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Data Description 
We extracted movie information from the following two sources: 

● Source-1: ​www.imdb.com/​ ​(Internet Movie Database) 
○ Number of tuples from imdb: 7846 

● Source-2​: ​https://www.allmovie.com/ 
○ Number of tuples from allmovie: 7258 

Blocking Technique 

In order for a tuple-pair to pass through the blocker, it should satisfy ​all ​of the following 
conditions: 

1. Movie name - overlap should be at least one; whitespace separated word level tokens; 
excluding stop words 

2. Director name - overlap should be at least one; whitespace separated word level tokens 
3. Year of release - absolute difference between year of release should be less than or 

equal to two years 

Sample 
We labelled 1500 tuple-pairs. 1000 were used for training and 500 were used for testing. 
|G| = 1500 tuple-pairs; |I| = 1000 tuple-pairs; |J| = 500 tuple-pairs 

Training 

We performed cross-validation within​ set I ​with k=2. The following table describes Precision, 
Recall and F1 scores for different classifiers.  
 

Classifier Precision Recall F1 

Decision Tree 0.987865 0.979937 0.983885 

Random Forest 0.986043 0.983725 0.984873 

SVM 0.98343 0.952298 0.967604 

Linear Regression 0.987859 0.979712 0.983764 

Logistic Regression 0.983978 0.985844 0.984909 

http://www.imdb.com/
https://www.allmovie.com/


Naive Bayes 0.985845 0.969569 0.977619 
 
 
All the learning methods yielded high precision and recall for cross-validation on set I. We select 
Logistic Regression ​as our best matcher in the cross validation step. 
 
We already received very high precision, recall and F1 score. Therefore, we did not need to go 
through the debugging stage. The final best matcher that we select is ​Logistic Regression. 
 
Best Matcher: Logistic Regression 
Average precision on set I (cross-validated) : 98.40% 
Average recall on set I (cross-validated) : 98.58% 
Average F1 score on set I (cross-validated) : 98.49% 

Testing on Set J 
 
We trained the six matchers on the entirety of set I, and used them to predict labels for the test 
set J. The following table describes various metrics on the test set. 
 

Classifier Precision (%) Recall (%) F1 (%) 

Decision Tree 98.82 98.05 98.43 

Random Forest 98.82 98.44 98.63 

SVM 98.39 95.31 96.83 

Linear Regression 98.43 98.05 98.24 

Logistic Regression 97.67 98.44 98.05 

Naive Bayes 98.02 96.48 97.24 
 
The best matcher selected through cross-validation on set I was Logistic regression. For this 
classifier, 
 
Precision on (test set J) : 97.67% 
Recall on (test set J) : 98.44% 
F1 score (test set J) : 98.05% 
 
 



Approximate time estimates 

Stage Time (human hours) 

blocking 4 

labelling data 1.5 

finding the best matcher 3 

 
 

Obtaining a higher precision 
 
There seems to be a clear pattern in the false positives predicted by the algorithm. The movie 
sequel names, that differ from their prequel by just a number ( For eg. The Grudge and The 
Grudge 2 ), are being falsely predicted as a match. This makes sense, since it would result in a 
very high value for all the similarity measures. If we had a high number of such mismatches, we 
can include a feature in our algorithm that specifically checks if the two movies have a 
prequel-sequel relationship between them. 
 

Serial No. Source 1 Source 2 

1 Kill Bill: Vol. 2 Kill Bill Vol. 1 

2 The Other The Other Woman 

3 The Karate Kid Part II The Karate Kid 

4 Lethal Weapon 2 Lethal Weapon 

5 The Grudge 2 The Grudge 

6 Harry Potter and the Deathly 
Hallows: Part 2 

Harry Potter and the Deathly 
Hallows; Part 1 

 
Obtaining a higher recall 
 
We need to look at the false negatives predicted by our algorithm in order to achieve higher                 
recall. The machine learning algorithm that we trained on Set I already had a very high recall on                  
the test set J, but here we present some interesting analysis of the false negatives.  



 
The movies that we see in this list differ in the way they have been represented on the two                   
website. For example, the movie ​Precious (2009) ​was listed by its name on imdb.com It was                
based on a novel ​Push​, and this information was included in the title itself on allmovie.com. So,                 
the algorithm failed to predict that these are the same movies. If we wanted to remove this false                  
negative, we would need to include some feature in our ML algorithm that checks for subtitles                
within a movie title. 
 
Another example is ​Guns for San Sebastian, ​which was listed in another language on              
allmovie.com . This was the reason why they were not predicted as a match. If we have a lot of                    
cases like this in our data, it may be important to detect them. In that case, we would first need                    
to normalize all movie names to English language by using a translator, and then perform entity                
matching.  
 
Also, there is sometimes a difference in the way sequels are listed on the two sources. One                 
such example is listed below at no. 3, representing the movie Dark Harvest 2 by two different                 
names. 
 

Serial No. Source 1 Source 2 

1 Precious Precious: Based on the Novel 
'Push' By Sapphire 

2 Guns for San Sebastian La Bataille de San Sebastian 

3 The Maize: The Movie Dark Harvest 2: The Maize 

 

 
Comments on Magellan 
 
Overall we found Magellan extremely easy / intuitive to work with. We were surprised at how 
easily we were able to perform entity matching on an actual data set. 
 
Positives 

● powerful functions like ​select_matcher 
● debugging the output of the blocker using ​debug_blocker ​is well... extremely sexy! 

 
Areas for improvement 

● would have liked to have an easy way to print false positives and false negatives from                
eval_matches. ​Even though there are visual debuggers for certain cla​ssifiers​, this basic            
debugging functionality would be good to have for all the classifiers 


