
Adaptive MPC Model Selection via Machine Learning

Joshua Pulsipher
Department of Chemical Engineering

University of Wisconsin-Madison
pulsipher@wisc.edu

Viswesh Periyasamy
Department of Computer Science
University of Wisconsin-Madison

vperiyasamy@wisc.edu

Abstract

This report details the development of a novel approach to improve the robustness1

of model predicative control, MPC, schemes using machine learning. Several2

MPC systems are simulated with different underlying process models to generate3

training data that is used to train a support vector machine, a support vector machine4

regressor, and 2 multilayer perceptrons. These trained machine learning techniques5

are used to rectify simulated MPC model mismatch. Results provide evidence that6

these machine learning methods, particularly support vector machines and support7

vector regressors, can be used to dynamically select an appropriate MPC model8

given a system’s response. Also a brief overview of model predictive control is9

provided for readers without a control background.10

1 Introduction11

This study applies machine learning techniques to model predictive control, MPC, schemes in order to12

make them more resilient to disturbances. In particular, this study attempts to evaluate which machine13

learning algorithms might serve as a potential alternative to established MPC model mismatch14

resolution algorithms such as moving horizon estimation, MHE. Current algorithms such as MHE15

have proven to be effective at adjusting MPC models in response to variant process conditions, but16

are computationally expensive and are difficult to fine tune [1]. A trained machine learning derived17

classifier such as a support vector machine has the potential to dynamically vary the MPC model18

at a lower computational cost. This machine learning based MPC approach would permit MPC19

control schemes to operate at faster frequencies on inherently variant processes and thus enhance the20

controllability of a given process [2]. Little research has been conducted to evaluate the feasibility of21

such a method. Lenz et. al. successfully applied deep learning techniques to an MPC cutting robot to22

adapt its cutting control to different types of vegetables [3]. Zhejing et. al. studied the use of support23

vector regression in support of an MPC to control a chemical reactor and showed algorithm to be24

effective for certain systems [4]. Miao et. al. conducted a similar study in a more broad context and25

showed that support vector regression was comparable to neural network based regression for MPC26

control [5]. Such studies show that the traditional machine learning algorithms can be integrated27

with MPC schemes. However, little to no research has been done to compare machine learning28

techniques in the context of model mismatch. This study will juxtapose a few different machine29

learning methods to evaluate their respective effectiveness in responding to model mismatch in a30

generalized MPC simulation environment.31

2 A Brief Overview of MPC32

Model predictive control is an advanced control technique that is gaining popularity in the chemical33

industry to control processes that are inherently unstable/difficult to control with traditional PID34

1

controllers, while only employing the current optimized input; the process is then repeated at the35

controller frequency (typically on the order of 0.5-30 seconds) [6]. This allows MPC schemes to36

anticipate future conditions and adjust their performance accordingly, something that simple PID37

controllers can’t do [6]. Many MPC applications are computationally expensive to model because38

of their complexity and nonlinearity, thus linear models are often used to approximate a system’s39

behavior. However, these linear models are commonly limited to narrow operating regimes and40

quickly induce substantial error if the system deviates from normal operation due to disturbances41

and/or if the operational conditions are varied [7]. Currently, common practice is to manually retune42

these linear models when system conditions change. The current state of the art pertains to MHE state43

estimation schemes. Moving horizon estimation is useful for nonlinear or constrained systems as it44

presents a stable online optimization scheme, however the online optimization is computationally45

expensive and only is viable for systems with low control frequencies [7]. An ongoing field of46

research is designing MPC schemes that can automatically adapt linear model in accordance to varied47

system conditions.48

3 MPC Simulation Framework49

This project only considers simulated processes and MPC controllers. To provide a general set of50

conditions a generic FOPDT model common to the control community was implemented for both the51

system model and MPC model. A FOPDT model is given by52

τp
y(t)

dt
= −y(t) +Kpu(t− θp) (1)

where y is the controlled process attribute, u is the controller input, and τp, Kp, and θp are adjustable53

process parameters. Equation 1 is used for these tests as the process model and the MPC model. This54

relatively simplistic approach is taken as the focus of this work is on the novel application of machine55

learning techniques and not on advanced nonlinear modeling techniques. This simplistic approach56

also facilitates the analysis of such machine machine learning techniques in a simulation framework57

that is analytically well-understood. The FOPDT parameters are set to different values to represent58

different models. In particular, the value of Kp is varied to distinguish different possible models.59

This assumption reflects an important class of control systems that exhibit transient process gains and60

usually are controlled with the aid of MHE methods.61

All of the simulations are carried out via APMonitor which is an open source optimization software62

(that interfaces with Python) specifically designed for MPC implementation in simulated and physical63

systems. A Python script is used to link an APMonitor process simulation and an APMonitor MPC64

controller in order to simulate a process and an MPC controller simultaneously. The script has65

APMonitor simulate the process for 1 time step then adds some random noise (generated from a66

uniform distribution) to the measured process variable value to simulate measurement error inherent67

with a real process. This measurement is then fed into the APMonitor MPC controller which optimizes68

the control input value needed to drive the system toward a certain setpoint which is specified in the69

Python script. This optimized control variable value is returned to Python and fed into the process70

model. This simulation algorithm is then looped over the total number of time steps.71

This modular simulation framework easily facilitates the addition of machine learning based classifi-72

cation and/or regression schemes within the main Python loop, such that the MPC FOPDT model can73

be dynamically selected.74

4 Classification and Regression Training75

4.1 Training Data Acquisition76

A set of 3 model configurations are considered in this study so that a reasonable amount of training77

data can be collected. Each model specifies the values of τp and θp to be 10 and 0 respectively. The78

distinguishing characteristic parameter between the models is the process gain, Kp, which typically79

is the parameter most associated with variant process model behavior in nonlinear chemical processes80

as discussed in Section 3. The process gain is set to be 1, 5, and 10 respectively for each model.81

2

Training data is collected from running the MPC simulation scheme described in section 3 over 16082

time steps during which the controller setpoint is varied from 10 to 15, from 15 to 5, and then from 583

to 20 to promote a diversity of dynamic data. The measured process variable, the controller input,84

and the controller’s prediction of the process’s response in 5 time steps are recorded for each time85

step. This simulation is carried out for every possible combination of MPC models and process86

models, accounting for 9 simulations in total. All of the recorded data was saved to be configured as87

a training data set. This training data does have random elements to it since the process variable is88

randomly varied with noise. However, it is not necessarily independent and individually distributed89

since the same control simulation is considered for each different model combination. This is done90

to limit the computation time as this simulation is very computationally intensive. More i.i.d data91

could be obtained if more powerful computational resources were available. Admittedly this places a92

limitation to the scope of this study and future work will include gathering a more randomized set93

of training data from a wider range of conditions. The methodology used to train various machine94

algorithms is described in detail below.95

4.2 Support Vector Machine Training96

There are 3 possible models that the process simulator is allotted to use and thus only 3 classes97

of model the MPC controller should choose from. A total of 3 linear support vector machines are98

trained to classify which of the 3 possible models the MPC should select. Meaning that 1 linear99

SVM is trained for each possible MPC model state such that it can determine if the current model is100

appropriate or specify which of the other 2 models should be used. The SVMs are designed to accept101

a feature vector with 3 measurements obtained from the training data. The first feature is the value:102

x
(t)
1 =

∣∣y(t−5)
p − y(t)m

∣∣ (2)

where y(t−5)
p is the MPC’s predicted value of y at time step t − 5, and y(t)m is the actual measured103

value of y at time t. This feature gauges how well the MPC model predicts system’s response. This104

feature exacts a delay of 5 time steps for prediction because the incremental prediction at time t− 1105

is less indicative of model mismatch since the respective differences will always tend to be small.106

Thus this delay necessitates the removal of the initial 5 data points of each training data set. The107

second feature is defined as:108

x
(t)
2 =

∣∣y(t)m − y(t−1)
m

∣∣ (3)

which provides a value that has a moderate correlation to the gain of the model, Kp, and therefore109

helps to differentiate between the classes/models. The third feature is that of the process input110

variable:111

x
(t)
3 = u(t) (4)

which complements the second feature since a certain change in y will require a different amount of112

input, u, depending on the underlying process gain.113

Figure 1 shows the classification of the training data pertaining to the second linear SVM classifier114

which takes the MPC model to have a Kp value of 5. The data appears to be easily separable and the115

linear classifier achieves a stable prediction rule with minimal error on the training set. An error of116

1.40% is reported. A Gaussian kernel was also used for comparison, but it yielded less generalizable117

decision boundaries and produced a comparable error over the training data of 1.14%.118

4.3 Support Vector Regression Training119

Training the SVM for regression is handled almost identically to the classification approach. The120

same feature vector x(t) is fed into the SVM but instead of labels, the model’s gain valueK is used as121

output. In the case of the 3 possible models in this case study, the possible outputs are K ∈ {1, 5, 10}.122

This contrasts the support vector classifier’s (SVC) output of the predicted model index corresponding123

to the set gain values. An epsilon value of ε = 0.1 is used to train the support vector regressor (SVR)124

3

(a) Unclassified raw process data. (b) Data classified with a linear SVM.

Figure 1: The linear SVM classification of different process models with an MPC model gain of 10.

which controls the epsilon-tube that bounds penalties for training loss. All other parameters (e.g. the125

linear kernel and and penalty parameter C = 1.0) remain unchanged from the SVC.126

In the setting of regression, all of the training data is concatenated into 1 set and only 1 SVR is127

trained (contrasting the 3 classifiers that are trained with separate MPC base models). The separation128

of classifiers by model index is not necessary for regression because the non-discrete output can be129

directly used to adjust the MPC model.130

4.4 Multilayer Perceptron Training131

The deep learning approach is built using a multilayer perceptron (MLP). Both the classifier and132

regressor use the same configuration with a rectified linear unit (ReLU) activation function and the133

Adam method of stochastic gradient descent. Additionally, an initial learning rate of γ = 0.001 is134

used along with an adaptive procedure which reduces the current learning rate by 80% for every 2135

consecutive epochs with no decrease in training loss. Finally, a penalty parameter of α = 0.0001136

is used for the Euclidean norm regularization term. The MLP classifier and regressor are trained137

using the same methodologies described above. Thus a total of 3 MLP classifiers are trained where138

1 trained classifier is used for each possible MPC model; and 1 MLP regressor is trained from the139

concatenated set of training data.140

5 Adaptive MPC Framework141

5.1 Classification Framework142

The supervised learning models are used to construct an adaptive MPC framework which adjusts the143

process gain based on real-time feedback. In the classification domain, the SVC outputs a suggested144

model at each time step. However, to combat sudden perturbations and make the SVC more robust to145

noise, a sliding window approach is used to enforce a majority consensus. Specifically, the model is146

initially set to use the median process gain K = 5 and then begins collecting a majority vote of the147

last 10 classifications for t ≥ 5. For every setpoint (i.e. desired output y) change in the simulation,148

the voting data is ignored for the first 5 time steps and resumes after. The entire framework operates149

in an identical fashion with the MLP classifier in place of the SVC as the supervised learning model.150

A model mismatch threshold of x(t)1 > 0.2 is introduced to impose a stability constraint on the151

overall model - this mismatch correlates to the process gain value Kp not agreeing between the MPC152

model and the process model. The SVC’s prediction value is used and stored only if x(t)1 exceeds the153

mismatch threshold; if the predicted y from 5 previous time steps is not largely different than the154

current measured value of y, then the previous iteration’s majority vote is used again. This protects155

the framework from over-responding to small differences between predicted and measured output.156

Additionally, a classifier threshold is enforced to prevent model oscillation. As the SVC changes its157

predicted model to reduce error between the predicted and measured output, the drastic reduction in158

4

error will cause the SVC to incorrectly re-choose the original model that caused the large error in159

the first place. This will induce a cycle of oscillation between the 2 models. To rectify this problem,160

3 classifiers are trained on different sets of data and a threshold of x(t)1 < 0.2 is used to determine161

whether it is necessary to swap classifiers.162

5.2 Regression Framework163

The same adaptive MPC Framework is constructed using regression with some minute changes164

to achieve similar results. The sliding window approach used in classification is carried over for165

regression in the form of a moving average of regressed K values - this is analogous to the majority166

vote in the discrete domain. The sliding window is again set to the median process gain and averaged167

K values are similarly recorded 5 time steps after every setpoint change. Much like the SVC and168

MLP classifier, the SVR and MLP regressor can be used interchangeably with comparable results.169

While the model mismatch threshold remains necessary for the SVR and MLP regressor, the classifier170

threshold does not apply in this framework. The classifier’s dilemma of model oscillation stems from171

the sudden leaps in process gain from switching models. With only 1 regressor trained on the entire172

training set and the capability to slowly approach a desired process gain, this problem is avoided.173

6 Results174

Case studies spanning 3 categories are examined using both classifiers and regressors, with the175

categories being start up, process disturbance, and variant control. Start up refers to a process’s176

initial rise to the desired setpoint at steady state conditions from an offline state. This scenario is177

highly transient in nature and generally is one of the control regimes most susceptible to model178

mismatch. Process disturbance refers to an external influence, not explicitly accounted for in the179

control model, that drives the process away from a setpoint. Thus a robust control scheme is one180

that rejects disturbances and returns to the process setpoint, adapting the control model if necessary.181

Variant control denotes a multitude of disturbances and setpoint changes to see how the system182

behaves in fluctuating settings. This doesn’t denote realistic control conditions, but does represent183

a worst case scenario to test the effectiveness of the proposed MPC machine learning methods.184

Each supervised learning model is tested in each case study and results are shown below, with each185

subfigure plotting the measured and predicted output compared to setpoint (top), and the predicted186

and the actual process gain (bottom).187

6.1 Start Up188

One start up case study is performed for each possible underlying process model for a total of 3 start189

up case studies. In each case the the process initialized at an offline state and then a process variable190

setpoint of 10 is specified. Figure 2 shows a comparison between the SVM classifier and the SVM191

regressor corresponding to each start up case.192

The results indicate that the SVM classifiers are able to achieve setpoint equilibrium relatively quickly193

and are able to determine the correct process gain value once the moving window is fully populated.194

However, while the regressors are able to drive the measured process variable relatively close to the195

setpoint, the predicted process variable value corresponding to the MPC model and the MPC process196

gain maintain a constant offset from the true values. Although the measured process variable achieves197

the setpoint, the offset is problematic because it diminishes an MPC’s stability. This behavior is likely198

due to the regressors being unable to deviate from local minima. A similar problematic behavior can199

be observed with MHE parameter estimation schemes when the measured variable settles around the200

setpoint [1]. Notably, the regressing method demonstrates this instability in case 3 where the process201

gain is set to its lowest value of 1 which exacerbates the regressor’s unstable behavior.202

The MLP classifiers and regressors performed in manner identical to the SVM classifiers and203

regressors, meaning that Figure 2 is equivalently indicative of the MLP performance. Thus there is no204

clear advantage to using the more complex MLP methods over the simpler support vector methods.205

5

(a) SVM classification with initial K = 5. (b) SVM regression with initial K = 5.

(c) SVM classification with initial K = 10. (d) SVM regression with initial K = 10.

(e) SVM classification with initial K = 1. (f) SVM regression with initial K = 1.

Figure 2: A comparison of SVM classification and regression for processes working to attain an
operating setpoint of 10 with a fixed process gain value.

6.2 Process Disturbance206

For process disturbance simulations, 2 scenarios are examined. In each case the process is initialized207

from start up and the underlying process gain is changed halfway through the simulation. The first208

case study undergoes a process gain change from K = 5 to K = 10 and the second changes the gain209

from K = 10 to K = 1. Results are depicted in Figure 3.210

Each plot shows the models achieving equilibrium after start up and then reacting to the disturbance211

with the change in process gain. The classifiers perform well in these settings and show a return212

to equilibrium in both settings. Regression, however, doesn’t perform as strongly. In the first case,213

the measured output is still driven back to the setpoint but the same undesirable constant offset is214

observed between the predicted and measured values. However, the sharp decrease in gain associated215

with case 2 highlights the SVR unstable characteristics as it predictions oscillate aggressively. Once216

again this correlates to the low process gain that exacerbates the regressor’s unstable behavior. Again,217

this behavior can be analogous to poorly tuned MHE methods.218

The MLP classifiers and regressors again responded in fashions that are identical to the support219

vector methods and can be equally represented by Figure 3. Thus the MLPs don’t appear to improve220

performance by any appreciable margin.221

6

(a) SVC with K = 5 to K = 10. (b) SVR with K = 5 to K = 10.

(c) SVC with K = 10 to K = 1. (d) SVR with K = 10 to K = 1.

Figure 3: A comparison of SVM classification and regression for stable processes with disturbances
in the form of process gain changes introduced.

6.3 Variant Control222

A more complicated situation is considered for the variant control case. The process is initialized223

from a start up condition with a process gain of 10 and a setpoint of 10. The setpoint is raised to a224

value 15 and the process gain is changed suddenly to 1. This represents a drastic change in model225

behavior during a setpoint change. Figure 4 summarizes the performance of each of the 4 methods226

tested.227

(a) SVM classification. (b) Support vector regression.

(c) MLP classification. (d) MLP regression.

Figure 4: A comparison of classification and regression for process whose model changes when the
operating setpoint is raised.

7

Both classification methods quickly address the model mismatch and are able to achieve steady228

behavior about the new setpoint. Although a little fluctuation occurs at the process gain change. The229

SVM regressor diverges to a very large Kp value before slowly settling down to a more a appropriate230

value. However, this behavior is not observed with the MLP regressor which is able to respond231

adequately without the large diversion. Thus the MLP regressor appears to be more stable than the232

SVM regression method. Moreover, the SVM classification methodology is able to best match the233

process model and behaves as well as the more complex MLP classifier.234

7 Conclusions and Future Work235

This study has juxtaposed the effectiveness of several common machine learning approaches within236

the realm of MPC model mismatch. The regression-based methods considered are prone to model237

offset and instability that is exacerbated at low process gain values. The classification methods tend238

to more readily reject model offset and appear to be fairly resilient to disturbances over sufficient239

time scales. The support vector and neural network methods considered in this study also behave240

similarly, which indicates that neural networks might add unnecessary complexity. Future efforts will241

further test the resiliency of support vector methods in combination with more complex nonlinear242

process models that exhibit variations over appropriate time scales. Efforts will also be made to243

obtain training data that is more randomized.244

8

References245

[1] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical methods for246

nonlinear mpc and moving horizon estimation. Nonlinear model predictive control, 384:391–417,247

2009.248

[2] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science &249

Business Media, 2013.250

[3] Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for251

model predictive control. In Robotics: Science and Systems, 2015.252

[4] BAO Zhejing, PI Daoying, and SUN Youxian. Nonlinear model predictive control based on253

support vector machine with multi-kernel** supported by the state key development program for254

basic research of china (no. 2002cb312200) and the national natural science foundation of china255

(no. 60574019). Chinese Journal of Chemical Engineering, 15(5):691–697, 2007.256

[5] Qi Miao and Shi-Fu Wang. Nonlinear model predictive control based on support vector regression.257

In Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on,258

volume 3, pages 1657–1661. IEEE, 2002.259

[6] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: theory and260

practice—a survey. Automatica, 25(3):335–348, 1989.261

[7] James B Rawlings. Moving horizon estimation. Encyclopedia of Systems and Control, pages262

1–7, 2013.263

9

	Introduction
	A Brief Overview of MPC
	MPC Simulation Framework
	Classification and Regression Training
	Training Data Acquisition
	Support Vector Machine Training
	Support Vector Regression Training
	Multilayer Perceptron Training

	Adaptive MPC Framework
	Classification Framework
	Regression Framework

	Results
	Start Up
	Process Disturbance
	Variant Control

	Conclusions and Future Work

