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Abstract

This study investigates the nonparanormal transformation of data and how it relates to the problem of gene
regulatory network inference. Specifically, it investigates several graph estimation methods with an applied
nonparanormal transformation to RNA-Seq data as compared to a greedy hill-climbing approach. These
experiments are conducted in a high-dimensional setting, where the number of genes highly outweighs the
number of samples (a common setting in computational biology). Results show that the nonparanormal
approach severely underperforms in this setting as compared to the greedy approach, however further
trials with a variety in parameter selection are required for conclusive results.

Contact: vperiyasamy@wisc.edu

Supplementary information: Supplementary data and code available on the biostat servers at
/u/medinfo/handin/bmi776/project_supplement/vperiyasamy/.

1 Introduction

Graphical models which make a multivariate Gaussian assumption on the
relationships between their nodes have been traditionally successful in
the domain of gene regulatory network inference problems. Specifically,
this normality assumption, although it is not an inherent property, has
been shown to be well-suited for microarray gene expression data due
to the data’s continuous (as opposed to discrete) nature. However, when
examining RNA-Seq data, it is normally required to transform the data to
conform with this normality assumption - the raw data itself is count-based
and incompatible with a Gaussian model. Instead, a network inference
method which relaxes this normality constraint might prove to be more
appropriate. Previous work has explored using other distributions, such as
Poisson distributions, to model the data (Gierlinski et al., 2015). However,
using a nonparanormal transformation on RNA-Seq data would allow use
of graphical models which inherently make a Gaussian assumption to per-
form graph estimation (Liu et al., 2009). This in turn could lead to more
accurate reconstructions in the context of gene regulatory networks, and
the aim of this study is to verify this hypothesis.

1.1 RNA-Seq expression data

With traditional microarray expression data, standard normality assum-
ptions are valid for a variety of network inference methods. However,

RNA-Sequencing (RNA-Seq) methods for quantifying gene expression
have become increasingly widespread to tackle several of the issues that
arise with microarray expression data. Specifically, RNA-Seq is a much
more attractive approach for measuring gene expression because it requi-
res no reference sequence, its values have a larger dynamic range with low
noise, and has high reproducibility (Li et al., 2015).

1.2 Gaussian graphical model estimation

Because RNA-Seq data measures mRNA abundance using discrete counts,
it must be transformed in order to be applicable to Gaussian graphical
models. The gene regulatory network inference problem can then be fra-
med as a determination of non-zero entires within the inverse covariance
matrix, i.e. the precision matrix = £ ~!. Such non-zero entries repre-
sent edges (conditional dependencies) between genes and conversely zeros
represent absent edges (conditional independence) (Meinshausen et al.,
2006). Thus, graph estimation from a data set conforming to a multi-
variate Gaussian distribution can be easily computed by solving for the
precision matrix when the number of samples n is sufficiently larger than
the dimensionality of the data d. As described in Liu et al., 2009, this
can be done using standard maximum likelihood as the covariance matrix
3 remains positive definite under these conditions. Unfortunately in the
context of gene regulatory network inference, it is often the case that the
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Fig. 1. Two estimated graphs using the glasso method with no transformation (left) and

nonparanormal transformation (right) on the data. Figure adapted from Zhao et al., 2012

number of genes is substantially larger than the number of samples (i.e.
d > n) - this is known as a high dimensional setting. Maximum likelihood
is no longer suitable as the rank of 3 is now at most n (Liu et al., 2009).
Methods such as the graphical lasso proposed by Friedman et al., 2008
and Meinshausen-Biithlmann estimation proposed by Meinshausen e al.,
2010 have proven to be effective in this setting but still make a Gaussian
assumption on the distribution of the data. This assumption is restrictive
and motivates a nonparametric extension of the variables, coined by Liu
et al., 2009 as the "nonparanormal" distribution.

1.3 Nonparanormal distributions

To move to a nonparanormal distribution, the Gaussian can be replaced
with a semiparametric Gaussian copula. This can be done by transforming
the variables (i.e. genes) X = (X1, ..., X4) withamultivariate Gaussian
function f(X) = (f1(X1), ..., fa(Xq4)) which results in a nonparame-
tric extension of the Gaussian (Liu et al., 2009). Thus, this nonparanormal
distribution X ~ N PN (1, 3, f) has its own mean and covariance which
can used to calculate the precision matrix and consequently any conditional
dependencies. Figure 1 shows an example of a cluster of nodes with edges
predicted by the nonparanormal graphical lasso method that are absent in
the standard graphical lasso method. This illustrates how a nonparanormal
transformation can reveal dependencies beyond the normality assumption
(Zhao et al., 2012). In the context of gene regulatory network inference,
a nonparanormal transformation of RNA-Seq expression data could prove
to be much more effective when applied as input to standard graphical
estimation methods.

2 Methods

In order to adequately evaluate the efficacy of a nonparanormal transforma-
tion in the context of gene regulatory network inference, RNA-Seq data is
fed through a variety of graph estimation methods for analysis. Specifically,
this study considers Meinshausen-Bithlmann graph estimation, glasso or
graphical lasso estimation, and a greedy hill-climb estimation outlined in
the MERLIN approach. For Meinshausen-Biithlmann and graphical lasso
estimation (both contained within the huge package), regularization para-
meters are used with two parameter selection methods known as Rotation
Information Criterion (RIC) and STability Approach to Regularization
Selection (STARS) to ensure sparsity (Liu et al., 2010). For MERLIN, a
sparsity penalty parameter is encoded into all edge likelihood calculati-
ons. The expression data for all experiments comes from an amalgamation
of studies across mouse embryonic stem cells. Additionally, the stability
selection approach, as outlined by Meinshausen ez al., 2010, is used across
all experiments to build consensus networks for comparison. Finally, three
gold network standards are used as reference for network comparison.

2.1 Data acquisition

The RNA-Seq data used for this study comes from several experiments
which profile mouse embryonic stem cells, all contained within the Sequ-
ence Read Archive (SRA) from the National Center for Biotechnology
Information (NCBI). Each sample has an SRP ID, which corresponds to
the study’s ID on the SRA. Samples also have an SRX ID that corresponds
to the ID of the sample within that study, and finally a GSM ID which
also corresponds to the sample within that study. The GSM ID maps to
a sample record describing the conditions under which the sample was
handled and can be found through the Gene Expression Omnibus (GEO)
repository from the NCBI. All expression data has been preprocessed to
be log-transformed, zero-meaned, and quantile-normalized. The full list
of 1,196 samples that comprises the dataset can be found here:

http://pages.discovery.wisc.edu/ asiahpirani/mesc_
runs_marchl6/merlin_tfa_modules/rnaseq.tfa0.010/rnaseq

header.html

A spreadsheet which describes all datasets and samples along with
all SRP, SRX, GSM, and GSE IDs can be found in the supplementary
resources of this submission (mESC-RNASeg-Samples.csv).

Three gold standard networks were acquired for network evaluation.
Two of these were ChIP-based and LOGOF (Loss or Gain of Function)
gold standard networks obtained from the Embryonic Stem Cells Atlas of
Pluripotency Evidence (ESCAPE) database (Xu et al., 2013, 2014). The
LOGOF network is based on gene knockdown expression measurements.
An additional network was derived by Alireza Fotuhi Siahpirani from
regulatory interactions reported in literature from a multitude of sources
(Zhou et al., 2007; Kim et al., 2008; Young, 2011; Buganim et al., 2012;
Dunn et al., 2014; Xu et al., 2014; Malleshaiah et al., 2016).

2.2 MERLIN package

The Modular Regulatory Network Learning with per gene INformation
(MERLIN) package, written in C++, presents a novel approach to gene
regulatory network inference using probabilistic graphical models and a
greedy hill-climbing structure search (Siahpirani ef al., 2016). The actual
package used for this study offers a prior-based integrative framework,
however that component was ignored to standardize the graph estimation
methods compared to what huge offers. A sparsity parameter p = —5
was used as an edge penalty when calculating graph likelihood, with a
modularity parameter 7 = 4 and a hierarchical clustering threshold of
h = 0.6. These parameters were selected based on the recommendations
of the original paper. Exact uses of these parameters can be traced through
the methods in the paper as reported by Siahpirani et al., 2016. MERLIN
iteratively searches through all possible regulator and target gene edge
pairs and greedily selects the edges that most improve the log-likelihood
score. This process is repeated until a convergence threshold is met.

2.3 huge package

The High-Dimensional Undirected Graph Estimation (huge) package,
written natively in C and externally in R, offers a variety of functions
for estimating network paths. For this study, three functions were used for
all experiments: nonparanormal transformation of the data, graph estima-
tion, and regularization parameter selection (Zhao et al., 2012). Specific
parameters for the graph estimation and regularization selection are outli-
ned below. Additional functionality was necessary to compare outputs, in
the form of an undirected adjacency matrix, to the directed network output
of MERLIN and the directed gold standard networks.

2.3.1 Graph estimation methods
The two methods of graph estimation used from huge are Meinshausen-
Biithlmann and glasso (Meinshausen et al., 2006; Friedman et al., 2008).
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For both methods, the nonparanormal data is input and regularization para-
meters A = (A1, ..., A10) are automatically generated as a sequence of
decreasing positive numbers which corresponds to an evenly-spaced sequ-
ence of graph sparsity levels from 0 to 0.1. The number of regularization
parameters and sparsity level threshold are set to the default values as this
study could not find sufficient evidence for changing them. For glasso, a
lossy screening rule is applied to preselect the neighborhood for a large

performance boost (Zhao et al., 2012).

2.3.2 Regularization selection

The two methods of regularization parameter selection used are RIC and
STARS (Liu et al., 2010). For RIC, all experiments use 20 rotations. For
STARS, a subsampling ratio of 10% is used, where n is the number of
samples, for a total of 20 subsamples, and the variability threshold is set to
0.1. Again, parameters were set to default values as the author could not
find a significant reason to modify them. These methods respectively select
the optimal graph from the 10 generated adjacency matrices corresponding
to A

2.3.3 Converting to directed networks
Because huge inherently uses undirected graph estimation, further pro-
cessing was required in order to compare the output networks to those of
MERLIN as well as the gold standard networks. The list of possible regu-
lators and target genes was given along with the data, and the following
convention was adopted for converting the undirected network:

Given a set of regulators R and target genes T, for each edge between
genes ¢ and j:

e ifi € RAj € R,create a directed edge in both directions

o if(i € RAJjET)V(j € RNt €T),create adirected edge from
regulator to target gene

e ifi € T Aj € T,donotadd a directed edge in either direction

This convention ensured that any edges that connected to a regulator gene
would have an outgoing edge from that gene, and edges connecting to a
target gene would have an incoming edge to that gene as long as its source
was not another target gene.

2.4 Stability selection for consensus networks

Stability selection was incorporated because the adjacency matrices from
huge had no measure of confidence on the edges. By using 100 subsamples,
each containing half of the full number of samples, 100 networks were
generated from 100 respective runs. From these, a consensus network
was built by scoring each edge e with a probability P(e) = % where
Ce is the count of networks which contained edge e and N is the total
number of networks (in this case 100). This was necessary in order to
create precision-recall curves which require confidence measures for each
edge.

Additionally, subsampling is well-suited for high-dimensional data to
provide sample control of error rates such as the False Discovery Rate
(FDR) (Meinshausen et al., 2010). It inherently supports the notion that
true edges will appear in multiple subsamples as opposed to one appearing
by chance.

3 Results
3.1 Runtime

Experiments were carried out using computing resources acquired through
the Center for High Throughput Computing (CHTC) at UW-Madison.
MERLIN runs took over a week to complete, while run times for huge
varied by estimation method. For Meinshausen-Biihlmann, a single run
typically took 30 minutes with the RIC selection method and 90 minutes

with the STARS selection method. For glasso, a single run typically took
over a day to complete. Due to technical issues with loading a custom
R installation to the CHTC servers, consensus networks for glasso runs
and Meinshausen-BiihImann estimation with the STARS selection method
were unable to created. A single run using the full dataset was run locally
for these methods and evaluated, however because edge confidence scores
were created using stability selection, precision-recall curves were unable
to be drawn for these respective runs.

3.2 Total predictions

Table 1 shows total edge predictions for each of the evaluated methods
against the three previously described gold standard networks. As evi-
dent by the tables, all of the nonparanormal methods have a very small
amount of edge predictions as compared to the true networks. Contrastin-
gly, the MERLIN approach appears to predict much more edges than the
true networks have. This leads to recall scores that are extremely high
when compared to the nonparanormal approach, but precision scores that
are lower than the Meinshausen-Biihlmann with RIC (mb-ric) selection
method for the most part. The literature-derived gold standard network has
significantly smaller amount of edges than any predicted or gold standard
network, leading to extremely low precision by the all approaches (and
low recall for the glasso method which had a small amount of predictions
to begin with).

Table 1. Total edge predictions for each method as compared to three gold
standard networks.

| Method | Gold |Predicted| Retrieved Recall |Precision|

mb-ric ChIP 9792 96/178820 0.00054 | 0.00980
glasso-ric | ChIP 974 9/178820 5.033E-5 | 0.00924
merlin ChIP 2873098 |25517/178820 | 0.14270 | 0.00888
mb-ric | LOGOF 9792 100/146564 | 0.0.00068 | 0.01021
glasso-ric | LOGOF 974 13/146564 | 8.870E-5 | 0.01335
merlin | LOGOF | 2873098 | 22051/146564 | 0.15045 | 0.00767
mb-ric | Literature | 9792 1/267 0.00375 | 0.00010
glasso-ric | Literature 974 0/267 0.0 0.0
merlin | Literature | 2873098 1827267 0.68165 | 6.335E-5

3.3 Precision-recall curves

Figure 2, Figure 3 and Figure 4 depicts precision-recall curves of the mb-ric
consensus network versus the MERLIN consensus network over the three
gold standard networks. All three curves show a very poor performance by
the nonparanormal methods as compared to the MERLIN approach. Area
under the precision-recall (AUPR) and receiver operating characteristic
(AUROC) curves are given below in Table 2. These values reinforce the
strength that MERLIN shows as opposed to the nonparanormal methods.
Specifically, it can be observed that the AUROC values for the nonpara-
normal method are all close to 0.5 (which can be obtained by a random
guessing method). MERLIN is not much higher than this, but still there is
a notable difference.

4 Discussion
4.1 Performance of huge compared to MERLIN

As the results show, MERLIN clearly outperforms the nonparanormal
methods in almost every category. When inspecting the total predicted
edges, MERLIN predicts more edges (on the order of ten times or greater)
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Inferred consensus networks compared to ChIP gold standard
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Fig. 2. Meinshausen-Biihlmann and MERLIN compared to ChIP gold standard.
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Fig. 3. Meinshausen-Bithlmann and MERLIN compared to LOGOF gold standard.
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Fig. 4. Meinshausen-Biihlmann and MERLIN compared to literature-derived gold stan-

dard.

Table 2. AUPR and AUROC values for each predicted network compared to

three gold standard networks.

| Method | Gold | AUPR | AUROC |
mb-ric ChIP | 0.12730 | 0.50013
merlin ChIP | 0.14477 | 0.52561
mb-ric | LOGOF | 0.10092 | 0.50015
merlin | LOGOF | 0.11306 | 0.52188
mb-ric | Literature | 0.08591 | 0.50066
merlin | Literature | 0.15193 | 0.62838

than each network, while the nonparanormal methods tend to under-

predict. One possible reason for this is that the graph estimation methods
used with the nonparanormal methods use parameters that enforce sparsity
more heavily than MERLIN. Specifically, the RIC regularization parameter
selection method may be choosing the regularization parameter A which
results in the sparsest possible network. For example, drilling down on the

glasso method shows an extremely sparse derived network which results
in 0 precision and recall when compared to the literature-derived network.
Conversely, the sparsity penalty parameter of MERLIN may not enforce
sparsity as strongly thus resulting in more predicted edges. Another reason
that the nonparanormal methods might be underpredicting is that only a
subset of the genes were used (5,573 of 20,551 genes) in order to make
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computation feasible. While MERLIN performs a greedy hill-climb of all
possible edges, the graph estimation methods from huge are unable to
retrieve many of these high-scoring edges in a high-dimensional setting.

Taking an in-depth look at MERLIN’s recall scores show that they
heavily outweigh those of the nonparanormal methods - it is able to retrieve
many of the true edges for each gold standard network. However, its high
number of edge predictions also leads to lower precision scores than the
mb-ric method. This is a natural outcome, as over-predicting edges tends
to drive recall up and precision down. Whether this performance is desired
is context dependent.

Another consideration for the poor performance of methods from huge
is that parameter selection was not varied. Due to time constraints and lack
of intuition about the graph estimation methods, default parameters were
used across all settings. These parameters need to be fine tuned in order
to achieve better performance, and it may be necessary to explore a vari-
ety of estimation methods, parameter settings and regularization selection
methods to get a better grasp on the predictive power of nonparanormal
methods. This lies outside the scope of this report but is a necessity for
conclusive results.

When looking at nonparanormal methods as a whole, another conside-
ration might be to try using the count-based data instead of gene expression
data. Since the nonparanormal transformation can be applied to any type
of data set, this could possibly lead to a better representation of the data as
input to methods in huge as compared to transforming the gene expression
data which has been calculated from relative abundances.

4.2 Future work

Future work in this comparison of nonparanormal methods to standard
methods requires that a variety of parameter selections are experimented
with. It may also prove to be useful to test across multiple datasets. This set
contained an amalgamation of studies which may introduce a batch effect
(normalization measures were used to combat this but it can still remain).

Additionally, it may be useful to establish one graph estimation method
(as a control) and only vary the transformation of the data - this work
compared multiple different graph estimation methods which may have
had a stronger hand in the performance difference than the nonparanormal
transformation. For example, only using Meinshausen-Bithlmann graph
estimation methods and comparing between untouched data and data that
has been transformed using the nonparanormal method.

Finally, using count-based data as input to the nonparanormal tran-
sformation could provide more conclusive results as it is inherently
non-Gaussian. This study used the same data set across all experiments to
see if the nonparanormal transformation could still outperform the greedy

approach, however it may be the case that it outperforms only in certain
environments.
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