (computed off-line).

Hn1n2 Connections between all hardware compound FUs.

Cvn Compatibility between operation v and FU n.

Bv1v2

Binary var. representing if v1 and v2 are mapped to dif-
ferent CFU instances (i.e. a boundary between them).

Tv Variable for execution time of each operation.

Mvn Binary var. representing operation to FU mapping.

Table 3: Scheduling Notation Summary

the frame for token locations. Our strategy of using explicit
offsets into the operand buffers provides similar benefits.

Core Enhancements Revolver’s [15] in-place loop execu-
tion somewhat resembles the in-place nested-loop accelera-
tion of SEED, but uses higher-power structures. Another re-
lated OOO-enhancement is the ForwardFlow [10] architecture,
which is also a CAM-free execution substrate using explicit
pointer-based communication of values. Though it is more
energy-efficient than a typical OOO design, it still suffers over-
heads of fetch and decode, centralized register-file access, and
still must dynamically build the dependence graph.

Heterogeneity and Specialization Venkat et al. demon-
strated that due to the characteristics of existing ISAs, there
is potential efficiency gain through adaptive execution [34].
Our work exploits the same insight, but departs more radically
from traditional Von Neumann ISAs.

Besides the accelerators described in the introduction, the
most relevant architecture is XLOOPs [32], which is a recent
design targeting inner loops with specific loop-dependence pat-
terns. Though its high-level adaptive specialization paradigm
is similar, along with some targeted code properties, the mi-

Suite Benchmarks

Mediabench cjpeg, djpeg, gsmdecode, gsmencode cjpeg2, djpeg2, h263enc,
h264dec, jpg2000dec, jpg2000enc, mpeg2dec, mpeg2enc

SPECint 164.gzip, 181.mcf, 175.vpr, 197.parser, 256.bzip2 429.mcf,
403.gcc, 458.sjeng, 473.astar, 456.hmmer

Table 4: Benchmarks

croarchitecture is vastly different, and will favor different
codes. One benefit of SEED is its ability to target coarser
grain regions, enabling more effective power-gating of the
OOO core.

Another type of hybrid model is DySER [11], which accel-
erates the computation in an access-execute paradigm with
an explicit-dataflow substrate. A full system FPGA-based
evaluation shows that DySER is best suited to data-parallel
workloads, where the cost of communication can be amortized
with vectorization [16].

Finally, a concurrent work is the Memory Access Dataflow
(MAD) architecture [17], which augments the GPP with
a dataflow substrate for targeting memory access program
phases. These phases occur either because the code is natu-
rally memory intensive, or because an attached in-core accel-
erator offloads most of the computation. Conceptually, our
work differs in that it explores the benefits of hybrid dataflow
execution in both memory and computation intensive regions.
In terms of the microarchitecture, they are both essentially
speculation-free dataflow execution of nested-loops, and use
queue-like structures for data storage. For computation, MAD
uses a spatial grid of statically routed FUs, while SEED uses
clustered-instruction execution.

6. Evaluation Methodology

Benchmark Selection The benchmarks we chose were
from SPECint and Mediabench [20], representing a variety
of control and memory irregularity, as well as some regular
benchmarks (see Table 4).



GPP Characteristics

Little (IO2) Dual Issue, 1 load/store port.
Medium
(OOO2)

64 entry ROB, 32 entry IW, LSQ: 16 ld/20 st, 1 load/store
ports, speculative scheduling.

Big
(OOO4)

168 entry ROB, 48 entry IW, LSQ: 64 ld/36 st, 2 load/store
ports, speculative scheduling.

Table 5: GPP Cores

GPP Characteristics All cores are x86, have 256-bit SIMD,
and have a common cache hierarchy: a 2-way 32KiB I$ and
64KiB L1D$, both with 4 cycle latencies, and an 8-way 2MB
L2$ with a 22 cycle hit latency. Also, to exclude the effects
of frequency scaling, all cores run at 2Ghz. The differences
between GPP configurations are highlighted in Table 5. The
OOO4 has 3 ALUs, 2FPs, and 1 Mul/Div unit, which are
scaled according to the GPP issue width.

Modeling Specialization Architectures For studying the
performance and energy of ideal dataflow and SEED architec-
tures, as well as other specialization techniques like BERET,
it is necessary to model the compiler. For this, we analyze a
dynamic trace of instructions using critical path analysis [8],
and augment it with a tool which reconstructs the program IR.
We use this IR to perform instruction scheduling and other
necessary compiler analysis. This tool is discussed in more
detail here [26].

Simulator Implementation Our simulator consists of the
above analysis and instruction translation tool integrated with
gem5 [2]. McPAT 1.2 [22] and CACTI [25] models are used
for power/energy of both accelerators and the GPP, and we use
the 22nm configuration setting. For simulating the workloads,
we fast-forward past the initialization regions, and use 200
million instruction traces.

7. Evaluating Dataflow-Specialization Potential

To understand the potentials and tradeoffs of dataflow special-
ization, while specifically exploiting nested-loop regions, this
section attempts to answer the following questions:
Q1. Are nested loop regions common enough to be beneficial?
Q2. Is the proposed design practical: what is the area cost?
Q3. How much performance can targeted regions provide?
Q4. What are the sources of performance differences?
Q5. Which GPP cores can we enhance with our technique?
Q6. Would it still be useful if GPPs were more efficient?
Q7. Besides performance/energy, are there other benefits?
Q8. How does SEED compare to related approaches?

Q1. Are nested loop regions prevalent enough?

Here we explore the consequences of targeting fully-inlined
nested loops, in terms of static size and region duration. For
comparison, we study three program structures which are
commonly used for specialization: loop traces (repeated basic-
block traces), inner loops, and loop nests. Note that this study
considers static binaries, and tradeoffs for dynamically-linked
binaries will differ.
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Figure 10: Cumulative % contribution for decreasing dynamic
region lengths, shown for different static region sizes.

Module Area (mm2) Module Area (mm2)

IMU 0.034 Internal Network 0.058
CFU 0.011 Total SEED Unit 0.114
ODU 0.010 Bus Arbiter 0.016

Total (8 SEED Units + Bus Arbiter) 0.926

Table 6: SEED Area Breakdown

Figure 10 shows cumulative distributions of dynamic in-
structions coverage by dynamic region granularity. For in-
stance, considering regions with a duration of 8K dynamic
instructions or longer (x-axis), nested loops can cover 70%
of total instructions, while inner loops and traces can cover
about 20% and 10% respectively. Considering any duration of
region, the total instruction coverage is 88%, 64%, and 45%
for nested loops, inner loops, and traces, respectively. Also,
nested loops greatly increase the region duration (1K to 128K
for 50% coverage).

For each region type, we also present different maximum
region sizes: 256, 1024 and 4096 instructions. Targeting 1024
instruction regions (the effective size of SEED) presents a
good tradeoff between total static instructions (more hardware
cost) and dynamic region length.

Answer: Yes, nested loops can target 24% more than inner
loops, up to 88% of all instructions, and they allow longer
duration regions.

Q2. Is the proposed design practical?

To determine the area, we have implemented the SEED archi-
tecture in Verilog and synthesized the design using a 32nm
standard cell library with the Synopsys Design Compiler.
CACTI [25] was used for estimating SRAM area. Our re-
sults show that each SEED unit occupies reasonable area and
all eight SEED units and bus arbiter together take up an area
of 0.93 mm2. Table 6 shows the area breakdown.

We also synthesized the design for 2 GHz, and the estimated
power is 90mW based on its default activity factor assumptions



Benchmark Func. for SEED Region % Exec. Vect- OOO4 SEED Ideal-DF SEED BPKI BMPKI $MPKI Explanation
Insts orized IPC IPC IPC En-Red.
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.>
O

O
O

4

jpg2000dec jas_image_encode 50% 2.5 12.8 21.8 9.1 101 0 0 High Exploitable ILP
429.mcf primal_bea_mpp 37% 0.8 2.8 8.3 4.6 152 10 96 Higher Memory Parallelism
cjpeg-1 encode_mcu_AC_refine 24% 2.5 5.9 6.2 4.2 48 0 2 Indirect Memory + High ILP
181.mcf primal_bea_mpp 31% 0.9 1.8 9.6 3.0 170 8 106 Higher Memory Parallelism
djpeg-2 ycc_rgb_convert 33% 2.7 5.4 12.0 3.5 29 0 0 Indirect Memory + High ILP
456.hmmer Viterbi* 73% 2.9 5.4 7.3 4.5 32 0 4 High Exploitable ILP
458.sjeng std_eval 5% 2.4 3.7 4.1 3.8 126 5 0 High Exploitable ILP
gsmdecode Gsm_Short_Term_Syn... 61% 2.4 3.1 3.4 4.5 92 0 0 High Exploitable ILP
cjpeg-2 compress_data 48% 3 2.2 2.7 4.9 3.5 58 8 0 High Exploitable ILP

Pe
rf

.≈
O

O
O

4 gsmencode Gsm_Long_Term_Pred... 49% 1.9 2.2 2.7 3.5 5 0 0 Modest ILP + Comm. Overheads
djpeg-1 decompress_onepass 39% 2.6 2.7 3.6 3.6 18 1 0 Indirect Memory + Moderate ILP
h263enc MotionEstimation 98% 2.0 1.9 8.7 3.2 18 0 0 Comparable Performance
164.gzip inflate 23% 1.9 1.7 2.3 2.0 81 0 10 Modest ILP + Comm. Overheads
473.astar wayobj::fill 96% 1.1 1.0 1.1 3.3 114 31 2 Avoids Branch Misses, Modest ILP
h264dec decode_one_macroblock 21% 0.4 0.4 0.4 1.9 39 0 0 Comparable, Low ILP
jpg2000enc jpc_enc_encpkt 3% 2.1 1.8 2.0 1.3 135 6 2 Comparable Performance

Pe
rf

.<
O

O
O

4

403.gcc ggc_mark_trees 4% 0.5 0.4 0.4 1.0 66 2 2 Comparable, Low ILP
464.h264ref SetupFastFullPelSearch 29% 1.5 1.3 1.7 2.7 40 0 0 Short Region ( 340 Dyn Insts)
175.vpr try_swap 49% 1.4 1.2 6.9 2.1 88 17 5 Avoids B-Misses, Comm. Overhead
mpeg2enc fullsearch.constprop.3 93% 1.9 1.5 2.9 3.9 17 0 0 Moderate ILP, Comm. Overhead
mpeg2dec conv422to444 31% 2.7 2.1 3.0 2.8 68 0 2 Moderate ILP, Comm. Overhead
197.parser restricted_expression 17% 3.3 1.6 3.7 1.4 108 0 0 Short Region ( 300 Dyn Insts)
401.bzip2 BZ2_compressBlock 31% 3 4.3 1.5 1.5 0.8 97 3 3 Region Vectorized
256.bzip2 compressStream 99% 3 13.5 2.0 2.0 0.4 83 0 0 Region Vectorized

Table 7: Region-Wise Comparison of OOO4 to SEED, Showing only top region per benchmark, Highest to Lowest Relative Perf.
(%Exec. Insts: % of original program executed by SEED; Vectorized: whether the GPP vectorized the region, SEED IPC: Effective IPC of

SEED, Ideal-DF IPC: IPC of Ideal-dataflow, En-Red: SEED’s Energy Reduction, BPKI: Branches per 1000 µops, BMPKI: Branch Mispred.
per 1000 µops, $MPKI: Cache misses per 1000 µops)
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Figure 11: Per-Region SEED Speedups

for the datapath4.
Answer: The simple design and low area/power quantita-

tive results show that the SEED unit is practical.

Q3. How much performance benefit is possible?

To understand if there are potential performance benefits, we
compare the speedups of SEED to our most aggressive design
(OOO4) on the most frequent nested-loop regions of programs
(each >1% total insts). The results, in Figure 11, show that
different regions have vastly different performance character-
istics, and some are favored heavily by one architecture.

Answer: Nearly 3-5× speedup is possible, and many re-
gions show significant speedup.

4For fairness of comparing against McPAT-based GPP models, we have
also used a McPAT-based model for SEED. For performance benefit regions
(vs OOO4) the McPAT model reports an average power of 125mW , meaning
this model should be conservative.

Q4. What are the sources of performance differences?

Table 7 presents details on the highest contributing region from
each benchmark. Note that the SEED IPC is an effective IPC
which uses the GPP’s instructions as total instructions. This
allows easier comparison, as many instructions for loading
immediates and managing register spilling are not required in
SEED. We discuss these in three categories:

Perf.&Energy Benefit Regions Compared to the OOO4-
wide core, SEED can provide high speedups for certain ap-
plications, coming from the ability to exploit higher ILP in
compute-intensive regions and from breaking the instruction
window barrier for achieving higher memory parallelism.

In the first category are jpg2000dec, cjpeg and djpeg,
which can exploit ILP past the issue width of the processor,
while simultaneously saving energy by using less complex
structures. Often, these regions have indirect memory access
which precludes SIMD vectorization. In the second category
are 181.mcf and 429.mcf, which experience very high cache
miss rates, and clog the instruction window of the OOO pro-
cessor. SEED is only limited by the store buffer size on these
benchmarks.

Energy Benefit-Only Regions These regions have similar
performance to the OOO4, but are more energy efficient by
2-3×. Overall, ILP tends to be lower, but control is mostly
off the critical path, allowing dataflow to compete. This is the
case for djpeg-1 and h264dec. Benchmarks like gsmencode
and 164.gzip actually have some potential ILP advantages,
but are burdened by communication overhead between SEED
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Figure 12: SEED Specialization for Little, Medium, and Big Cores

units. Benchmark h263enc actually has a very high potential
ILP, but requires multiple instances of the inner loop (not just
iterations) in parallel, which SEED does not support.

Contrastingly, benchmarks 473.astar and jpg2000enc

have significant control, but still perform close to the OOO
core. These benchmarks make up for the lack of speculation by
avoiding branch misses and relying on the control-equivalent
spawning that dataflow provides.

Perf. Loss Regions Several SEED regions lose performance
versus the OOO4 core, shown in the last set of rows in Ta-
ble 7. The most common reason is additional communication
latency on the critical path, affecting regions in 403.gcc,
mpeg2dec and mpeg2enc. Also, certain benchmarks have
load-dependent control, like 401.bzip2, causing a low po-
tential performance for dataflow. These are fundamental
dataflow limitations. In two cases, configuration overhead
hurt the benefit of a short-duration region(464.h264ref and
197.parser). In practice, these regions would not be exe-
cuted on SEED. Finally, some of these regions are vector-
ized on the GPP, and SEED is not optimized to exploit data-
parallelism. This affects 401.bzip2 and 256.bzip2.

Answer: Speedups come from exploiting higher memory
parallelism and instruction parallelism, and avoiding mispec-
ulation on unpredictable branches. Slowdowns come from the
extra latency cost on more serialized computations.

Q5. Which GPP cores can we enhance with SEED?

Here we consider integrating with a little, medium, and big
core, as outlined in Table 5. To eliminate compiler/runtime

heuristics on when to accelerate, we consider using an oracle
scheduler, which uses perfect information to decide when to
use the OOO core, SEED, or SIMD. We report results for
performance and energy reduction of all cores in Figure 12.
The first bar in each graph shows the relative metric to the
baseline, when always using SEED. The second bar, “adaptive,”
shows the result of the oracle scheduler, optimizing for Energy-
Delay product, and not allowing any regions which degrade
performance by more than 10%. We discuss the implications
for each GPP type below.

Little GPP (IO2) For the little core, SEED provides a geo-
metric mean performance and energy improvement of about
1.65×, and SEED runs for 71% of the execution time. For
these benchmarks, SEED mainly loses performance on vector-
ized workloads like 256.bzip2.

Medium GPP (OOO2) For the medium core, SEED is the
chosen execution substrate for 64% of the execution time, pro-
viding energy reduction of 1.7×, and performance of 1.33×.
Even if always chosen, in only four cases does it hurt perfor-
mance, and in most cases energy-efficiency gain is significant.

Big GPP (OOO4) For the big core, for reasons described
in the previous section, SEED is chosen less, around 42%
of execution time. Overall though, it still provides 1.14×
performance and 1.53× energy efficiency improvement.

Answer: All cores can achieve significant energy benefits;
little and medium cores can achieve significant speedup; and
big cores receive modest performance improvement.
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Figure 13: Sensitivity to GPP Improvements and Region
Choice Metric

Q6. Would this still be useful if GPPs were more efficient?

Figure 13(a) shows the performance, energy, and percentage
of cycles that SEED is active across all workloads, while
reducing the power of all GPP structures (not including the
SEED unit). The x-axis is the factor by which the GPP is made
more power efficient (1 means no change).

Naturally, the energy-reduction of all GPPs decrease as a
direct effect of the changing parameters. More interestingly,
the percentage of time SEED is chosen drops only by a few
percent (and only for the little and medium cores), even if the
GPP becomes 4× more energy efficient.

Answer: Even future generations of power-efficient GPPs
could take advantage of explicit-dataflow specialization.

Q7. Beside energy/speedup, are there other benefits?

Figure 13(b) shows the effects of varying the region choice
metric from energy-efficiency (E), to energy-delay (ED), and
up to performance (D). Naturally, the little and medium cores
are not particularly sensitive to the region choice metric, which
is intuitive because SEED is a faster, yet still primarily lower-
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Figure 14: Comparison With Other Specialization Techniques

power design. The big core is quite sensitive; by optimizing
for energy-efficiency (and using SEED more often) it can
trade off 20% performance for over 40% energy efficiency on
average.

Answer: Explicit-dataflow specialization provides a micro-
architectural mechanism for trading-off performance and
energy-efficiency on large cores.

Q8. How does SEED compare with other specialization
approaches?

An updated version of the first figure, Figure 14, compares
SEED to existing techniques. In non-adaptive mode, SEED
provides energy improvements for all cores, and performance
enhancements for the inorder and medium cores. For adaptive
mode, SEED improves both metrics across GPP cores types,
significantly more than existing approaches. In terms of the
overall design space, the OOO2+SEED cannot beat an OOO4
on average, but reaches within 15% performance (with much
lower power). Also, though SEED improves OOO4 perfor-
mance only modestly, the energy efficiency of OOO4+SEED
is that of a simpler OOO2 GPP.

Answer: Explicit-Dataflow specialization has significant
potential beyond existing techniques across core types.

8. Discussion and Conclusions
We conclude the paper by discussing how the potential of
dataflow-specialization affects future core-design decisions.

Generalizing SEED’s results to apply for the paradigm of
fine-grain dataflow/Von Neumann execution, this paper’s find-
ings suggest two positions for what this means for future
designs: A pessimistic view is that if very-high performance
on irregular code is necessary, dataflow is not an alternative
to building big OOOs. Even mobile devices are using “big”
cores, and if we move to even larger cores, opportunities for
improving performance with dataflow specialization become
even less. A more optimistic view is that fine-grain dataflow
presents a compelling opportunity for retaining the high per-



formance of medium to big cores, and lowers their energy by
30% to 40% across difficult-to-improve irregular applications.

Also, we have not yet achieved the benefits of ideal spe-
cialization, either in terms of application coverage or total
speedup and energy gains. An open question is whether an-
other roughly 30% of instructions in irregular workloads can
be specialized if more flexible, yet still efficient, hardware
mechanisms for explicit-dataflow specialization can be de-
veloped. Or alternatively, can a different set of data-parallel
mechanisms be used to augment SEED to target more regu-
lar workloads, completely obviating the need for short-vector
SIMD extensions.

While this paper’s analysis and claims hinge upon the ability
to add significant hardware and a new ISA and associated
compiler, an interesting opportunity along another dimension
is whether the same benefits can be achieved without (or with
minimal) ISA modifications. The idea would be to apply
modifications to a traditional OOO GPP, either at the micro-
architecture level or through dynamic translation, to enable
efficient execution of nested-loop regions through selectively
eschewing instruction-precise recoverability and providing
explicit-dataflow execution.

Overall, in the context of dataflow research, our work
has shown how traditional Von Neumann OOO and explicit-
dataflow architectures favor different workload properties, and
that fine-grain interleaving can provide significant and achiev-
able benefits over either execution model alone.
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