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Merging Tables: 
 
We had two tables T1 (imdb) and T2 (allmovie) containing movie information, from             
www.imdb.com and  www.allmovie.com respectively.  
 
We used different merging rules for different columns in the two tables. For “Name” and               
“Director” column, we kept longer of the strings found in T1 and T2. For columns Year and                 
Certificate, we preferred T1’s data over T2. For Runtime, we took average of the two. For Genre                 
and SubGenre columns, we took a union of the genres/subgenres mentioned in the two tables.               
Rating and votes information was significantly different in the two tables, so we retained data               
from both the sources. Columns for Producer, Country and OtherRating are taken from T2.              
Columns for Gross and Metascore are taken from T1.  
 
Detailed merging rules for every field is described below: 
 

Column name Merging rule 

Key Key of the matched pair returned by py_entitymatching  

Key1 ID of the movie on www.imdb.com 

Key2 ID of the movie on www.allmovie.com 

Name Longer of the strings T1.name and T2.name 

Year if T1.Year is present 
        Year = T1.year 
else  
        Year = T2.Year 

Certificate if T1.Certificate is present 
        Certificate = T1.Certificate 
else  
        Certificate = T2.Certificate 

Runtime if both T1.Runtime and T2.Runtime are present 
        Runtime = (T1.Runtime + T2.Runtime) / 2.0 
else if T1.Runtime is present 
        Runtime = T1.Runtime 
else if T2.Runtime is present  

http://www.imdb.com/
http://www.allmovie.com/
http://www.imdb.com/
http://www.allmovie.com/


 

        Runtime = T2.Runtime 
else 
        Runtime = ‘’ 

Genre Union of genres given by T1.Genre and T2.Genre 
(represented using a ‘|’ separated string) 

SubGenre Union of subgenres given by T1.SubGenre and T2.SubGenre 
(represented using a ‘|’ separated string) 

rating1 T1.rating 

rating2 T2.rating 

votes1 T1.votes 

votes2 T2.votes 

Director Longer of the strings T1.Director and T2.Director 

Producer T2.Producer 

Country T2.Country 

Gross T1.Gross 

OtherRating T2.OtherRating 

Metascore T1.Metascore 

 

 
  



 

Statistics: 
 
In the previous section we presented a detailed description of the schema. 
Our table has 1931 tuples. 
 
Few sample tuples: 

 Example 1 Example 2 Example 3 Example 4 

Key 318244 308786 280335 273306 

Key 1 tt0406375 tt0055608 tt0120176 tt0073629 

Key 2 zathura-v310130 voyage-to-the-botto
m-of-the-sea-v5304
1 

the-spanish-priso
ner-v158678 

the-rocky-horror-p
icture-show-v418
64 

Name Zathura: A Space 
Adventure 

Voyage to the 
Bottom of the Sea 

The Spanish 
Prisoner 

The Rocky Horror 
Picture Show 

Year 2005 1961 1997 1975 

Certificate PG PG PG R 

Runtime 101 105.5 111 100 

Genre fantasy|children's/fa
mily|comedy|action|
adventure 

science 
fiction|sci-fi|action|a
dventure 

drama|thriller|mys
tery 

science 
fiction|musical|co
medy|horror 

SubGenre children's 
fantasy|space 
adventure 

sea 
adventure|adventur
e drama|sci-fi 
disaster film 

crime 
thriller|post-noir 
(modern noir) 

sex 
comedy|horror 
comedy|rock 
musical 

Rating 1 6.2 6.1 7.3 7.4 

Rating 2 7 7 8 8 

Votes 1 77676 4780 19697 115333 

Votes 2 127 38 47 214 

Director Jon Favreau Irwin Allen David Mamet Jim Sharman 

Producer Columbia TriStar 20th Century Fox Jean Doumanian  
Productions; 
Sweetland Films 

20th Century Fox 

Country USA USA USA UK 



 

Gross 29258869  10200000 139876417 

OtherRating 7 6 7 8 

Metascore 67  70 58 

 

Script to merge tables: 
 

result_cols = 
['Key','Key1','Key2','Name','Year','Certificate','Runtime','Genre','SubGenr
e','rating1','rating2','votes1','votes2','Director','Producer','Country','G
ross','OtherRating','Metascore'] 
 

def read_csv(fname): 
with open(fname, 'r') as f: 

content=f.readlines() 
col_heads = content[0].strip().split(',') 
rows = [x.strip().split(',') for x in content[1:] if 

x.strip()!=''] 
return col_heads, rows 

 

def get_preferred(val1, val2, pref): 
 

if pref == 1: 
if val1.strip() != '': 

return val1.strip() 
 

return val2.strip() 
 

if pref == 2: 
 

if val2.strip() != '': 
return val2.strip() 

 

return val1.strip() 
 

def get_longer(val1, val2): 
 

if len(val1.strip()) > len(val2.strip()): 
#print("Longer of " + val1.strip() + " and " + val2.strip()) 



 

return val1.strip() 
else: 

return val2.strip() 
 

def get_average(val1, val2): 
 

val1_ = val1.strip() 
val2_ = val2.strip() 

 

if val1_ == '': 
return val2_ 

 

if val2_ == '': 
return val1_ 

 

try: 

num1 = float(val1_) 
except ValueError: 

num1=-1 
print(val1_ + ' not convertible to float') 

 

try: 

num2 = float(val2_) 
except ValueError: 

num2 = -1 
print(val2_ + ' not convertible to float') 

 

if num1 >= 0 and num2 >= 0: 
return str((num1+num2)/2.0) 

elif num1 >= 0: 
return str(num1) 

elif num2 >= 0: 
return str(num2) 

else: 

print('both values invalid') 
return '' 

 

def get_union(val1, val2): 
list1 = [x for x in val1.lower().strip('').split('|') if x != ''] 
list2 = [x for x in val2.lower().strip('').split('|') if x != ''] 
union_set = set(list1) | set(list2) 
return '|'.join(union_set) 



 

 

def merge_rows(pair_key, row1, col_names_1, row2, col_names_2): 
 

key1 = row1[0] 
key2 = row2[0] 

 

merged_row = [] 
 

# pair key  

merged_row.append(pair_key) 
 

# key1 

merged_row.append(key1) 
 

# key2 

merged_row.append(key2) 
 

# name 

name1 = row1[col_names_1.index('Name')] 
name2 = row2[col_names_2.index('Name')] 
merged_name = get_longer(name1, name2) 
merged_row.append(merged_name) 

 

# year 

year1 = row1[col_names_1.index('Year')] 
year2 = row2[col_names_2.index('Year')] 
year = get_preferred(year1, year2, 1) 
merged_row.append(year) 

 

# certificate 

certificate1 = row1[col_names_1.index('Certificate')]  
certificate2 = row2[col_names_2.index('Certificate')]  
certificate = get_preferred(certificate1, certificate2, 1) 
merged_row.append(certificate) 

 

# runtime 

runtime1 = row1[col_names_1.index('Runtime')] 
runtime2 = row2[col_names_2.index('Runtime')] 
runtime = get_average(runtime1, runtime2) 
merged_row.append(runtime) 

 

# Genre - union of two sets 



 

genre1 = row1[col_names_1.index('Genre')] 
genre2 = row2[col_names_2.index('Genre')] 
genre = get_union(genre1, genre2) 
merged_row.append(genre)  

 

# SubGenre - union of two sets 

subgenre1 = row1[col_names_1.index('SubGenre')] 
subgenre2 = row2[col_names_2.index('SubGenre')]  

subgenre = get_union(subgenre1, subgenre2) 
merged_row.append(subgenre) 

 

# rating1 - imdb_rating 

rating1 = row1[col_names_1.index('Rating')] 
merged_row.append(rating1) 

 

# rating2 - allmovie_rating 

rating2 = row2[col_names_2.index('Rating')] 
merged_row.append(rating2)  

 

# votes1 - imdb_votes  

votes1 = row1[col_names_1.index('Votes')] 
merged_row.append(votes1) 

 

# votes2 - allmovie_votes  

votes2 = row2[col_names_2.index('Votes')] 
merged_row.append(votes2) 

 

# Director - longer of the two if exists  

director1 = row1[col_names_1.index('Director')] 
director2 = row2[col_names_2.index('Director')] 
merged_director = get_longer(director1, director2) 
merged_row.append(merged_director)  

 

# Producer - allmovie if exists 

producer2 = row2[col_names_2.index('Producer')] 
merged_row.append(producer2) 

 

# Country - allmovie if exists 

country2 = row2[col_names_2.index('Country')] 
merged_row.append(country2)  

 

# Gross - imdb if exists 



 

gross1 = row1[col_names_1.index('Gross')] 
merged_row.append(gross1) 

 

# OtherRating - allmovie if exists 

otherRating2 = row2[col_names_2.index('OtherRating')] 
merged_row.append(otherRating2) 

 

# Metascore - imdb if exists 

metascore1 = row1[col_names_1.index('Metascore')] 
merged_row.append(metascore1) 

 

return merged_row 
 

def main(): 
 

col_names, matched_keys = read_csv('../data/P2.csv') 
col_names_1, data_1 = read_csv('../data/imdb.csv') 
col_names_2, data_2 = read_csv('../data/allmovie.csv') 

 

data1_dict = {} 
for row in data_1: 

data1_dict[row[0]] = row 
 

data2_dict = {} 
for row in data_2: 

data2_dict[row[0]] = row 
 

output_column_heads = result_cols 
merged_table_file = open('merged_table.csv','w') 
merged_table_file.write(','.join(output_column_heads)+'\n') 

 

for matched_pair in matched_keys: 
 

pair_key = matched_pair[0] 
 

key1 = matched_pair[1] 
key2 = matched_pair[2] 

 

row1 = data1_dict[key1] 
row2 = data2_dict[key2] 

 



 

merged_row = merge_rows(pair_key, row1, col_names_1, row2, 
col_names_2) 

#merged_table_file.write(','.join(col_names_1)+'\n') 

#merged_table_file.write(','.join(row1)+'\n') 

#merged_table_file.write(','.join(col_names_2)+'\n') 

#merged_table_file.write(','.join(row2)+'\n') 

merged_table_file.write(','.join(merged_row)+'\n') 
#merged_table_file.write('--------------------------\n\n') 

 

merged_table_file.close() 
 

if __name__ == "__main__": 
main() 

 

 
 

  



 

Data Analysis 
Based on domain knowledge and the available attributes present in the schema we had a bunch                
of hypothesis which we wanted to validate. For instance, we expected to see a correlation               
between the movie rating and the amount of money the movie made. We also expected to see                 
an increase in the amount of money made by movies over the years. In order to validate these                  
hypothesis we relied on two data analysis techniques namely (1) correlation discovery and (2)              
OLAP style querying. In the following sections we elaborate on what we have concluded from               
our analysis.  
 

Correlation between attributes 
 
The following table describes correlation between pairs of the numeric attributes in our merged 
table. Greener values mean that the attribute-pair is highly correlated. Red color indicates that 
they are inversely correlated. 
 

 Year Runtime rating1 rating2 votes1 votes2 Gross OtherRating Metascore 

Year 1.000 -0.022 -0.212 -0.123 0.310 0.206 0.196 -0.248 -0.228 

Runtime -0.022 1.000 0.285 0.230 0.210 0.206 0.236 0.168 0.146 

rating1 -0.212 0.285 1.000 0.744 0.407 0.418 0.156 0.581 0.597 

rating2 -0.123 0.230 0.744 1.000 0.314 0.376 0.087 0.585 0.564 

votes1 0.310 0.210 0.407 0.314 1.000 0.879 0.623 0.127 0.142 

votes2 0.206 0.206 0.418 0.376 0.879 1.000 0.572 0.236 0.206 

Gross 0.196 0.236 0.156 0.087 0.623 0.572 1.000 -0.013 -0.014 

OtherRating -0.248 0.168 0.581 0.585 0.127 0.236 -0.013 1.000 0.635 

Metascore -0.228 0.146 0.597 0.564 0.142 0.206 -0.014 0.635 1.000 

 
From the table, it is evident that the rating values on the two platforms have high correlation                 
among them. The same thing is true for votes as well. 
 
Metascore column represents a score given by critics. The metascore values and rating values              
are correlated, but the correlation is not that strong. This makes sense, because not all the                
movies liked by critics are also loved by general audience, and vice-versa. 
 
We can also see some correlation between ratings and votes. If we consider number of votes as                 
how many people watched a movie, this suggests that it is related to the gross. 
  



 

There seems to be a negative correlation between rating and year. This suggests that people               
used to like older movies  slightly more than they do the new ones. 
 

OLAP 

 
Over the years the amount of money made by movies has been increasing. 
 



 

 
 
We bucketed the movies by the gross money made by them to see if anything interesting comes 
up. However, we were not able to find anything interesting here. 

 



 

As was evident from the correlation analysis we observe a high correlation between the user 
ratings on the two platforms. 
 

Highest grossing movie per year (1997 - 2017): 
 

Year Name Gross (in millions) 

1997 Titanic 659.32 

1998 There's Something About Mary 176.48 

1999 Star Wars: Episode I - The Phantom Menace 474.54 

2000 Cast Away 233.63 

2001 Harry Potter and the Sorcerer's Stone 317.57 

2002 Spider-Man 403.70 

2003 Finding Nemo 380.84 

2004 Spider-Man 2 373.58 

2005 Star Wars: Episode III - Revenge of the Sith 380.26 

2006 Pirates of the Caribbean: Dead Man's Chest 423.31 

2007 Transformers 319.07 

2008 The Dark Knight 534.85 

2009 Avatar 760.50 

2010 Toy Story 3 415.00 

2011 Harry Potter and the Deathly Hallows; Part 2 381.01 

2012 Marvel's The Avengers 623.35 

2013 The Hunger Games: Catching Fire 424.66 

2014 The Hunger Games: Mockingjay - Part 1 337.13 

2015 Star Wars: The Force Awakens 936.66 

2016 The Jungle Book 364.00 

2017 Wonder Woman 412.56 

 



 

 

Highest Rated Movies (1997 - 2017): 
 

Year Name IMDB Ratings 

1997 Life Is Beautiful 8.6 

1998 Lock; Stock and Two Smoking Barrels 8.2 

1999 Fight Club 8.8 

2000 Memento 8.5 

2001 The Lord of the Rings: The Fellowship of the Ring 8.8 

2002 The Lord of the Rings: The Two Towers 8.7 

2003 The Lord of the Rings: The Return of the King 8.9 

2004 Black Friday 8.6 

2005 Batman Begins 8.3 

2006 The Prestige 8.5 

2007 No Country for Old Men 8.1 

2008 The Dark Knight 9 

2009 The Secret in Their Eyes 8.2 

2010 Inception 8.8 

2011 The Intouchables 8.6 

2012 The Dark Knight Rises 8.4 

2013 12 Years a Slave 8.1 

2014 Interstellar 8.6 

2015 Mad Max: Fury Road 8.1 

2016 La La Land 8.1 

2017 Three Billboards Outside Ebbing; Missouri 8.3 

 
 



 

Top 10 movies by gross: 
 

Name Year Gross (in millions) 

Star Wars: The Force Awakens 2015 936.66 

Avatar 2009 760.50 

Titanic 1997 659.32 

Jurassic World 2015 652.27 

Marvel's The Avengers 2012 623.35 

Black Panther 2018 578.37 

The Dark Knight 2008 534.85 

Star Wars: Episode I - The Phantom Menace 1999 474.54 

Avengers: Age of Ultron 2015 459.00 

The Dark Knight Rises 2012 448.13 

 

Top 10 movies by ratings: 
Name Year IMDB Ratings 

The Shawshank Redemption 1994 9.3 

The Godfather 1972 9.2 

The Godfather: Part II 1974 9.0 

The Dark Knight 2008 9.0 

Pulp Fiction 1994 8.9 

The Good; the Bad and the Ugly 1966 8.9 

The Lord of the Rings: The Return of the King 2003 8.9 

Schindler's List 1993 8.9 

Inception 2010 8.8 

Star Wars: Episode V - The Empire Strikes Back 1980 8.8 

 
 



 

Problems faced  
● We started off with about 7000 movies in each of the source tables but were left with                 

only about 2000 of them after matching. Our analysis would have been more concrete if               
we had more data in our merged table 

● Attributes like genre, sub-genre and country were sets. This made it difficult to analyse              
them 

● Data for movies before 1980 was not very reliable. While performing analysis it was              
evident that some data was incorrect 

 

Future Work 
In our analysis we did not make use of attributes like genre, sub-genre and country. This was                 
mainly because of the way these attributes were stored (pipe separated in a single column).               
Given more time we would have liked to explode these attributes and ask interesting questions               
like the following: 

● Do movies of some genre make more money than others 
● Most popular genre based on country 
● Are movies of a particular genre rated higher than other movies 
● Do horror movies make less money because they are not prefered by a lot of people 


