
CS736 Project (Spring 99): Jackson, Kathuria 1

Design and Implementation of WFS - A Web File System For
Linux 2.2.1

Vishal Kathuria, Bruce Jackson
{brucej, vishal}@cs.wisc,edu

Abstract: WFSis a new Linux filesystemwhich providesa filesystemlike interfacefor theWorld Wide Web. It
wasdevelopedasa kernelmodulefor theLinuxKernel2.2.1,andutilizesa userlevelprocess(webdaemon)to
serviceHTTP documentfetch requests.The filesystemprovidesfor caching of remotedocumentsand can
processmultiple outstandingrequestsconcurrently. As remotedocumentsare fetched,contentcontainedin
hyperlinkswithin thosedocumentsis extractedand mappedinto the local filesystem. This remotedirectory
contentinformationis maintainedfor each directorymanagedbyWFSin a specialfile ‘...’. Theutility lsw is
usedto list andmanage theremotedirectorycontent. Thepartition managedby WFSis a read-onlypartition
for WFSclients. However, clientsare ableto flushentriesfromtheWFSpartition usinga specialutility rwm.
Our performancestudyshowsthat WFSis about30% slower than AFSfor file accesstracescomposedof
100%cachemisses.Thelower WFSperformanceis probablyduein part to the larger amountof processing
pushed to the user level process in WFS, and the use of a general HTTP library for document fetches.

1. Introduction

Web browsersprovide an interfaceto public portionsof remotefile systems. In this paperwe

describetheimplementationof a new Linux filesystemthatprovidesa filesystemlike interfaceto theweb.

This new filesystem,WFS,allows usersto ‘browse’ theweb in a mannersimilar to browsinga directory

structure. WFS is mountedasa disk partition thatactsasa cachefor portionsof theweb thathave been

recentlyvisited. Throughoutthispaperwereferto thispartitionas/wfs/. Theremainderof thispaperis

organizedasfollows. In Section2 we describetheoverall architectureof WFSanddiscussfactorswhich

influencedour designdecisions. Section3 describesin detail our implementationof WFS. The imple-

mentationof the userlevel processusedby the kernel to serviceweb lookupsis describedin Section4.

Somesmall additionaltools (suchaslsw, a commandto list web content)areusedin conjunctionwith

WFS. Theimplementationandfunctionof thesetools is describedin Section5. We comparetheperfor-

mance of WFS to AFS in Section6. Finally, we discuss our conclusions in Section7.

2. Design

2.1 Semantics

Thereare semanticdifferencesbetweena web file systemand a traditional filesystem. These

semanticdistinctionsinfluencedour designdecisions. For instance,in a normalfilesystemwhena user

issuesthecommand‘cd foo’ andthedirectoryfoo doesnotexist, thecommandterminatesandanerror

is returned.However, in WFS,thesamecommandmayresultin thecreationof a new directoryfoo. In

general,the/wfs/ partitionrepresentstheroot of theentireinternet,with eachsubdirectoryrepresenting

ahostthathasbeendiscoveredandvisited. Thedirectorystructurebelow thesehostdirectoriesrepresents

theportionof thedirectorystructureat thathostthathasbeenvisitedor is known to bepublicly accessible

(e.g./wfs/www.cnn.com/markets/). This structureis dynamicallycreatedduring normaluseof

CS736 Project (Spring 99): Jackson, Kathuria 2

the filesystem. For example,whena userfirst encountersa directory(say /wfs/) andissuesthe com-

mandls , thereis no listing (astaticlisting of all known websitesthatexist ontheinternetcannotbekept).

If that user attempts the command ‘cd www.cs.wisc.edu’ , the directory

/wfs/www.cs.wisc.edu/ will beautomaticallycreatedby thefilesystemif (1) it doesnot exist, and

(2) www.cs.wisc.edu is a reachable site on the internet.

Anothersemanticdifferencefor webfilesystemsis that the /wfs/ partition is a read-onlypublic

cache. Usersarenot allowed to directly createor modify files anddirectorieswithin this partition. File

creationis transparentto theuserasremotefiles areaccessed.Theregular ‘ ls ’ commandshows thefiles

anddirectoriesthatarecurrentlyin theWFScache. TheWFStool command‘ lsw ’ will show thedirec-

tory entriesthat are known to exist on the remotesitesbut have not yet beenbrought into the cache.

Althoughusersdo not have write permissionin /wfs/ , they areallowedto remove files from the /wfs/

partition. A utility rmw is provided for this purpose.

2.2 Design decisions

2.2.1 Architecture

Figure1 shows the high level architectureof WFS. The shadedboxes are componentsimple-

mentedaspartof WFS,andthenonshadedcomponentsshow how theWFSfits in andinteractswith the

Linux kernel. TheLinux kernelprovidesa Virtual File System(VFS) which is anabstractinterfaceto all

filesystems.Eachfilesystemprovidesits own implementationof thestandardUNIX filesystemandinode

operations(create(), open(), lookup() , etc..)andregistersthesewith theVFS [3]. TheLinux

kernelresolveswhichfunctionto call for agivensystemcall basedonwhichfilesystemis beingaccessed.

The fundamentalideabehindour designis to attempta web lookup whena normal lookup()

fails. This web lookup is handledby thewebdaemon(a userlevel process)on behalfof thekernel. We

decidedto pushthe web requestsandsubsequentresponseprocessingto a userlevel processin orderto

minimizetheamountof codeintroducedinto thekernel. Usingauserlevel processto providefile system

servicesis alsodonein othersystemssuchasAFS [2]. Usingthis approachwe wereableto developWFS

asa modifiedversionof the standardLinux filesystemEXT2 with relatively small changesto the kernel

andEXT2. We implementedWFSasa kernelmodule. Therequiredkernel,VFS, andEXT2 filesystem

modifications are discussed in Section3. The user level web daemon process is discussed in Section4.

2.2.2 Cache Management

Therearetwo issuesinvolvedin cachemanagement:validationandreplacement.Thethreepopu-

lar validationpoliciesare:(1) validateon every access(i.e. whenever a URL is accessed,senda requestto

remoteserver askingwhetherthe remotecopy is newer thanthe cachedcopy. If yes,fetch the new copy

otherwiseusethecachedcopy), (2) validateif thecachedcopy is olderthana certaintime period,and(3)

validateon userrequest,similar to "reload"requestin browsers. We choseto use(3) in WFSfor two rea-

sons: (1) performance,and(2) wedecidedto leavethepolicy decisionregardingwhento validateacached

copy to theuser/applicationthat is usingWFS. A singlecachevalidationpolicy appliedglobally is a bad

idea.For instance,URLs of news sitesmight bevalidatedat muchshorterintervalsthanURLs suchasthe

CS736 Project (Spring 99): Jackson, Kathuria 3

Linux Kernel Hackers Guide tutorials, or novels which need not be validated for months or longer.

Anothercachemanagementdecisioninvolvesdecidingwhat to do whenthe /wfs/ partition is

full. Oneoptionis to have thekernelperiodicallyscan/wfs/ anddelete all files thathave residedin the

cachelongerthana fixedtime. However, this policy will produceanunpredictablefilesysteminterfaceto

theuser. For instance,a usermayseea file using‘ ls’ oneday, only to have it mysteriouslydisappearby

the time they next attemptto accessit. Therefore,we decidedto pushthe responsibilityof cachespace

managementto theuser. Whenthe /wfs/ partitionis full theusermustmake spacejust ashe/shewould

if their AFS partitionwerefull. Theutility rmw is usedto deletecontentfrom /wfs/ . Thesemanticsof

‘ rm /wfs/www.foo.edu ’ will be to remove the directorywww.foo.edu from the cache/wfs/ .

This designdecisionpresentsa problemsincewe mustallow the userto deletefiles from the readonly

/wfs/ partition. To accomplish this we provide a utility, rmw to use in place ofrm (Section2.2.3)

2.2.3 Utilities

Apart from theutilities like ls , cd , cat , vi , xv , andgv for accessingthecontentsof a /wfs/

directory, our designrequiredthedevelopmentof two additionalutilities: lsw andrmw. Theutility lsw

will show thedirectoryentriesthatWFSknows to exist on theremotesites. The rmw utility allows users

to remove contentsfrom the read-only/wfs/ partition. The developmentof thesetools is discussedin

Section5.1 and Section5.2 respectively.

Figure 1. Architecture of the WFSfilesystem.Shadedboxesare componentsand
tools for WFS. WFSis a modifiedversionof theLinux filesystemEXT2. The
web daemon is a user level process with root privileges and secure
communicationchannelswith the kernel. It servicesHTTP requestsand
modifiesthepartition /wfs/ throughWFS. It is onlyactivatedwhena call to
lookup() fails, in which case a web lookup is attempted.

 VFS

WFS MINIX EXT2

Buffer
Cache

Disk
Drivers

/wfs/ /minix/ /ext2/

web
daemon

HTTP

file/dir create
requests

requests

WWW

lsw, rmw
tools:

vi, xfig, gv
apps:

CS736 Project (Spring 99): Jackson, Kathuria 4

3. WFS Module

The WFS moduleis the sameas the EXT2 moduleexcept for modificationsto thelookup()

function. Whenlookup() is calledit doesanEXT2 style lookupon disk. If it fails to find theinode

for the requested path, it sends a message to webd requesting it to fetch that file from the web.

3.1 How lookup() Services a Request

Themethodlookup() is givenaninode of thedirectoryin whichafile is to belookedupand

thedentry of thefile (SeeAppendixA for a descriptionof structdentry). For example,the function

call fopen("abc/def","r") will lead to first calling of lookup(inode_wd,dentry_abc).

Thisdentry of abc containsall theinformationaboutabc excepttheinode(which is why thelookupis

called).

After lookup() suppliestheinode of abc, it is calledagain to find theinode of the next

pieceof the path,lookup(inode_abc, dentry_def). Thus even if a long path is suppliedto

fopen(), lookup() resolvesit onepieceof thepathata time. Thereforewewill concentrateonhow a

single invocation oflookup() works.

Consideracasewhenauserentersacommandcat/wfs/www.cs.wisc.edu/csl/faq/unix/index.html.

Assumethatthedirectory/wfs/www.cs.wisc.edu/csl is alreadycachedin /wfs/ solookup()

will proceednormallyuntil faq is encountered.In thatcaselookup(inode_csl, dentry_faq) is

called. Sincethereis no entryfaq on disk, a web fetch requestis initiated. Thelookup() function

must generate a URL to supply to the web daemon.

3.1.1 Construction of the URL from a dentry

For constructingthe URL for faq, lookup() usesthedentry for faq provided to it. The

structdentry has the following fields of interest to us.

struct dentry {

 struct dentry * d_parent; /* parent directory */

 struct qstr d_name; /* name of the entity to which this

 dentry belongs */

 .

}

lookup() continuesfollowing theparentpointersto walk throughthedentriesof all thecompo-

nentsof thepathleadingto faq. It readseachcomponentnameandprependsit to theURL string. When

the root is reached,the string "http://" is prependedto the URL string andthe URL string is sentto

webd.

TheVFS cachemaintainschainsof dentriessuchthat if thereis a dentryfor file f.x in thecache

thenthedentriesof all thecomponentsof thepathstartingfrom theroot of thefilesystemto thefile f.x

will alsobefoundin cache.This ensuresthatlookup() will never encountera null d_parent andthe

above scheme will always work.

CS736 Project (Spring 99): Jackson, Kathuria 5

3.2 WFS Module Implementation Details

3.2.1 Secure Message Passing Channels

Our designrequiresa meansfor communicationbetweenthe kernel and the userlevel process

webd. This channelmustbe a securechannelwhich only the kernelandwebdareable to access.We

implementedthis bi-directionalchannelusing2 messagequeues.Messagequeuesarecreatedby theker-

nel usingthe systemcall msgget(). Thesechannelscanbe assignedpermissionsin a similar way to

assigningreadandwrite permissionsto files. In thiswaywewereableto restrictaccessto thesequeuesto

only the kernel and webd. Communication is accomplishedthrough the calls msgsnd() and

msgrcv(). Messagequeuesaredestroyedusingthecall msgctl(). Eachof thesecallshasaninternal

systemcall of the form sys_msgget(), etc.. We modifiedthekernelto provide thesefunctionsto the

WFSmodulein thefollowing two ways. First,weexportedthesesymbolsfrom thekernelsothatmodules

couldaccessthem(by modifying ksyms.c). Second,we modifiedthe functionssys_msgsnd() and

sys_msgrcv() sothatthekernelcouldcall themto passmessagesto webd. By default in Linux 2.2.1,

thesefunctionsassumea userlevel processis calling themandthey try to copy parametersfrom theuser

spaceto kernelspace.Whenthekernelmakesthesecalls,it doesnotneedto do thiscopying becausethese

parameters are already in kernel space.

3.2.2 VFS Modifications

We mademinor modificationsto VFS to keeptheVFS directorycache(which containsdentries)

consistent.All the HTTP relatedwork of WFS is doneinsidethewfs_lookup() procedurewhich is

called by real_lookup() of VFS. real_lookup() createsa new dentry and links it into the

directorycache. This dentry is thenpassedto wfs_lookup() which is expectedto set theinode

field of thestructdentry to theinode of the requestedfile or to null (in caseswherethefile doesnot

exist). If wfs_lookup() cannotlocatethefile on disk, it sendsa messageto webdandblocks,waiting

for a responsefrom webd. Thewebdfetchesthefile from theinternetandcreatesthecorrespondingfile in

the/wfs/ partition. During theprocessof creatingthis file, adentry for this file is createdin theVFS

cache. There is anotherdentry for this file that was createdby real_lookup() and given to

wfs_lookup() (asdescribedearlier). In orderto maintainconsistency of thecache,only oneof these

entriesshould be kept so we decidedthat the entry createdby real_lookup() would be purged.

wfs_lookup() cannotdo the purging becausereal_lookup() still hasa pointer to this entry. So

wfs_lookup() returnsanerrorcode,informing real_lookup() that it shouldget rid of theden-

try it has a pointer to. real_lookup() (which is part of VFS) was modified so that when

wfs_lookup() returnserrorcode44,real_lookup() callsthedput() methodto purgetheden-

try it createdandcallscached_lookup() to look for theentrycreatedby webd. real_lookup()

returns thatdentry.

4. The Web Daemon

The web daemon(webd)is responsiblefor processingweb lookupson behalfof the kernel. On

receiving a requestfrom theWFSmoduledoesanHTTP requestto fetchthefile from theinternet. If the

CS736 Project (Spring 99): Jackson, Kathuria 6

file is successfullyfetched,it is storedin thecache(the/wfs/ partition)andsuccessis reportedto WFS.

Otherwise a failure is reported.

4.1 Action Inside Web Daemon

Continuingtheexamplefrom theprevioussection,webdreceivesa messagefrom lookup() to

attempt a web lookup for "http://www.cs.wisc.edu/csl/faq". The webd does not know

whether "faq" is a file or a directory on the remote site. It sends out HTTP request for

"http://www.cs.wisc.edu/csl/faq" to theremotehttpd. If "faq" is adirectory, httpdsendsthe

following message back in response to the HTTP request.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>301 Moved Permanently</TITLE>

</HEAD><BODY>

<H1>Moved Permanently</H1>

The document has moved here.<P>

</BODY></HTML>

This messageinformswebdthatfaq is a directoryandwebdcreatesa directorycorrespondingto

faq in csl directory. It also sends another request for the URL

"http://www.cs.wisc.edu/csl/faq/" (noticethe/ at theendof "faq"). This requestwill result

in a HTTP response that contains anindex.html file as the response body.

This index.html responsemay be a real file in a remote directory or a generated

index.html file that containsthe remotedirectory contents. In either case,index.html contains

informationaboutthe remotedirectorystructure. Thewebdaemonparsesindex.html, extractslinks,

andusesthis informationto constructa remotecontentfile (...) for eachdirectory. This remotecontentfile

will be used by the directory listing utilitylsw, which is described in Section5.1.

4.2 Implementation

4.2.1 Secure Communication with the Kernel

MessagequeueswerechosenasthecommunicationchannelbetweenthewebdandtheWFSmod-

ule (henceforthreferredas‘the module’).Whenever thewebdaemonis started,it sendsa messageon the

queuereportingits PID (processID). Themodulealwayschecksthequeuefor pendingmessagesfrom the

daemonbeforesendingamessageto thewebd.If thereis amessagethenthePID is storedin avariableby

the module.The moduleusesthis PID to checkwhetherthereis a webdrunningon the system.This is

doneto reportanerrorif thewebdgoesdown webd. In thiscaseWFSshouldrevert to EXT2 functionality

instead of just hanging.

4.2.2 HTTP document fetching

For the fetchingof thedocuments,we decidedto uselibwww [6] insteadof attemptingto imple-

CS736 Project (Spring 99): Jackson, Kathuria 7

mentour own HTTP code,or modifying HTTP capableutilities like wget [5]. Using a generalpurpose

library suchas libwww usually hassomeperformanceoverheads,but also makes the implementation

cleanerandmoreextensible.For example,extendingWFSto handleftp requestswouldbestraightforward

with webd using libwww. libwww also has support for parsinghtml documentsand multithreading.

Unfortunatelythelibwww documentationwassopoorthatwe decidednot to usethelibwww html parser

to scan"index.html" documentsfor links. Insteadwe implementedour own link scanningcode,which is

probablymuchfasterthana generalpurposehtml parser. Nevertheless,the HTTP requestandresponse

facilities of libwww were very useful in the development of WFS.

4.2.3 HTTP Response Processing

An HTTPrequestissuedby webdwill resultin sometypeof anHTTPresponse.Thewebdaemon

processestheresponsebasedon theHTTP statuscode. If a statuscodeotherthan301(re-direct),or 200

(OK) is returned,webd sendsthe kernel a messagethat the web lookup failed. The original call to

lookup() will thenfail. A status301codeindicatesredirectionandresultsin webdcreatinga directory

in /wfs/ correspondingto theURL. A status200responseindicatesthattheHTTP requestwassuccess-

ful, andtheresponsebodycontainstherequestedresource.In this case,webdrespondsin 1 of 2 ways. If

theresponsedoesnot correspondto an index.html file, webdsimply createsa file in the /wfs/ parti-

tion andwritestheHTTP responsebodyto thatfile. If theresponsecorrespondsto an index.html file

(the responsereturnedafter a 301 re-directionis the one and only time that an index.html file is

returned),additionalprocessingis donebeforecreatingthe local file. In particular, the index.html is

scannedfor links usingour link scanningparser. For eachlink that is found,webddeterminesif that link

containsinformationabouttheremotesitethatshouldbemappedinto thelocal /wfs/ partition. For each

link thatcontainsusefulinformation,andentry is madeinto thespecialfile ‘...’. Thefile... existsfor each

directoryin /wfs/ . It canbe thoughof asa databaseof known remoteresourcesthat exist for a given

directory. This file is usedandmodifiedby thewfs tool lsw (Section5.1). Entriesinto this databaseare

of the following form:

 resource_type$discoverytime$resource_name

For instance,if an index.html responsecontainsa link suchas ,

the following entry would be created in ... :

 0$Apr 28 05:14 $foo.html

Theremay be many links in an HTML documentthat are irrelevant to WFS. For instance,the

links , , do not point to remote

documentsor directories. The link scannerignorestheseireelevant links, andmakesno entry in ... for

them. If anHTML documentcontainsmultiple links to thesameresource,a singleentryis madein ... for

that resource.

5. WFS tools

CS736 Project (Spring 99): Jackson, Kathuria 8

5.1 lsw

TheWFStool lsw is usedto maintainanddisplayknown remoteinformationaboutdirectoriesin

/wfs/ . This informationis storedin a specialfile ‘...’, which is createdeachtime a directoryis created

anywherein /wfs/ . Directoriesareonly createdin /wfs/ asa resultof fetchinga remotedirectory.

When an index.html file is fetchedand the resultingdirectory is created,the index.html file is

scannedto extract all links it contains. Theselinks areexamined,andany links that reveal subdirectory

informationaremappedinto ‘...’ in a fixed, simple to parseformat. The commandlsw scansthis file,

removesduplicates(andentriesthathave beenbroughtinto thecache),anddisplaystheresults. Thefol-

lowing example illustrates the use of lsw . Assume that the directory

/wfs/www.cs.wisc.edu/~brucej hasbeencreatedthroughnormaluseof WFS. Whenthedirec-

tory ~brucej/ is created,the index.html file correspondingto that remotedirectoryis scannedfor

links. Assume it contains the following links:

 headlines

useful info

advanced os

foo file

bar dir

resume

xml data files

Mt. St Helens

These links would be stored in/wfs/www.cs.wisc.edu/~brucej/... as follows:

0$Apr 28 05:14 $foo.html

1$Apr 28 05:14 $bar

0$Apr 28 05:14 $resume.ps

1$Apr 28 05:14 $xml

0$Apr 28 05:14 $mountain.gif

Thedateis the index.html fetchtime(i.e. theremoteinformationdiscovery time), thefirst col-

umnis eithera 0 for a remotefile, or a 1 for a remotedirectory, andthefinal field is theremotefile name.

Fieldsaredelimitedby dollar signs. Noticethatonly links thatpoint to files within theremotedirectory’s

sub-treearestored.Wealsoconsideredcreatingsymboliclinks for eachlink pointingoutsidethissub-tree,

but decidedagainstit becauseof the largenumberof symlinksthatwould begenerated. Whenthecom-

mandlsw is executed while in~brucej/ , the following screen output is generated:

root@crash2:/wfs/www.cs.wisc.edu/~brucej}-> lsw

[web] -r--r--r-- wedb Apr 28 05:14 foo.html

[web] dr--r--r-- wedb Apr 28 05:14 bar

[web] -r--r--r-- wedb Apr 28 05:14 resume.ps

[web] dr--r--r-- wedb Apr 28 05:14 xml

[web] -r--r--r-- wedb Apr 28 05:14 mountain.gif

CS736 Project (Spring 99): Jackson, Kathuria 9

This informationrepresentsonly theremoteuncahcedfilesanddirectoriesthatarethoughtto exist

in http://www.cs.wisc.edu/~brucej. Oncea file hasbeenfetchedfrom the remotesite (for

instancethroughthecommand‘vi foo.html’). Theremoteinformationentryis removedfrom ‘...’ and

that file will appearonly througha normal ‘ls’ command(i.e. the output from ‘lsw’ will not show

foo.html but ‘ls’ will after is has been brought into the cache).

5.2rmw

The tool rmw is a simple commandowned by the root with the setuidbit set. This command

allows usersto deleteany andall files in /wfs/ (they do not have write permissionfor thesefiles). Users

of WFSmustbeableto do thisbecauseeachusermustmanagehis/herown space(seeSection2.2.2). The

useof this tool is restrictedto the/wfs/ partition in orderto preventusersfrom deletinganything they

wish in other filesystem partitions.

6. Performance

For a studyof the performanceof WFS,AFS is a goodcomparison.AFS andWFS have many

thingsin commonsuchasaccessingremotefiles, cachingof wholefiles on access,andthe useof a user

level processfor servicingrequests(Venusor afsdfor AFS[2] andwebdfor WFS). In addition,thehome-

pagesof usersin the CS departmentareaccessiblefrom both WFS (via HTTP) andAFS. For example

vishal’shomepageis accessibleashttp://www.cs.wisc.edu/~vishal throughHTTP. Thesame

file canbeaccessedfrom AFS as~vishal/public/html/index.html. Our aim wasto measure

the CPU time taken when the same set of file accesses is performed using AFS, and then using WFS.

For this purposewe wrote a benchmark(bm) which flushesthe cacheandthenaccessesa setof

files. This processis repeatedin a loop a fixednumberof timesandthetime takento executethefilesys-

tem accessstring is measured.Our first benchmarkmeasuresperformancewhennoneof the files being

accessedarein thecache.By removing thisflushingstepin thebenchmark,wecouldgetperformancesta-

tistics for thecasewhentheaccessedfiles arefound in thecache. We arecontinuingto collect this data

and the results will be reported in our final report.

Becauseof limitationsimposedon usby systemadministrators,we wereforcedto try to compare

the performanceof the two systemsusing two very different machines. We had to usetwo machines

becausecrash2(whereWFSis developedandinstalled)is on theunsupnetwork andis not allowedto run

an AFS client. Although we hadaccessto a Linux machinewith AFS access(parrolles),we werenot

allowedroot permissionson parrolles,sowe couldnot run WFSon it. Thereforewe performedAFS tests

onparrollesandWFStestsoncrash2.parrolles is a200MHzPentiumProwith 64MB RAM runningRed

Hat Linux 5.2Kernel2.0.36. crash2is a 90MHz Pentiumwith 160MB RAM runningRedHat Linux 5.2

Kernel2.2.1. Theseareclearlyvery differentmachines.We attemptedto measuretheperformanceratio

betweenthesetwo machinesby measuringexecutiontime of our benchmarkson a filesystemcommonto

both(EXT2). This ratio wasusedto estimatetheperformanceof WFSon parrollesaftercollectingactual

performance data on crash2.

CS736 Project (Spring 99): Jackson, Kathuria 10

6.1 Measuring CPU time

Most time datawascollectedusingthetime commandandthetimessystemcall. We couldnot do

this for afsdbecauseit is a processstartedby root. We usedthetop commandinsteadfor afsd. top

shows,theamountof CPUtime thathasbeenconsumedby aprocesssinceit startedrunning.Werecorded

this valuefor afsdjust beforerunningour benchmarkandjust afterwe finishedrunningit. Thedifference

was used as the CPU time spent by afsd in serving the requests generated by the benchmark.

6.2 Speed Comparison of Parrolles and Crash2

As discussedabove, to beableto compareAFS andWFSperformance,theratio of thespeedsof

parrollesandcrash2wasneeded. We accomplishedthis by runningthe sameprogramon parrollesand

crash2 and taking the ratio of CPU time taken.

Theproblemis thatthis ratio is not independentof theprogramwhich is beingrun. Wedecidedto

modify thebenchmarkwewereusingfor AFSandWFSto measureEXT2 performanceonbothmachines.

For this, the files accessedby the bm were copied to /tmp and EXT2 was usedto accessthosefiles.

Figure2 shows thetime takenby bmext2 (benchmarkmodifiedfor EXT2) on parrollesandcrash2. Each

datapoint is theaveragetotal timetakenfor 5 runsof thesamebenchmarkfor agivenvalueof n wheren is

thenumberof loop iterationsdonein thebenchmark.Theslopeof this line givesusanestimateof theratio

of speedsof thetwo computers(henceforthcalledRs = Speedof parrolles/speedof crash2).Thevalueof

Rs yieldedby this figureis 4.04. Theappendixcontains theentiredatasetusedto constructFigure2. In

orderto seehow Rs mightdiffer for differentapplications,we alsocollecteddatarunning theprogramtop

on bothmachines.The resultsof thatexperimentaresummarizedin Figure3. In this case,thevalueof

Rs=3.15. This is smallerbut in thesamerangeof thevalueobtainedfor runningthebenchmarksonEXT2.

Figure 2. Relative speedof parrolles and crash2 for a file systemintensive
application

CS736 Project (Spring 99): Jackson, Kathuria 11

We believe thattheEXT2 obtainedvalueis moreaccuratefor comparingWFSto AFS becauseit is based

on filesystem intensive application, whereas top makes very few file system accesses.

6.3 Performance Data for AFS and WFS

The performancemetric we useis CPU time. The purposeof the benchmarkis to continuously

attemptto accessfiles thatarenot in thecacheto measuretheamountof time takenby eachfilesystemto

servicethe fetch. We have concentratedon this areafor performancesincethis is likely to be the most

costly operation for these two filesystems. The pseudo-code for the benchmark is as follows.

 repeat n times {

 1. flush cache

 2. for each file in a collection of files: {

 Open the file

 Read first byte of the file

 Close the file

 }

 }

We ensuredthatthecollectionof files hada reasonablemix of documenttypes(suchaslike html,

ppt,ps,gif, jpg, directoriesetc). Thetime measurementswe recordedastheCPUtime is measuredasfol-

lows.

Total CPU time = CPU time for benchmark + CPU time for the daemon

Our initial datademonstratedWFSto be far slower thanAFS. We usedthe timessystemcall to

Figure 3. Relativespeedof parrollesandcrash2for an applicationthat is not file
system intensive (top)

CS736 Project (Spring 99): Jackson, Kathuria 12

find out theportionsof WFSwhichweretakingmostof thetime. This led usto make someoptimizations

in WFS, including moving somelibrary initialization and cleanupcodeout of the main loop in webd.

After makingthesechanges,we again collecteddata.This time WFSappearedto be50%fasterthanAFS

(whenthespeedratiowasfactoredin). Wewereveryhappy, but skepticalof our results.Theelationsoon

turnedinto suspicionand we turnedour attentionto discovering why AFS appearedto be slower than

WFS. We discoveredthata considerableamountof CPUtime wasbeingspentin flushingtheAFS cache.

Sinceflushing the AFS cacheis functionally a much more complex operationthan flushing the WFS

cache,we decidedthat it wasunfair to includecacheflushingtime in our dataanddecidedto recordonly

thefile accesstimes. Theraw datawecollectedusingthisschemeis presentedin Table1. Figure4 shows

the result graphically. The different data points were obtained by changing the value of the loop counter.

Using thespeedratio obtainedfrom theEXT2 bm studyon parrollesandcrash2,we normalized

the total time valuesfor the benchmarkdataobtainedrunningWFS on crash2to what we estimatethey

would be if we were able to run WFS on parrolles. The result is shown in Table2.

6.4 Results

Onanaverage,thetime takenby WFSwasabout30%morethanAFS. Wealsomadea few other

observations

Table 1. Raw performance data for AFS (measured on parrolles) and WFS (measured on crash2)

Number of
iterations
per
benchmark
run

AFS
average afsd
time

AFS
average
benchmark
time

AFS
average total
time

WFS
average
webd time

WFS
average
benchmark
time

WFS
average total
time

100 1.2 3.934 5.134 23.316 2.298 25.614

200 2.2 7.516 9.719 43.664 4.454 51.118

400 4.4 15.102 19.502 94.632 8.884 103.516

Table 2. AFS benchmark times compared to WFS benchmark times with WFS data normalized using the relative speed ratio of
parrolles to crash2

Number of iterations
per benchmark run

AFS
average total time

WFS
total time normalized
using EXT2 data

WFS
performance
penalty

100 5.134 6.331 23.3%

200 9.719 12.635 30.05%

400 19.502 25.587 31.20%

CS736 Project (Spring 99): Jackson, Kathuria 13

• On an AFS access that missed the cache, most of the time is spent inside the AFS module and only a frac-
tion of that time is spent in afsd. This means that AFS designers decided to build most of the functionality of
afs in afs module.

• Most of the time in a WFS cache miss is spent in webd.

Every time the daemonis invoked,WFS hasto pay a price for communicationandtaskswitch.

Sincea big part of AFS functionality is built into the kernelmoduleitself, our feeling is that AFS is not

invokingafsdveryoftenandmany of therequestsaresatisfiedby themoduleitself. Thismaybepartof the

reason why AFS performs better than WFS.

7. Conclusions (bruce)

Our implementationof WFS succeededin producinga filesysteminterfaceto the World Wide

Web. The initial performanceresultsindicatethat WFS performssignificantlyworsethanAFS (~ 30%

slower). We believe this is dueto 2 mainfactors. First,we pushedmuchof thefunctionallity out into the

userlevel process,webd. This causesa lot of overheaddue to context switching and kernel boundary

crossings.We madethis designdesisionin orderto limit theamountof codeintroducedinto thekernel,

andpayedtheperformancepenaltyfor it. Second,we useda generalpurposelibrary (libwww) for servic-

ing our remotedocumentfetches.This decisionwasagain madein orderto simplify theimplementation.

Although theperformanceis slower thanAFS, WFSperformsreasonablywell consideringthatAFS is a

Figure 4. Performance of WFS compared to AFS with WFS performance
normalized

CS736 Project (Spring 99): Jackson, Kathuria 14

very mature system.

8. References

[1] The Linux Kernel, version 0.8-3 by David A. Rusling

[2] Satyanarayanan M et al, The ITC Distributed File System: Principles and Design

[3] The Linux Kernel Hackers’ Guide, version 0.7 by Michael K. Johnson

[4] The Linux Kernel Module Programming Guide, version 1.0 by Ori Pomerantz

[5] GNU Wget Manual, http://www.gnu.org/manual/wget/index.html

[6] Libwww - The W3C Protocol Library, http://www.w3.org/Library/

Appendix A

To come in the final document...

