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Abstract

This work extends Generative Adversarial Networks (GANs),
a framework for building generative models to capture a data
distribution, by substituting the generative model with a hu-
man. Specifically, we train a discriminative model to estimate
the probability that a sample comes from the true data distri-
bution in the same fashion as the original framework and then
give a human subject access to this discriminator for query-
ing generated inputs. The human then summarizes the query
results by predicting the data distribution after a set amount
of learning rounds. Experiments demonstrate that humans can
converge in performance with a small set of queries and show
potential for systems in which one or both components of a
GAN can be replaced by humans.
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Introduction
Generative Modeling

Discriminative models are those which compute a conditional
probability of the target Y given an observation x, and have
had widespread success over the years. However, generative
models (i.e. those that model the conditional probability of
the observable X given a target y) had previously shown lack-
luster results, especially in the field of image processing and
computer vision. One reason for this is that classic methods
such as Maximum Likelihood Estimation become computa-
tionally infeasible in high dimensional settings. Approaches
such as Deep Boltzmann machines (Salakhutdinov & Hinton,
2012) combat this by using approximations to the likelihood
gradient to maximize log likelihoods, however it would be
beneficial to leverage more exact solutions like backpropaga-
tion in the context of neural networks.

Generative Adversarial Networks

Goodfellow et al. (2014) present the framework of Genera-
tive Adversarial Networks (GANSs) to avoid these difficulties.
GANSs take advantage of two components, both a discrimi-
native and generative network, by pitting them against each
other for simultaneous training of the two. Specifically, the
discriminative model is trained to output the probability that
an example came from the true data distribution, and the gen-
erative model uses this probability to tune a mapping from
noise to the data distribution. Figure 1 depicts an example of
this relationship. This framework, presented in 2014, was
one of the first to show breakthrough results in generative
modeling and has since been extended in a variety of ways.
However, while widely successful, GANSs still have several
shortcomings and are subject to theoretical limitations shared
by models which do not have access to an oracle (Hanneke,
Kalai, Kamath, & Tzamos, 2018).

Figure 1: An example of the learning process in a GAN
framework where the generated distribution (green) slowly
conforms to the true distribution (black) and the discrimina-
tor (blue) is unable to differentiate the two. Figure adopted
from Goodfellow et al. (2014)

Human Generative Models

One area that remains relatively unexplored is how a GAN
framework, or any generative modeling framework, can be
modified to leverage humans. Human concept learning is ad-
vantageous over machines in a variety of settings. Although
the underlying mechanisms are not yet completely under-
stood, humans can learn very rich and flexible representations
as opposed to a feature space or set of rules that traditional
machine learning models tend to learn. Furthermore, humans
have been shown to generalize and learn well from a remark-
ably small number of examples, whereas machine learning al-
gorithms often need a large data set to produce similar results
and in many instances cannot achieve the same performance
(Lake, 2014). For these reasons, utilizing humans is an attrac-
tive solution to improving the success of machine learning
frameworks. This work aims to investigate two main ideas:
how the GAN framework can be extended by replacing the
generative model with a human, and how the mind navigates
concept learning when restricted to a generative process.

Related Work

Previous literature exists which utilizes humans in genera-
tive modeling. One such framework, presented by Peterson,
Aghi, Suchow, Ku, and Griffiths (2018), captures human cat-
egory representations within a GAN framework by using a
technique known as Markov Chain Monte Carlo with Peo-
ple MCMCP) (Sanborn & Griffiths, 2007). MCMCP is a
procedure which use humans as a valid acceptance function
in a Metropolis-Hastings flavor of MCMC. Specifically, the
human is presented with images from two categories that are
perturbed with noise, and the selected image is fed to a dis-
criminative model whose output is connected to a generative
model which sets up the next set of images. Thus, the system
is able to approximate high-dimensional deep feature spaces
captured by the MCMCP process. The paper also presents re-
sults from human distributions which perform competitively



with cutting-edge generative models.

Another approach by Hwang, Azernikov, Efros, and Yu
(2018) uses the GAN architecture in the classic way but relies
on human generated designs to train on. In the dental indus-
try, designing crowns takes years of human training to build
accurate and functional crowns which is extremely expensive.
Instead, they build a GAN system that trains on human gener-
ated designs to capture the intricacies of an experienced tech-
nician.

While both of these approaches incorporate humans in
some fashion to a GAN framework, the humans do not par-
take in the actual learning of the models. Consequently, the
models are unable to directly take advantage of the human
mind to improve the generated output; this is the main prob-
lem this work aims to address.

Approach
Minimax Optimization

As mentioned above, a GAN framework is comprised of two
models: a generator G that captures the data distribution by
mapping input noise to the observable feature space X, and a
discriminator D which estimates the probability that a sample
came from the true distribution. These two models compete
objectively in what is known in game theory as Minimax.
Minimax is a decision rule in which the objective is to mini-
mize the possible loss for a worst case (i.e. maximum loss)
scenario. This can be summarized by the following value
function:

Vv; = minmax v;(a;,a_;) (1
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where a; represents the action by player i and v; is the
player’s corresponding value function. Intuitively, this can
be thought of as a player maximizing their value, given the
minimum possible value their opponent could force.

Adversarial Networks Framed as Minimax

In the context of GANs, we first define the generator’s distri-
bution over the data x as pg. Furthermore, we define a prior
on the input noise z as p;(z). G(z;0,) represents the mapping
from noise to the observable feature space with some param-
eters 8,. Conversely, D(x;0,) symbolizes the probability that
a sample x came from the data rather than pg. The Minimax
problem can then be reframed as follows:

minmaxV(D,G) =
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In this scenario, we are training the models to maximize the
probability of assigning the correct label to the input (D(x))
while simultaneously minimizing 1 — D(G(z)).

Rectangular Concepts as Data Distributions

In order to build a cohesive experiment with human and ma-
chine models, distributions in the form of rectangle regions
were chosen. This choice was made for a number of rea-
sons; first and foremost, translating images between humans
and machines presents several logistical difficulties. A typi-
cal GAN framework set up for image generation will require
thousands or millions of iterations and examples in order to
get good performance, which is not feasible for a human sub-
ject to participate in. Additionally, it would be extremely dif-
ficult for a human to transfer the output probability of the
discriminator into meaningful tuning of their concept distri-
bution for an image.

On the other hand, using a one-dimensional target distri-
bution would be too simple for both parties of the system.
For example, having some target range that the discrimina-
tor learns to accept would be fairly easy, and a human could
systematically query numbers to determine the range - this
would not lend itself to meaningful results.

A rectangular distribution, specifically a square region of a
grid where points inside are labeled as true and points falling
outside are labeled as false, provides enough complexity for
both systems to engage in active learning. Rectangle are
commonly used to illustrate models of concept learning, as
shown by Mitchell (2017). Furthermore, although they are 4-
dimensional (two points representing the top left and bottom
right corners), they can be translated to a visual representation
for humans.

Experiment Details

The discriminative model is a neural network which takes in
a set of four points in two-dimensional Euclidean space in
the form of a flattened vector of eight values, which is then
fed into two densely connected layers of 16 nodes each. Each
layer uses a Rectified Linear Unit (ReLU) activation function,
and the final layer feeds into a Softmax activation to output a
probability representing whether the input came from the true
distribution or not. Finally, binary cross entropy is used as a
loss function and the Adaptive Moment Estimation (ADAM)
algorithm is used for optimization.
The experiment is laid out as follows:

1. A target rectangle is randomly generated in a 100x100

pixel grid

2. The discriminator alternates between training on “good”

points (all four points lie within the boundary) and random
sets of ”bad” points (anywhere on the grid)

3. The human repeatedly queries the discriminator by select-

ing sets of four points and receiving a probability evaluated
on that input

4. The human finally draws their interpretation of the target

rectangle (generative distribution) and compares it to the
true rectangle (target distribution)
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Figure 2: The coordinate grid presented to human subjects
for querying and guessing the target distribution.

Since a positive example is defined as all points lying
within the target distribution, alternating between good and
bad examples was necessary for the discriminator training be-
cause randomly generated examples almost never contained
all points within the boundary. Additionally, in order to sim-
plify the experiment and control for variability, target rectan-
gles were restricted to 50x50 pixel squares on the grid. Fig-
ure 2 shows the grid and point interface used in the experi-
ments.

Results

Experiments were conducted by varying the number of iter-
ations allowed before forcing the human subject to guess the
target distribution. Since the target concept can be defined
by two points, error can be defined by a residual vector be-
tween the coordinates making up the target concept. Error
was measured in three ways: Euclidean distance (3); Root
Mean Square error (4); Relative normalized error (5).

If a is our vector for the actual target concept and g is our
guessed concept, the residual vector is r = a —g. Then the
error measures are given by the following equations:
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Figures 3 and 4 shows the error measures of target con-
cepts guessed by the human subject as the number of itera-
tions per experiment grows. Experiments were conducted by

increasing the number of iterations from 5 to 100, in intervals
of 5, for 20 total experiments. Additionally, Figure 5 shows a
plot of the discriminator output probabilities over the course
of one experiment with 100 queries.

Lastly, to investigate the measured concept error as a func-
tion of iterations per experiment, Figure 6 shows the relative
normalized error over 10 experiments, each with an increas-
ing number of iterations before guessing the distribution.

Error measures between guessed and actual rectangle distributions

401 1 -=- Euclidean Distance
,"| —-= RMS Error
A
351 H
1
i
304 [ i
[ \
A I n
CLE A A . I L
LY 1 on 1 [ 4
5 /o ! [BEY A i 1y
520 VoA ) I A g
! (I ' 1 Y
‘\ ] /\ [ ,’ “ ,' \ H lI ',
15 voora oy [ [ roy
A VA Ty T
A\ ! \1/\|/\ H Fan AL
17 % 7 AR VAR A Ao \y
10 E \ A S A T I W N R N )
AR VAT AS T AR AR
v Y v AN 1 \‘~~,'./ \ i \'/.
° YN ALl Sy
v
0 T T T T T
20 40 60 80 100

Iterations

Figure 3: Euclidean distance and RMS Error of generated
target concept varied over number of iterations.
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Figure 4: Normalized error of generated target concept varied
over number of iterations.

Discussion
Error Measures Under Experiment Conditions

As Figures 3 and 4 show, error did not show a consistent trend
of increasing or decreasing as the number of iterations grew.
In fact, the error seems to spike back up after every 10 it-
erations or so, while crashing down in between. The rela-
tive normalized error also shows this trend, meaning it’s not
just exaggerated by large values for the concept boundaries.
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Figure 5: Discriminator output probabilities over 100 queries
in one experiment.

Relative error between guessed and actual rectangle distributions

0.30 -

0.25 -

Relative Error
o
N
o

=]
-
v

0.05 A

T T T T T
2 4 6 8 10
Iterations

Figure 6: Normalized error of generated target concept varied
over number of iterations from 10 experiments.

One explanation for this might be that past a certain number
of iterations, it might not be beneficial to continue querying
the discriminator and may actually harm the learning process.
However, since the error also shows very low values on alter-
nating experiments, another explanation might be that inher-
ently humans make better predictions after an even number
of queries. Consequently, adding an odd number of queries
after an even number (e.g. 55 or 85) may throw the human off
from their internalized concept. This study makes no theoret-
ical claims to back up this suspicion, although many studies
in the literature exist to support that humans prefer even or
whole chunks.

One anecdotal note from the participant in this study is that
beyond a certain number of iterations, previous query results
were somewhat forgotten and the subject found themselves
re-querying the same spots repeatedly to remember how the
discriminator responded. This would provide further support
that past a certain number of iterations, more queries are not
beneficial and might even make results worse with plethora of

data to process. It might be an overload of information for the
human mind, but one way to combat this would be to give the
subject access to all previous queries and results - still, this
study acknowledges that it would be difficult for a human to
process hundreds of query results when making a decision.

In order to investigate further, experiments were also run
by varying the number of iterations per experiment from 1 to
10 to get a fine-grained analysis of how the number of itera-
tions played a role when feedback was sparse. Figure 6 de-
picts a general downward (albeit noisy) error trajectory which
settles close to 0.10 compared to the initial error around 0.30.
This tells us that before 5 iterations the performance is quite
unpredictable, however after 5 iterations the human subject
has had enough queries to solidify the concept in their mind
enough to restrict the error to some range. Intuitively this
makes sense, as after 4 queries, each of the four quadrants
can generally be ruled out (target concepts took up 25% of
the the grid) and then further queries allow for fine tuning of
the distribution.

With this all being said, this still shows that humans are
able to converge to a learned target distribution relatively
quickly (under 10 examples) which supports the hypothesis
that humans can generalize effectively from a few examples.

Human Learning Trajectory

Another aspect of the generative process that was probed was
the actual learning process of the human. Examining Figure 5
shows the plot of query probabilities returned by the discrim-
inator for each iteration over one 100-iteration experiment.
We see that in the first 50 iterations, there are about 5 valleys
which represent guesses that are extremely low, and then the
probabilities taper upward and converge very close to one for
the rest of the experiment.

The first insight to gain from this is that it enforces the
theory that it is more informative to learn from negative ex-
amples first than to continually receive positive examples. As
shown by the trajectory, the initial spikes help rule out certain
areas of the grid from being part of the target concept. Then,
the probability remains increasingly closer to 1 until it finally
converges.

We can also conclude that the discriminative model has ei-
ther learned the concept extremely well from its training, or
is just so sensitive that it outputs almost binary values. If
the latter is true, it might be easier for the human subject to
just receive a binary output and make their decision based on
that. As the experiment currently stands, a probability value
might not give enough intuition to the human subject in how
to tune their current internalized concept - the plot supports
the idea that the subject could have randomly placed points,
memorized which random sets returned high or low values,
and then guessed based on that. In fact, a continuous proba-
bility value might even confuse the subject more by offering
’false” guidance when one or two points fell out of the bound-
aries. However, the subject noted intermediate probabilities
in the range of 0.25 to 0.75 were perceived to be helpful in
tuning their distribution.



Future Work

This study lays the foundation for constructing a GAN frame-
work using human subjects as generative models. However,
many questions remain to be explored in this context.

In the domain of rectangle concepts, one question is how
many query points are adequate for both a generative and dis-
criminative model to internalize the target concepts. This
study chooses four arbitrarily, since although rectangles are
made up of four corners, the subject never queried by con-
structing four-point rectangles. It remains to be seen whether
increasing or decreasing the number of points would help im-
prove performance.

Second, further studies are necessary to understand how
humans can interpret a scalar probability in order to fine tune
their next query. Experiments where the value is thresholded
to a binary output would help bring more conclusive results
in this aspect.

Lastly, this study did not compare results to a traditional
GAN framework with machines in both components. To ex-
tend this study, future work could build a generative model
which would be able to ”guess” a target concept instead of
just learning what small point set (possibly bunched around
one point) would land the highest probability. One way to
do this would be to enforce some sparsity constraint around
the points so they are spaced out and draw a rectangle around
that. A comparative analysis could then conclude whether hu-
mans can outperform machines with a much smaller dataset,
or that humans can outperform machines until a certain num-
ber of examples have been queried.

Appendix

All code and materials can be found at the following reposi-
tory:
https://github.com/vperiyasamy/human-gan
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