Helmholtz Stereopsis

A Surface Reconstruction Method

What is Helmholtz Stereopsis?

- A method for 3D surface reconstruction (depth and normals)
- Other methods for surface reconstruction have some drawbacks
- Stereo - Needs some kind of texture to be present in the scene
- Photometric Stereo - Assumes a lambertian reflectance model
- Helmholtz Stereopsis makes no assumption about the reflectance properties of the surface

Review

- Surface Irradiance L

A measure of intensity received by point P from the source

- Surface Radiance I

A measure of intensity emitted by the point P towards the camera

The surface radiance at P due to a point source with unit intensity located at position $\mathbf{O}_{\mathbf{i}}$, can be calculated as follows:

$$
\text { Surface Irradiance } L\left(v_{i}\right)=\frac{\hat{n} \cdot \hat{v}_{i}}{\left|O_{i}-P\right|^{2}}
$$

Review

- BRDF (bidirectional reflectance distribution function)
- Material property
- Function of the lighting and viewing directions
- Ratio of Irradiance I(v_{r}) and Radiance $L\left(v_{i}\right)$

$$
\operatorname{BRDF}\left(v_{i}, v_{r}\right)=\frac{\text { Radiance } I\left(v_{r}\right)}{\operatorname{Irradiance} L\left(v_{i}\right)}
$$

- From these equations, we can write the following:

$$
I\left(v_{r}\right)=B R D F\left(v_{i}, v_{r}\right) \frac{\hat{n} \cdot \hat{v}_{i}}{\left|O_{i}-P\right|^{2}}
$$

- Lambertian surfaces (constant BRDF) emit equal amount of light in all directions

Helmholtz Reciprocity

$\operatorname{BRDF}\left(v_{i}, v_{r}\right)=\operatorname{BRDF}\left(v_{r}, v_{i}\right)$

> Interchanging the lighting and the viewing directions does not change the BRDF value

Revisiting the problem

Given the camera position, source position and pixel intensity at pixel \mathbf{P}^{\prime}, we want to determine the depth of the corresponding 3D point P and surface normal n

Reciprocal pair

$I_{r}=B R D F\left(v_{i}, v_{r}\right) \frac{\hat{n} \cdot \hat{v}_{i}}{\left|O_{i}-P\right|^{2}}$

$I_{i}=B R D F\left(v_{r}, v_{i}\right) \frac{\hat{n} \cdot \hat{r}_{r}}{\left|O_{r}-P\right|^{2}}$

Eliminating the BRDF term, we get

$$
\left(I_{r} \frac{\hat{v}_{r}}{\left|O_{r}-P\right|^{2}}-I_{i} \frac{\hat{v}_{i}}{\left|O_{i}-P\right|^{2}}\right) \cdot \hat{n}=0
$$

Bxploiting the constraint

$$
\left(I_{r} \frac{\hat{v}_{r}}{\left|O_{r}-P\right|^{2}}-I_{i} \frac{\hat{v}_{i}}{\left|O_{i}-P\right|^{2}}\right) \cdot \hat{n}=0
$$

- We know $\mathbf{O}_{\mathbf{r}}$ and $\mathbf{O}_{\mathbf{i}}$ (camera/source positions)
- Given a pixel P', we know I_{r}
- The values $\mathbf{v}_{\mathbf{r}}, \mathbf{v}_{\mathbf{i}}, \mathbf{P}$ and $\mathbf{I}_{\mathbf{i}}$ depend only on depth \mathbf{d} (unknown)
- Surface normal \mathbf{n} (unknown)

$$
w(d) \cdot \hat{n}=0
$$

Frploiting the constraint

- We can use 3 reciprocal pairs to get 3 different equations

$w_{1}(d) \cdot \hat{n}=0$
$w_{2}(d) \cdot \hat{n}=0$
$w_{3}(d) \cdot \hat{n}=0$

\mathrm{w}_{2}(\mathrm{~d})

\mathrm{w}_{3}(\mathrm{~d})\end{array}\right)_{3 \times 3}\left($$
\begin{array}{c}\mathrm{n}_{\mathrm{x}} \\
\mathrm{n}_{\mathrm{y}} \\
\mathrm{n}_{\mathrm{z}}\end{array}
$$\right)_{3 \times 1}=\left($$
\begin{array}{l}0 \\
0 \\
0\end{array}
$$\right)\)

- For the true depth (\mathbf{d}^{*}), the above system of equations will be satisfied
- Surface normal lies in the null space of \mathbf{W}
- Implying, matrix \mathbf{W} should be rank-2 for the correct value of \mathbf{d}

Probing over depth

camera

- Search over a set of d values $d_{1}, d_{2}, d_{3}, \ldots d_{n}$
- Construct the W matrix for each d_{i} and look at its rank
- The d_{i} that results in a rank-2 matrix is "the one"
- Repeat this process for every pixel to get the entire depth map

Results

Reciprocal Pair 1

Reciprocal Pair 2

Reciprocal Pair 3

Results

Estimated Depth Map

Estimated Normal Map

Results

Depth from Normals

Results

Results

Results

Principal Camera

Results

Principal Camera

Results

Estimated Normal Map

Results

Reciprocal Pair

Results

True Normal Map

Estimated Normal Map

References

[1] T. Zickler, P.N. Belhumeur, and D.J. Kriegman. Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction. In Proc. of the ECCV, page III: 869 ff., 2002
[2] https://www.merl.com/brdf/
[3] Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Machine Intell. 10 (1988) 439-451

Singular value decomposition

- In practice, it is not possible to get a \mathbf{W} matrix that is exactly rank-2
- We compare the ratio of sigma2/sigma3. Higher the ratio, closer the matrix is to being rank-2
- We select that \mathbf{d} value which corresponds to the highest sigma2/sigma3 ratio
- Once we know d*, the normal can be recovered by taking the rightmost singular vector of the corresponding W matrix

