A Study of the Performance Tradeoffsof a Tape Archive

Jason Xie (jasonxie@cs.wisc.edu)
Naveen Prakash (naveen@cs.wisc.edu)
Vishal Kathuria (vishal @cs.wisc.edu)

Computer Sciences Department
University of Wisconsin-Madison

I ntroduction

Smulaion plays a criticd role in understanding tradeoffs in any system. In this project we study
the tradeoffs involved in a tape archive of files. The archive consgts of tape drives, disk cache with
disk drives, and a robot that mounts and dismounts the tapes. Files are stored in tapes and a user
can submit requedts to retrieve them. The archive moves the requested files from tape to disk and
notifies the user. There ae two man ways of evauating the tradeoffs and different policies
involved in a tepe drive. We can dther andyze an actud trace or generate them randomly
following some didribution. We followed the later approach in the absence of a trace and the
flexibility of generaing any kind of job mixes. In this pgper we begin with a motivetion for our
project, followed by a theoreticd anayss of the expected results. We then present the modd for
our experiment with results and concluson.

M otivation

The gods of this project are to study the time a user order spends in the system, before being
notified about the retrieva of the requested files and the system utilization given the workloads. We
measure waiting time and sarvice time of workload streams, and how different policies and the
amount of resources a hand affect them. The different policies of sdlecting an order to serve from a
list of waiting orders are studied. Firgt In First Out (FIFO), Processor Sharing (PS) and Shortest Job
Firg (SJF) ae some of the queuing discipline we intend to study. As the digtribution of szes of
files vary depending on the work environment, we will sudy the affect of different job mix and
placement on the results. In a typicd universty environment, number of smdl files are much more
than the number of large files Peformance dso depends on the amount of resources at hand.
Vaying the number of tape drives and disk cache will affect the turn around time and utilization in
different ways.

Theoretical Analysis



The job mix affects the sysem in that it may vary the co-efficiency variation of the service Let's
suppose the user requests arrive a the system in accordance with the exponential distribution. Each
request includes a number of files. Files are of different Szes and dored in the tgpe archive. Upon
receiving requests, the tepe drives would fetch the requested files from the tape archive. Thus, the
placements and the Szes of the files would affect the sysems sarvice (eg., the trandferring time
and the seeking time of files). Namdy, the system provides its service based on a certain service
distributions.

In a M/M/1 sysem, where the sysem's sarvice dso follows the exponentid distribution, Each
sarvice is independent of previous services. Another words, the system is memoryless. The user
may request files of various Szes, the requested files may located a the different places in the tape
acchive, Namey the services co-efficiency vaiaion may differs greaily from one request to
another. However, the average length in the WaitQueue would is reatively congtant because of the
memorylessness feature of the service didribution. The average length of the WaitQueue would
remain congtant as we vary the queuing disciplines.

In contragt, in a M/G/1 system, where the system's sarvice follows a generd didtribution and no
process sharing in the WaitQueue, the number of the request awaiting the system services would
fluctuate greetly as the job mixes vary. Typicdly, the expected number of requests would increase
as the services co-efficiency variation grows. In our experiments, we implemented a tgpe archive
system, whose service does not follow exponentid distribution. We expect to observe the growth in
the queue size as we vary the job mixes.

The amount of resources avalable in the sysem would affect the peformance from the user
perspective. In a M/G/K system, where the syssem has K resource (e.g., K tape drives in our
experiments) and the request dreams arive a a cetan rae and follow the exponental
digributions, The amount of resource in the system represents the ability of the sysem to serve the
requests. It eevates the level of concurrency in the system as the amount of resource increases. The
more resource the system has, the more quickly the system can serve the requests. Consequently,
the user requests have lower wait time. The average length of the wait queue decreases. However,
if the combined service rates are greater than the requests arriva rate, the system is under-utilized.

Queuing disciplines impact on the sysem performance via its choice of which request to service
the next. In our implementation, SIF edimates the time sysem takes to service each request
depending on the file sze, and then uses the arrivd time of the request to esimate the time it would
depart, assuming zero waiting time. It then chooses the earliest departing request. Thus it tries to
prioritize the requests that arrived early and have requested short files to be retrieved from the
archive. It hasalow wait time and isfair to jobs thet arrived early.

FIFO smply retrieves the request a the head of the WaitQueue based on the request's arrivd time
a the sysem. Thus it is possble for later arived smal requests to be queued in the WaitQueue
behind a cetan ealier arived large request. Consequently, the smal requests normalized wait
time with respect to their service time is smdler than that of large requests. It is not afair system.



The PS tries to be fair as it picks the user orders depending on the user id. It serves every user in
rotation. So if there are n different orders with different user id, then one order of each of these n
users will be served before any other orders. In this system, a user can consume disproportionate
amount of resources by requesting very large files But he will not be adle to hog the sysem by
requesting many filesin the single reques, as the split before being put in the waiting queue.

M odel

We ae to measure wait time, sarvice time and wait queue length of different components in the
system given a paticular job streams and the amount of available ystem resources (e.g. number of
tape drivers). By varying the queuing discipline, we receive different st of vaues with respective
to these parameters. We then study the effects of the queuing disciplines on these parameters.

With these objectives in mind, we build a discrete event driven smulator. It contains a generator,
wait queue, tgpe archive, disk cache and CountDownClock. The components interact in a wel-
defined manner to uniquely determine the values of the descriptive variables a any give modd
time. The CountDownClock provides the time services to the entire system. It manages the advance
of the modd time, and activates events at designated modd time.

Generator

The generator generates workload at exponentid arriva rate of (100-job)/(time unit). The workload
represents the service requests from a community of users. Each user has a user id ranging from 1
to 10. The generator is cgpable of producing workloads of an arbitrary large number of orders
(UserOrder). Each UserOrder has a unique order 1d. every user order contains requests for 10 to 20
different files. The file numbers represents the files the users want to retrieve from the sysem. We
generate 1000 files for archiving purpose. With every file number we have an associated tape and a
postion on it where the file is located. We dso store the length of the file with file number. These
numbers help in calculaing the time it will take to retrieve the file from the archive.

We smulae the exponentid didribution of the arivad time of jobs with a uniform pseudo random
number generator. We first project a random number, and then map it to another random number
via the inverse function of the exponentid probability digtribution function. The resulting sequence
of numbersisthe arriva time of the user requests to the system.

When a user order is generated, a corresponding arriva event is scheduled. The arrival event is
added to a lig of events, which ae sorted by the time a which they will be fired. A
CountDownClock smulates the firing of dl the events in the sysem. We could have had different
CountDownClocks for different kinds of events and the firs event to occur will happen a the
minimum of these clocks. Ingead we smulated different CountDownClocks by having a single list
of events with multiple type of events scheduled a any arbitrary modd time. In this modd, events
can happen smultaneoudy. Since we are cdculating different datistics without the condraints in a



red system in red time, we could do it a ease, without compromising our results. The arriva event
is activated a the time when the UserOrder arrives at the system.

CountDownClock

CountDownClock provides the time services to the components in the sysem. It maps the wall
clock time to the discrete event modd time, and it triggers the events thereby advancing the dtate of
the sygem with time. We can smulate concurrent events by our CountDownClock, by assgning
the same firing time for the events. There are three different types of event in our system. We have
dready discussed the arriva event. The other two are tape event and disk event. Tape event means
that a tape is done with processng a request. Smilarly disk event means that a user has read the
files from the disk. All these events are derived from a base class called event. Each one of them
has a firing time a which they are triggered and different date varidbles are updated. When an
arival event is triggered, it ether schedules a tgpe event if there is one free tape drive to service
this request, or puts this request into a list of orders waiting for a tape drive to become free. When a
tape event is triggered, it schedules a disk event for this order and a tape event for a new order if the
waiting queue for tgpe drive is non-empty. The disk event will schedule another disk event for a
new order if thereis one waiting for adisk.

The system is a non-preemptive. It does not facilitate mechaniams such as rollback. Namely, the
components in the syslem obtain al the necessary date variables before accuratdly determine the
next scheduled events (its event types and fire times). The components register the events onto the
CountDownClock. When the CountDownClock advances time, it activates the events a ther
desgnated time. The active events in turn produce one or more events & some future times. For
events scheduled at the same modd time, the CountDownClock executes them in any order without
advancing the modded time.

By executing the events, the CountDownClock advances the date of the sysem. The events adso
endble interactions among different components of the system. In essence it is the driving force of
the Smulation.

WaitQueue

Each user requests multiple files to be retrieved in a single order. When requesting the tape drive
for retrievd, the order is split into multiple requests depending on the number of files requested.
When a tape order comes, it goes to ether a free tape drive or in the absence of any free drive it is
added to the waiting queue. A smilar waiting queue is maintained for the disk orders. When a tepe
drive becomes free it will pick one of the orders depending on what queuing discipline it follows.
The queuing discipline followed by the tape drives is independent of that followed by the disk
drives. The different queuing disciplines with which we experimented include Firg In Firsg Out
(FIFO), Processor Sharing (PS) and Shortest Job First (SJF). We measure the impact of these
disciplines on the performance of the sysem and the wait time experienced by the user. There are
adways two orthogond issues involved with such performance andysis. On the one hand we try to



optimize the performance of the system, while on the other hand we try to be far to users. As a
User Order is split into multiple tape orders (and a disk order for every tape order), we need to
group them by the order id after they have been served for per-user Satistics.

The FIFO, as the name suggests, serves the jobs in the sequence they arrived. If the jobs arrive a
the same time (like multiple tape orders for the same user order), then we randomly pick any one of
them to serve next. The queue is actudly implemented as a vector in Java, and we just remove the
eement at the Oth pogtion for serving next. FIFO is unfair to short jobs, as bnger jobs at the head
of the queue will hog the sysem for a long time. Also the average turn-around-time is not optima.
Rdatively spesking, shorter jobs have to wait more than the longer ones. But this discipline is very
easy to implement in the system and does not require much CPU cycles.

The PS tries to be fair as it picks the user orders depending on the user id. It serves every user in
rotation. So if there are n different orders with different user id, then one order of each of these n
usars will be served before any other orders. In this system, a user can consume disproportionate
amount of resources by requesting very large files: But he will not be able to hog the system by
requesting many filesin the single request, as the split before being put in the waiting queue.

The SJF discipline is to retrieve the shortest request in the WaitQueue and service it. It estimates
the time it will take to service each request depending on the file sze, and then uses the arriva time
of the request to estimate the time it would depart, assuming zero waiting time. It then chooses the
ealiest departing request. Thus it tries to prioritize the requests that arived early and have
requested short files to be retrieved from the archive. It has a low turn around ime and is fair to
jobsthat arrived early.

Tape Drive

We vary the number of tape drives to measure the affect of resources on utilization and the tota
time taken by a request to be served. Number of tgpes in the system remains unchanged and is
intidized depending on the number of files and ther length. At the time of initidization we
generae n files with random length between some minimum and maximum. We aso change the
mix of these files We generate many smdl files compared to the number of large files, to amulate
univergty environment and see it affects on the performance from both the usaer's and system's
perspective. Thee files ae assgned an incrementally increesng number as a file id and ae
assumed to be laid on the disk in the same order. Since the files are requested randomly, this does
not affect the generdity of the sysem. When we are done with filling a tape, we assume a new tape
for the subsequent file numbers, until this too gets filled. We repeat this process till dl the
generated files have been consumed. We maintain the information about the file length, which tape
and a what pogtion on the tgpe this file is located, with the file number in a table. We use this
information to caculate the service time for each request.

When there is a request in the waiting queue, each of the tape drive is busy. When a tgpe drive is
done with sarvicing a request it picks next order to serve from the waiting queue depending on a
given queuing discipline. It check if the new file requested is on the tape it currently has, otherwise



it dismounts it after rewinding to the middle of the tape, and mounts the tgpe that contains this file.
The head of this tape drive is assumed to be at the middle of this newly mounted tape. Thus we add
the cost d rewinding the tape to its middle postion if a tape has to be dismounted for the new tape,
to the cost of sarvicing this new request. If the new file requested is on the tape used to serve the
old request, then we do not add any dismounting or mounting time, but only the time it takes to
position the head a the gtarting of the file from its previous pogtion. The trandfer time is added to
the servicing time of dl the requests and thisis proportiond to thefile length.

Disk Cache

The Disk Cache serves as a buffer between the tape drive and the user. There are afixed number of
disksin the system and a any point, multiple tape drives can be in the process of flushing their
buffers onto disk and there can be multiple users each reading multiple files from the disk cache.

After reading the file from the tape, the tape driver initiates afile transfer from the tepe drive buffer
to the disk. The disk driver checksif thereisadisk available that has sufficient free capacity to
accommodate the new file. If thereis one such disk then it is alocated to thisrequest and it is
marked busy. If there are no disks available then the request from the tape is enqueued into a
DiskOrderQueue. When atape drive is finished flushing its buffer onto the disk, the corresponding
user (which requested thisfile) is notified. In our modd, that user immediately starts reeding the
file. The disk is marked busy & this point. When the user isfinished reading thefile, the
DiskDriver adds that disk into the pool of free disks and deletes the file from the disk. Then it looks
up the queue for jobsthat can be satisfied by this disk. If there is one such job then this disk arts
sarvicing it, otherwise the disk remainsidleftill the disk driver recelves arequest which could be
serviced by it.

Experiments

The metrics of a sysem ae represent by the sysem utilization and the wait time of each user
request. The tapes and the disks have very different throughput. In order to baance the service rate
between the tapes and the disk, we maintain a 10:1 ratio between the number of tapes and the
numbers of disks that is, for every disk, there are 10 tgpes. The ratio is derived from the daa
transfer rates of a Seagate tape and disk product. To answer the questions we posed and to verify
the theoretical intuition we beard, we conducted the following experiments

Fird, we vary the number of tape drives and disk caches so to observe the changes in expected
waiting time and sysem utilization for different queuing disciplines. Given the generated workload,
we identify the resources necessary for the system to operate in the steedy State (around 75% of
utilization). We then increase the resources to observe which of the queuing disciplines is
successful in decreasing the waiting time the most.



Second, we introduce different mixes of requests by varying the sze of the requested files. The tape
archive contains information on the file sze for a given file The dzes of files in the cache ae
chosen in the range from 10M to 10K. As a result, coefficient of variation of service times in the
system is quite high. We study the average queue length under these conditions.

Third, the impacts of queuing disciplines are sudied. For a given workload, the WaitQueue
employs FIFO, SIF and PS respectively. We measure the differences of the wait time and service
time for the user requests.

Results

In the figurel, we increase the amount of resource in the system, and submit the same workload to
the system. We observe a decrease of wait time for dl disciplines. Also, as the wait time decrease,
the system utilization also decreases (figure 2).

Among the three queue disciplines, SIF condgtently performs better than other disciplines in terms
of waiting time for requests. This confirms our earlier conjectures about SIF. The performance of
FIFO comes close to SJF as resources are increased. This is reasonable because the system
utilization goes down as the resource increases. There are dways resource awaiting the newly
arived requests. Therefore, the earlier arrived large requests will not block the late arrived smdler
requests.

As fa as the utilization, it remans high when there is limited amount of resources in the system.
However, it decreases dragtically when more resources are added to the sysem. As showed in the
figure 2, the utilization drops sharply while adding the 12" through 15" disks and corresponding
tapes. Subsequently, the dope again flattens out as we keep adding resources.

Waiting Time in Various Queuing Disciplines{figure 1)

140
120 it

100 AN
a0
B0
40

20
a

—_
®
E
=

=
o
E

=
=
£
=
=
z

" 12 13 15
Resources (number of Disks & Tapes™0)




Utilization in Various Disciplines (figure 2)

1.2 -
1 .\‘-ﬂ:x

0.8 K\i ——FIFO
0.6 \\\ —=—PS
0.4 —4—SJF
0.2 M

9 10 11 12 13 14 15 16 17

Resource(number of Disks & Tape*10)

Utilization

Ovedl, the queuing
discipline metters less if the amount of resource is ample. This is due to the reductions in
contentions. Otherwise, SIF yields the lowest wait time for the user requests.

Conclusions and Future Work

We smulated a smal number of aspects of a red tape archive and it demondrated how, even in a
amplified dmulation, the performance is a complex function of resources and ther characterigtics,
scheduling discipline, workload didtribution etc. There is nothing like a sngle policy tha performs
the best for al workloads and number of resources. But a detailled smulation of the actud system
can hdp one tet some “intdligent” scheduling policies that take into account the naure of the
sysem.

There were many other features that could have been stimulated and taken into condderation by the
scheduling policy. A policy could look a al the files that are there in the cache and pick up those
requests firs and service them. The policy could group together al the requests to a tape and
service them through asingle reed of the tape if the mount and unmount time is extremely high.



