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ABSTRACT

Towards a Trustworthy Android Ecosystem

Vaibhav Rastogi

Mobile devices have become ubiquitous and their sales proportions already exceed the sales

of traditional personal computer systems such as desktops and laptops. The number of mobile

devices will only increase, and perhaps at an even higher rate in the coming years. Non-traditional

architecture, operating environments, and other requirements necessitate rethinking of security and

privacy solutions for mobile devices.

Android is the most dominant mobile operating system and so this work makes an effort to-

wards a trustworthy Android ecosystem. We use Android ecosystem as the umbrella term for the

interdependent entities such as the Android OS, the applications, application stores developers,

devices, the users, and the vendors. While it is challenging to improve security and privacy of

the ecosystem owing to conflicting interests of the entities involved, we claim that it is possible to

develop malware-detection and privacy-enhancing solutions that can deployed by any party inde-

pendently of others in the ecosystem. In particular we look at both offline and online schemes that

do not require firmware modification, extra privileges, or support from developers. Four separate

works are discussed: (a) AppsPlayground, a dynamic analysis sandbox to study the security and

privacy properties of Android applications; (b) DroidChameleon, a framework for transforming
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Android malware and evaluating anti-malware resistance against transformed malware; (c) Au-

toCog, a system for inferring the needed application permissions from an application’s natural

language description; and (d) Uranine, which can be used to detect privacy leakages in Android

applications without modifying the Android platform.
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CHAPTER 1

Introduction

Mobile devices have become increasingly ubiquitous and their sales proportions already exceed

the sales of traditional personal computer systems such as desktops and laptops. The number of

mobile devices will only increase, and perhaps at an even higher rate in the coming years. Mobile

devices are often always-on, always with the user, and carry a lot of user’s private data. The

security of these devices is thus an important concern.

Security design and issues in mobile devices differ from those in traditional personal comput-

ers. Mobile devices hold much more private data for the user, such as their address books, call logs,

and so on. Being always with the user, there are added risks such as location tracking. Further-

more, smartphones provide services, like calling and text messaging, exploitation of which could

cost the user money. Added to these are security designs for new operating system architectures.

There are further issues that need to be dealt with: not hogging the device’s battery is one example.

We use ‘smartphone ecosystem’ as an umbrella term for the interdependent entities such as the

smartphone operating system and its developer, the devices, the applications, application stores,

application developers, devices, the users, the device vendors, the cellular carriers, and so on.

Enforcing security in an ecosystem would require deployment of solutions at multiple points in

this ecosystem, usually with support of many different entities involved in the ecosystem. This

makes the problem challenging – entities such as the consumers, vendors and the developers may

act oblivious to the interest of other entities.



15

One model to enforce security is that with a centralized authority, for which Apple’s iOS de-

vices serve one of the best examples. The central control of Apple allows for greater policing as to

what content reaches the consumers. Applications may only be installed from the Apple-controlled

AppStore, and there are strict policies enforced in the review of those applications.

An alternative model is that adopted by Android. Android is the most dominant smartphone

operating system, primarily led by Google. It is based on the Linux kernel and provides a mid-

dleware implementing subsystems such as telephony, window management, management of com-

munication with and between applications, managing application lifecycle, and so on. Due to a

permissive open source license and liberal policies, it affords an open model, whereby device ven-

dors and carriers can customize the OS and use it in their devices, developers can create and deploy

applications with few restrictions, and consumers can install applications from any source. This

openness drives innovation and competition and hence may be seen as a good thing. However, it

comes at a price – despite the security features included in Android as a modern operating system,

user privacy and malware have become a dominant concern. As mentioned above, it is not easy to

enforce security in a decentralized ecosystem where entities may have conflicting interests. This

work hinges on enabling adequate security and privacy properties in such an ecosystem without

sacrificing the desired openness. Specifically, we make the following thesis statement:

It is possible to develop malware-detection and privacy-enhancing solutions that

can be deployed by any party in the Android ecosystem independently of other

parties.

We propose and describe security and privacy solutions in the open, decentralized model pro-

vided by the Android ecosystem where one may not expect support for a solution from all entities
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Figure 1.1. Some of the entities involved in the Android ecosystem and the pro-
posed solutions. AppsPlayground may be deployed by application stores or third
parties that wish to analyze applications. DroidChameleon evaluates and proposes
improvement in security products. AutoCog may again be deployed by application
stores or third parties to provide users of the description-to-permission fidelity of
applications. Uranine-instrumented applications can be directly run on the devices;
the instrumentation service may be provided by any third party.

of the ecosystem. Yet it should be possible for the interested parties to deploy and take advantage

of such solutions.

We now discuss the design space for such solutions. Both online (real-time on-the-device

detection and monitoring) and offline solutions are possible. Offline solutions ideally fit these

requirements: they can be deployed off-the-device and the results collected from there can then

be used to make decisions about security and privacy on the device. It is also be possible to

convert some online solutions into offline solutions. Finally, there are online solutions that do not

require firmware modifications, special privileges from the operating system, or support from other

application developers.

We look at both online and offline malware-detection and privacy-enhancement solutions with-

out requiring any firmware modifications, special privileges from operating system, or support
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from developers. Four separate works are discussed (Figure 1.1 identifies where these works are

deployed in the Android ecosystem), (a) AppsPlayground, a dynamic analysis sandbox deployable

at application markets or by third parties to study the security and privacy properties of Android

applications; (b) DroidChameleon, an evaluation of current anti-malware resistance against obfus-

cations in malicious applications and proposal of solutions that may be implemented by security

vendors; (c) AutoCog, a system for inferring the needed application permissions from an appli-

cation’s natural language description; and (d) Uranine, a work in progress, which can be used

to detect privacy leakages in Android applications without modifying the Android OS and which

can be deployed by application markets or directly on device, possibly backed by off-device cloud

services, by the interested users. These works are by no means exhaustive; they however cover

the design space discussed above. AutoCog is primarily an offline analysis system whereas App-

sPlayground is a general tool to convert many online analysis techniques into offline techniques.

Uranine is primarily online, real-time technique with a specific design goal of not modifying the

Android OS or needing higher privileges than those available to normal applications. Finally,

DroidChameleon also deals real-time on-the-device malware scanning of applications and suggests

the use of static analysis, which does not require any firmware modification or higher privileges.

1.1. AppsPlayground

Today’s smartphone application markets host an ever increasing number of applications. The

sheer number of applications makes their review a daunting task. AppsPlayground is a frame-

work that automates the analysis of smartphone applications. AppsPlayground integrates multiple

components comprising different detection and automatic exploration techniques for this purpose.

Such a system could easily be deployed at an application market to analyze all applications being

submitted. Third parties, such as security vendors, may also deploy AppsPlayground to provide
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an independent evaluation of applications published at Android application markets. We evaluated

the system using multiple large scale and small scale experiments involving real benign and mali-

cious applications. Our evaluation shows that AppsPlayground is quite effective at automatically

detecting privacy leaks and malicious functionality in applications.

1.2. DroidChameleon

Mobile malware threats, especially on Android, have recently become a real concern. It is

important to measure the available defense against mobile malware threats and propose effective,

next-generation solutions. We evaluate the state-of-the-art commercial mobile anti-malware prod-

ucts for Android and test how resistant they are against various common obfuscation techniques

(even with known malware). We developed DroidChameleon, a systematic framework with vari-

ous transformation techniques, and used it for our study. Our results on ten popular commercial

anti-malware applications for Android are worrisome: none of these tools is resistant against com-

mon malware transformation techniques. Finally, in the light of our results, we explore possible

remedies for improving the current state of malware detection on mobile devices. The general un-

derstanding has been that operating system must provide additional support to anti-malware tools

to detect malware threats. While we agree with this, we point out that even without operating

system support, we can improve state-of-the-art by basing detection on malware semantics rather

than syntactic patterns in malware. Such transformation-resilient solutions can be developed in-

dependently by an anti-malware vendor without requiring central support, such as from operating

system developers or device vendors.
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1.3. AutoCog

The booming popularity of mobile devices is partly a result of application markets where

users can easily download wide range of third-party applications. However, as discussed, due

to the open nature of markets, especially on Android, there have been several privacy and secu-

rity concerns with these applications. On Google Play, as with most other markets, users have

direct access to natural-language descriptions of those applications, which give an intuitive idea

of the functionality including the security-related information of those applications. Google Play

also provides the permissions requested by applications to access security and privacy-sensitive

APIs on the devices. Users may use such a list to evaluate the risks of using these applications.

To best assist the end users, the descriptions should reflect the need for permissions, which we

term description-to-permission fidelity. We present AutoCog, a system to automatically assess

description-to-permission fidelity of applications. AutoCog employs state-of-the-art techniques

in natural language processing and our own learning-based algorithm to relate description with

permissions. In our evaluation, AutoCog outperforms other related work on both performance of

detection and ability of generalization over various permissions by a large extent. On an evalu-

ation of eleven permissions, we achieve an average precision of 92.6% and an average recall of

92.0%. Our large-scale measurements over 45,811 applications demonstrate the severity of the

problem of low description-to-permission fidelity. AutoCog helps bridge the long-lasting usability

gap between security techniques and average users.

1.4. Uranine

The wide range of third party applications on modern mobile platforms enrich the environment

and increase usability. There are however privacy concerns centered around these applications

– users do not know what private data is leaked by the applications. Previous works to detect
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privacy leakages are either not accurate enough or require operating system changes, which may

not be possible due to users’ lack of skills or locked devices. We present Uranine1, a system

that instruments Android applications to detect privacy leakages in real-time. Uranine does not

require any platform modification nor does it need the application source code. We designed

several mechanisms to overcome the challenges of tracking information flow across framework

code, handling callback functions, and expressing all information-flow tracking at the bytecode

level. Uranine further includes static analysis to instrument only paths along which privacy leakage

may happen. Our evaluation of Uranine shows that it is accurate at detecting privacy leaks and has

acceptable performance overhead.

1.5. Organization

The rest of this prospectus is organized as follows. Chapter 2 describes AppsPlayground.

Chapter 3 presents the evaluation results of our DroidChameleon and the proposed solutions for

improving the present situation. Chapter 4 presents AutoCog while Uranine is presented in Chap-

ter 5. Finally, a conclusion is presented in Chapter 6.

1Uranine is a dye, which finds applications as a flow tracer in medicine and environmental studies.
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CHAPTER 2

AppsPlayground: Automatic Security Analysis of Smartphone Applications

2.1. Introduction

Mobile devices such as smartphones have gained great popularity in response to vast reposito-

ries of applications. Most of these applications are created by unknown developers who may not

operate in the users’ best interests, leading to malware [5, 92] and frequent exposure of privacy

sensitive information such as phone identifiers and location [46, 48, 49].

Recently, researchers have proposed both static and dynamic security analysis techniques for

smartphone applications. While static analysis approaches such as those used by PiOS [46] and

Enck et al. [49] scale to large numbers of applications, they do not capture runtime environment

context such as configuration variables and user input. More importantly, code may be obfuscated

to thwart static analysis, either intentionally or unintentionally (such as stripping symbol informa-

tion of native binaries to reduce size).

On the other hand, TaintDroid [48] uses dynamic analysis to capture runtime environment

context. However, the researchers had to manually navigate the user interfaces of each analyzed

application to sufficiently exercise dangerous functionality. More recently, DroidScope [142] used

dynamic analysis for malware forensics. Large-scale dynamic analysis however requires more than

what has been proposed earlier – a fast analysis system and strategies to provide automatic code

coverage.

In this chapter, we propose AppsPlayground, referred to as simply Playground for brevity, a

framework for automated dynamic security analysis of Android applications. Playground is meant
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to analyze applications for both malware, i.e., apps that have a malicous intent, and grayware, i.e.,

apps that are not malicious but may still be annoying, for example, by leaking private informa-

tion for a legitimate purpose but without user’s awareness. From this point on, for the sake of

conciseness, we will not particularly distinguish between malware and grayware and refer to them

both as malware. An automatic dynamic analysis framework needs to possess not only detec-

tion techniques for identifying malicious or annoying functionality but also automatic exploration

techniques to explore the application code as much as possible. Furthermore, the dynamic analysis

environment needs to appear as real (in this case, a real smartphone) to the app as possible, lest a

malicious app can easily detect the special environment and not show any malicious behavior.

In Playground, solutions to all the above requirements are integrated together in a modular

manner. We use multiple detection techniques, ranging from taint tracing to kernel-level system

call monitoring. For taint-tracing, we are able to seamlessly integrate and reuse TaintDroid [48],

an already available taint-tracing engine with very good performance for Android into the rest of

our system. In order to deal with root attacks in Android, we describe vulnerability conditions

in Android as succint signatures in terms of system calls and kernel-level data structures. These

signatures may easily be incorporated into a dynamic analysis.

For automatic exploration, we find that the nature of Android imposes non-conventional re-

quirements on the exploration techniques that need to be used. Application code can be triggered

by several kinds of system events and so such events need to be simulated. Moreover, most of

the apps in Android provide GUI, which requires sophisticated GUI exploration schemes. Trivial

approaches for GUI exploration such as fuzz testing have their advantages in their simplicity and,

if designed properly, have the ability to eventually exhaustively explore a finite state space. They

however take more time and are sometimes insufficient because application user interfaces have

complex requirements such as login credentials for Internet services. Therefore, we also need to
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intelligently drive the user interface to exercise code implementing interesting and dangerous func-

tionality. Our heuristic-based intelligent execution technique is able to avoid redundant exploration

and is able to use contextual information to fill editable text boxes meaningfully.

To demonstrate the practical advantage of Playground, we evaluated 3,968 from the official

Android Market (now Google Play). We identified exposures of privacy sensitive information in

946 applications, flagged by the taint-tracing engine. Of these, 844 applications leaked phone

identifiers (such as phone number and IMEI), and 212 applications leaked geographic location.

We note that detecting privacy violations still requires manual confirmation, as TaintDroid only

identifies that information has left the device over the network interface, and not privacy violations.

For further validation, we also tested the applications used in the TaintDroid study. Playground’s

findings almost completely coincided with the findings manually made by the TaintDroid authors

on the much smaller set of thirty applications they evaluated. Furthermore, we also evaluated

Playground on known malware samples, falling under diverse categories of root attacks and SMS

trojans, and were able to detect the malicious nature of all of them.

Finally, to evaluate the performance of automatic GUI exploration, we compare our system

with GUIRipper [96], a system that automatically generates test cases based on windowing ele-

ments in traditional desktop GUIs. To the best of our knowledge, this is the only system, apart

from fuzz-testing, available in the literature for GUI exploration. It lacks advanced techniques

such as filling in contextual data in text boxes and repeatedly exercising GUI widgets to achieve

better code coverage, both of which we have found are often critical requirements when testing

Android applications. Our comparison with an Android port of this system shows our technique to

achieve a mean 30% improvement in terms of code coverage.

To summarize, this work makes the following contributions.
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• We propose AppsPlayground (or simply, Playground), a modular framework for scalable

dynamic analysis of Android application.

• We identify the key requirements for automatically exploring Android applications. We

use automatic system event triggering and propose and develop a new intelligent execu-

tion technique that can use contextual information to provide meaningful textual input.

• We describe vulnerability conditions for known vulnerabilities in Android as succint sig-

natures that may be used in dynamic analysis. These vulnerability conditions are neces-

sary for a system compromise.

• We implement the AppsPlayground framework for Android and evaluate 3,968 applica-

tions from the official Android app Market. Our analysis identified exposures of privacy

sensitive information in 946 applications. Moreover, we were able to confirm the mali-

cious nature of already known malware samples using this framework.

The remainder of this chapter proceeds as follows. Section 2.2 provides relevant background

in Android and Section 2.3 gives an overview of Playground. Sections 2.4, 2.5 and 2.6 provide

detailed discussion of the techniques incorporated into Playground. Section 2.7 discusses the

implementation of Playground. Section 2.8 describes our measurements with Playground. Sec-

tion 2.9 discusses the effectiveness of the automatic exploration techniques employed. Section 2.10

presents related work and Section 2.11 concludes.

2.2. Android Background

Android is a widely popular and open source operating system designed for smartphones and

other mobile devices. While Android is based on Linux, it defines an entirely new middleware and

GUI environment in which applications execute. Applications are mostly written in Java, which is
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compiled to Dalvik bytecode, which runs in a virtual machine similar to the Java virtual machine.

Apart from Java, Android also allows parts of apps to be coded in native code.

Every Android application runs as an unprivileged user with Linux UIDs effectively being

used to provide application sandboxes. Android applications are composed of components. There

are four component types: activity, service, broadcast receiver, and content provider. The user

interface is defined by one or more activity components. Services are meant to run in background

while content providers manage access to data. Broadcast Receivers are registered with system

services and can receive system events, such as reboot completed, or an SMS received, and so

on. Once a broadcast receiver is registered to receive a system event, the code specified in the

broadcast receiver is run whenever the system event is triggered.1 Most system events are guarded

by permissions, which the app must declare and get approved for at installation time.

For automatic exploration, it is necessary to understand the GUI features in Android. Each

activity corresponds to a screen displayed to the user. This screen is functionally equivalent to a

traditional GUI window, the only difference being that only one screen is shown at a time (with

minor exceptions), whereas traditional GUIs can typically display multiple windows.

An application’s GUI consists of several activities that invoke one another and possibly return

results. At any point in time, only one activity has input focus and processing. This activity is

referred to as the active activity. When one activity invokes another, the former is paused and

the new activity is pushed to the top of the activity stack and made active. Once an activity has

completed its work, it terminates, optionally returning a value, and the next activity on the stack is

made active. Note that activities are not limited to invoking activities within the same application.

A sequence of related activities on the stack is called a task.

1This may sometimes not hold due to, for example, abort of a broadcast.
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The activity GUI layout is commonly defined in XML but may also be defined programmati-

cally. As in traditional GUIs, an Android window consists of widgets, which are are referred to as

views in Android terminology. The Android library supplies several useful views which may either

be standalone (e.g., buttons) or act as containers for other views. In addition to the window layout,

an activity can define a menu that appears when the user presses the physical “Menu” button on

the phone.

Example. Figure 2.1 shows a simple example application. The application consists of two activi-

ties, “Hello World” and “About” (Figures 2.1a and 2.1b, respectively). The “Hello World” activity

has three buttons which bring up the “Hello World!!” message in three different languages. The

“About” activity is non interactive. There is a menu attached to the “Hello World” activity, which

we model as a separate window. After opening this menu, one may click on the only option (named

“About”) to go to the “About” activity. Figure 2.2 depicts the GUI hierarchy of the window in Fig-

ure 2.1a.

2.3. AppsPlayground Overview

This section gives a broad view of Playground. We begin with describing the overall architec-

ture of Playground followed by the different components involved in brief.

2.3.1. Overall Architecture

We seek to design a general framework for automatic dynamic analysis for smartphone applica-

tions. Playground is built as a virtual machine environment. Specifically, it repurposes the An-

droid emulator, available with the Android SDK, for the dynamic analysis environement. Built

on Qemu [11], the emulator emulates an ARM machine and provides support for a few features

available on a real phone, such as telephony.
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(a) (b) (c)

Figure 2.1. A simple application with three windows. Window (a) invokes win-
dow (c) which invokes window (b). (c) shows only the lower half of the screen
emphasizing the menu window.

Figure 2.2. The GUI hierarchy for the window in Figure 2.1a
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Figure 2.3. Architectural overview of AppsPlayground analysis framework

A virtualized environment is essential to providing scalability required for malware analysis.

For example, every analysis can use a fresh snapshot of the environment without affecting the anal-

yses of other samples; this is not feasible when using real devices. However, different from a few

past approaches [142], we do not employ virtual machine introspection, a technique in which the

virtual machine (VM) guest is run unmodified and any analysis tools run outside the VM, analyz-

ing its physical memory to get information from inside the virtual machine. This approach while

complicated, allows the analysis tools to be strictly more privileged than the analyzed environment.

In the case of Android however, apps typically run as unprivileged users and hence introspec-

tion is not actually required. Even for known attacks that try to get root privileges, signatures may

be developed for identifying the attack and safely recording it before the privilege escalation actu-

ally completes. For apps requiring root (through su), these arguments do not apply; however, the

number of such apps is low and the number of rooted devices is also significantly smaller. Further-

more, the complexity of introspection also hinders in the retrieval of GUI information or sending

events from outside the emulator.

Figure 2.3 shows the architecture of Playground. Playground has several components compris-

ing multiple detection techniques, multiple automatic exploration techniques, and techniques to
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make analysis environment appear like a real phone. All these components work independently of

each other and integrate together in a plugin-able manner. We next briefly discuss the components

listed in the figure.

2.3.2. Playground Components

Detection techniques are the components that actually provide the detection of a possibly malicious

functionality while a sample is being tested. The detection techniques that we include are taint

tracing for information leakage detection, based on TaintDroid; sensitive API monitoring, such as

monitoring for the SMS API; and kernel-level monitoring for detection of root exploits. Disguise

techniques are those that make the environment appear like a real device; these include the use of

realistic phone identifiers, keeping realistic data in phone databases, and so on.

Automatic exploration techniques help in automatically increasing code coverage of the appli-

cation code. Without automatic code coverage, it is likely that much of the code in an application

will not be executed. Playground simulates events, such as location change and sms received, to

trigger code in event receivers (primarily broadcast receivers). To explore the app GUI, we use

fuzz testing and intelligent black-box execution. Since fuzz testing simply sends in a stream of

random inputs, it may be described as a random walk on the state space. Given the ability to

restart from the start state any number of times, it can eventually explore any finite connected state

space. Applications that do not need any meaningful text to be filled in have a small state space

consisting of screen taps and drags. Fuzz testing can deal with such applications quite well with-

out any knowledge of their interaction model. On the other hand if some meaningful texts such

as login credentials are required, fuzz testing cannot enter in the right input, and fails. For such

cases, we need intelligent execution, which heuristically determines what data has to be entered in.
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Furthermore, since fuzz testing is random, it may sometimes fail to explore some states. Intelligent

exploration however deterministically explores states that it can model.

Intelligently driving the user interface of smartphone applications presents several challenges:

• Modeling the GUI. In order to intelligently exercise the user interfaces of applications, a

representation of the program flow must be abstracted from the GUI. The closeness of this

approximation to the actual program flow determines the completeness of the automation

algorithms.

• Efficient exploration strategy. Even simple applications can have a very large (if not in-

finite) number of unique program states based on user input (e.g., a counter). Practical

testing of applications requires an efficient exploration strategy with the ability to effec-

tively discover distinct and useful states and remove redundant states.

• Context determination. Applications often have text fields that require special values.

Leaving them empty or filling in garbage can limit application exploration. A few real

world examples follow.

– Login credentials. Unless a correct username and password is supplied in the correct

fields, the exploration of the application will be seriously limited.

– Cities and zip codes. Application functionality depending on zip codes and cities

entered in input fields will likely fail in the presence of random input.

– Duplicate input fields. Applications occasionally require the user to enter the same

information in two text fields for consistency checks, e.g., passwords, PINs, and

Email addresses.

– Input format. Fields such as Email addresses and phone numbers are occasionally

required to be entered in a specific format before the application will accept the input.
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– Dates. A future date may not work when a past date is expected. An application

which asks for date of birth may not move forward if a date is in the past but is one

that does not indicate the user is now over 13.

In all these cases, Playground must infer from the context present around text fields what

should be filled in. We note in most cases, these inputs are validated by remote servers

and so even symbolic execution cannot help determine correct values for them.

2.4. Detection Techniques

In this section we discuss the various detection techniques that are included in Playground.

Other techniques may be included as needed.

Taint tracing. Playground uses taint tracing to track privacy-sensitive information leakage. We

have integrated a slightly modified version of TaintDroid [48], an open-source, high-performance

taint-tracing system for Android. We note that TaintDroid works only for Dalvik bytecode only.

Native code taint-tracing would likely require dynamic binary instrumentation or VM instrospec-

tion. We currently do not use such methods for native code taint-tracing; these methods result in a

typical slowdown of 10x to 30x for the code and hence are not very attractive from the performance

perspective.

Sensitive API monitoring. Playground monitors a few system APIs for detecting possibly ma-

licious functionality. The SMS API is one of the most exploited API in Android. Malicious apps

use it to send text messages to premium rate numbers without user’s awareness. Playground can

record the destination and content of the SMS messages sent by an app. Similarly, Playground

monitors the Java reflection API to record method calls and field accesses through reflection as

some of these may be indicative of obfuscated codes typical in malware. Playground also monitors

dynamic bytecode loading and can inform the analyst of which bytecodes (contained in a .dex file)
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were loaded. We note that monitoring reflection and bytecode loading APIs is done for application

code only. Framework code is trusted and so need not be monitored. The differentiation is done

on the basis of class loaders; in Android the class loaders for application code are always different

from the class loader that loads the framework code.

Kernel-level monitoring. We also provide kernel-level tracking to identify known root-exploits.

Our method of identification of root exploits is based on vulnerability conditions and is thus im-

mune to code polymorphism. We observe that known root exploits such as rageagainstthecage,

exploid, and gingerbreak, all have signatures that can easily be used in dynamic analysis without

raising too many false alarms:

• Rageagainstthecage/Zimperlich. These attacks fork RLIMIT NPROC (the maximum al-

lowable) number of processes for a UID (the UID associated with the malicious app) and

then make zygote (a system daemon) spawn another process for that user. The zygote

daemon typically uses setuid system call to change the UID to the app’s uid. However,

since this UID already has as many processes as are allowed, setuid fails, and the app

gets a process with root privileges. We observe that this attack can be detected simply by

monitoring if the number of processes for a user comes close to the maximum allowed.

• Exploid (CVE-2009-1185). This exploit is based on a vulnerability in the init, in which

init does not check the origin of NETLINK messages. Untrusted code may thus be regis-

tered and get called later. For this vulnerability to happen, a neccessary condition is that

the app code must send a NETLINK message later. We can use this as our signature.

• Gingerbreak (CVE-2011-1823). This exploits a vulnerability in the vold daemon in An-

droid, again requiring untrusted code to send NETLINK messages to vold. Hence our

signature here is similar to that for exploid.
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We note that the above three are representative examples. In general we can encode condi-

tions for any vulnerability in code; the checks will be inserted in the crtical path that leads to the

given vulnerability. We note that the OS used for analysis need not actually be vulnerable for the

vulnerability conditions to get triggered. Hence, attacks for vulnerabilities in multiple versions of

Android may be detected on the same version. Moreover, attacks that would normally not succeed

in the emulator may also be detected.

2.5. Disguise Techniques

Playground adopts a number of measures to make the analysis environment appear realistic.

It provides real-looking phone identifiers to the app. These identifiers include the phone number,

IMEI, IMSI, Android ID and so on. We also modify the build.prop (a file that contains several

properties about the system) properties to match a real device. In a similar vein, we can also

modify identifiers that relate to Qemu and other virtualization-related features.

Furthermore, we provide realistic data on the device, such as contacts, SMS, pictures, files on

SDCard, and so on. We also provide additional libraries such as the Google Maps library, which is

available on real devices. In addition Google apps (a set of Google proprietary apps available on a

majority of Android devices) may also be provided though we do not provide them at this moment.

Data from sensors such as GPS is also made to appear realistic. Currently, we do not support all

sensors. Support for microphones is partial while we do not have any support for accelerometers.

We note that evasion of virtualized environments has long been an issue. Even if the above

problems are fixed, there will always be evasion techniques based on timing (virtual devices run

slower) and Qemu fingerprinting, for example [117]. These problems are general to all dynamic

analysis systems.
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2.6. Automatic Exploration Techniques

We discuss here the techniques used for automatic exploration in Playground. The next two

subsections describe event triggering and intelligent execution. Fuzz testing being almost a triv-

ial technique is skipped from discussion here. Currently, Playground does not use any symbolic

execution, which appears to be a good option for state space exploration of an app. We note that

there are presently no effective symbolic execution solutions for interactive applications such as

those involving GUI. Even projects developed around symbolic execution use random walks or

fuzz testing to explore the GUI parts of the applications [125]. Symbolic execution can however

be used to make event triggering better. For example, SMS messages received from only certain

numbers may trigger some code in the application; symbolic execution could be used to construct

the right kinds of messages here. We plan to include symbolic execution into Playground as a

future work.

2.6.1. Event Triggering

Several API elements in Android are event based. Applications may register some code to be

triggered whenever an event happens. There are specific events raised by the system when, for

example, an SMS is received, the device location changes, the system completes a reboot, a call is

received or is hung up, and so on. Sensitive events are guarded by permissions, which an app must

declare statically and get approved for at the time of installation. Many malicious applications

have been found to register for specific events [148].

Based on the permissions declared by the application, we raise specific events in the system.

For example, if an application contains the BOOT COMPLETED permission, Playground artifi-

cially raises the reboot completed event (note that we use VM snapshots only; booting the VM will
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Figure 2.4. Overview of the intelligent execution module of Playground

be much more time consuming). This triggers the app’s code that was registered with this event.

However, artificially raising important events may cause system inconsistencies as well. This hap-

pened with the reboot completed event. We correct some of the framework code so that it would

react to this event only once. Other events are handled similarly.

2.6.2. Intelligent Execution

Playground intelligently drives the user interface of a smartphone application by dynamically

defining and exploring a model created from window and widget features. We extract features

from displayed user interfaces to iteratively define a model that approximates the application’s

logic. For example, when an application launches, it displays a window with one or more buttons.

When a button is selected, a new window appears. The transitions between windows are captured

by this model. Note that this approach is based on the intuition that smartphone applications are
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highly interactive and that the resulting model provides a good approximation of the application’s

logic states.

Figure 2.4 presents an overview of the intelligent execution module. For every iteration, Play-

ground checks if focus has changed to a different window. To avoid redundant exploration, a

window equivalence module uses heuristics to determine if the newly displayed window is similar

to previously viewed windows. If so, the window is merged with an existing state. Playground

then extracts features relevant to driving the GUI. These include widgets containing texts, editable

text fields, buttons, scroll containers and so on. It then creates associations between the current

features and those retrieved earlier using widget tracking (why this is needed is discussed below).

A few search optimizations are applied next to prune the search space. Next, Playground uses

sequencing policies to determine the next GUI action (such as select a button, scroll down, fill text

fields). Text fields are filled using heuristics defined by the context determination module. The

current iteration is completed with the performance of an action. The rest of this section describes

the various modules shown in Figure 2.4 in greater detail.

Widget Tracking. When navigating windows, widgets may disappear and later reappear. Failure

to identify a widget when it reappears may result in concluding identical states or events to be

different and hence redundant exploration. For example, consider a window with buttons A and B.

Upon pressing buttonA, the window closes. To complete the exploration, the window is re-opened.

The problem would be trivial if the each widget has a unique identifier. This is unfortunately not

true for Android.

Playground tracks widgets similar to the way a human user might. We have identified the

following widget properties for widget tracking. (1) Text associated with a widget. Widgets often

have some text associated with them which is made visible to the user, e.g., a text label on a button.

In many conditions, this text is sufficient to uniquely identify the widget. However, not all widgets
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have associated text. Additionally, multiple widgets may have the same text. (2) Image associated

with a widget. GUI layouts often use widgets containing an image. In such cases, the image

can uniquely identify the widget.2 (3) Position within the window. Combined with the previous

previous, the location of the widget on the screen is a useful indicator. Finally, (4) Position in the

GUI hierarchy. Widgets often have fixed chains of ascendents. A button, for example, will always

have the same chain of ascendents in a window. The user perceives this in terms of the relative

positioning of widgets.

Sequencing Policies. Each window can contain many widgets that allow input events. In addition

to buttons, a window can contain editable text boxes, check boxes, spinners, etc. The result of

selecting a button can be directly influenced by interaction with other widgets. Check-boxes can

enable/disable other widgets. Finally, scrollable container widgets hide other widgets from the

user. Exercising every possible sequence of widget interaction is infeasible. So, we have to arrange

the order of event execution in the most meaningful way.

The sequence of interaction with widgets in a window requires consideration. Based on obser-

vation, we classify GUI input events into two groups: (a) those that input parameters or variables

into the app, such as inputting text into an editable text box or a spinner, and (b) those that provide

actions, such as buttons. First, widgets that accept input variables should be acted upon before

action widgets. Second, widgets that are contained within a scrollable container are acted upon

before scrolling the container. Third, contents of the scrollable container and the container itself

are exercised before acting upon widgets outside the container, except when this is in conflict with

the first rule. This design choice follows the intuition that the widgets outside the scrollable widget

(if present) are often the control buttons such as “OK”, “Submit”, and “Cancel”.

2We modified Android framework for exporting image identifiers which could be hashes of images, their resource
names, and so on.
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Note that the choice of these policies has important ramifications. If the behavior of a widget

depends on another widget, Playground may not be able to trigger the entire set of behaviors.

While we discuss this problem within a single window, it is easy to see such problems would also

arise across windows.

Search Optimizations. For the sake of practicality, we heuristically prune redundant navigation

paths where possible. For items organized as a list or a grid, we explore the items up to a threshold.

In addition to reducing exploration time, a threshold is sometimes necessary to achieve program

termination. For example, an Android list may dynamically expand and thereby go infinitely deep.

We also put a threshold on the number of times the same widget may be interacted with (interacting

with the same widget more than once may be required to completely explore the states that this

widget leads to).

Window Equivalence. When exploring an application, a window is often invoked several times

with different parameters. For example, consider an address book application. One window dis-

plays a list of contacts. When a contact is selected, an “edit contact” window is opened. On

selecting different contacts, the resulting window will be similar, but not identical. Similar win-

dows often correspond to the same application functionality and underlying code. Playground

reduces the search space by annotating such equivalent windows.

Playground uses window equivalence heuristics to determine if the current window state is

sufficiently similar to a previously visited window state. For our Android implementation, we

leverage the correspondence between activity components and window design. That is, our heuris-

tic classifies all windows belonging to the same activity component as equivalent. GUI Ripper [96]

also used window titles to determine window equivalence.

Context Determination. As previously discussed, applications often have text fields that must be

filled with appropriate values to lead them to the right states. Playground searches for keywords
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in the hints and the widget IDs3 associated with editable text boxes and in the visible text labels

next to them. For example, the string “Email” may appear immediately to the left of a text box,

indicating that it should be filled in with an Email address.

Determining the keyword rules requires empirical investigation. We analyzed the string re-

sources of over 500 Android applications to determine which strings application developers use

for particular fields. To do this, we first extracted all of the strings an application’s string resource

file. We then converted the strings into a canonical form (lowercase, de-hyphenated). Next, we

sorted the strings of all applications by frequency. The result was used to manually classify the

strings into various semantic buckets, e.g. email, name, and phone. Finally we coded keyword

based rules for each semantic bucket. Our final specification included rules for email, address,

date, phone number, password, username, cancel, and ok, among several others. The approach of

automatically filling in text fields has also been used for web form completion [71, 118]. These

techniques are more sophisticated and include self-learning. We plan to integrate these techniques

into Playground.

Our strategy for addressing account sign-up and sign-in follows from the keyword rules ap-

proach for context determination. Sometimes, an application requiring sign-in will also include a

window to sign-up for the service. The sign-up window will contain text input fields for Email,

username, and password. By identifying these fields, Playground can automatically sign up for an

account if a sign up option is available from within the app. Currently, Playground always uses

the same Email address, username, and password; subsequent tests of an application will automat-

ically sign in by filling in the same credentials. In future, Playground may also be able to identify

if it could not successfully log in. A human tester can then create an account which Playground

can use to automatically test at least future versions of the application.

3Developers often tend to give descriptive IDs to widgets which often convey the purpose of those widgets
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2.7. Implementation

We have implemented the Playground analysis framework. The implementation is done over

the standard Android emulator that comes with the Android SDK. We modify the Android source

code to integrate TaintDroid and to insert hooks for API level monitoring. Kernel modifications

are made to provide kernel-level monitoring. Furthermore, disguise measures are implemented

by changing the appropriate identifiers and data, either directly in the Android source code or

by adding files on the disk images and changing the content of the standard databases (such as

contacts). Minor changes were required to the Android source for doing event triggering and fuzz

testing. Intelligent execution interfaces with the window manager in Android to retrieve window

and widget properties from the system. We use the ViewServer/HierarchyViewer for the interface.

Changes are made to the code of many standard widgets so that required widget properties may

be retrieved. We further modified related code to make retrieval of properties faster than in the

original code.

Apart from the guest (Android) side, Playground also has a host side, written in over 3,000

lines of Java code. The host side implements the algorithms for intelligent execution, and also han-

dles the dispatch of apps to multiple emulators for parallel testing and the logging of information

received from the detection techniques running inside the emulator.

2.8. Findings

To show the effectiveness of Playground, we conduct some small-scale and a large-scale ex-

periment. Our first experiment tries to automatically derive the results obtained in the TaintDroid

paper. The second experiment is conducted on a set of 3,968 apps downloaded from the Android

Market in November 2010. Finally, we also test Playground on real, known malware to evaluate

the effectiveness of Playground at detecting malware.
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Table 2.1. Private Information Leaks Detected

Number of applications 3968

Information type Number of applications leaking

GPS 212
Android ID (AID) 581
IMEI 329
IMSI 91
Phone number 63
ICC-ID 3
WiFi MAC address 4
All types 946
At least one ID 844
At least one non-AID ID 442
GPS with at least one ID 120

For taint tracing in our experiments, we tracked device identifiers and location information

leaks. By device identifiers we mean any strings that may be used to identify a particular device.

Android ID is an identifier on Android available to any app without requesting any special permis-

sion. IMEI is an identifier available on all GSM phones. IMSI is associated with the SIM card

and identifies a user on the cellular network. The ICC-ID is also specific to a SIM card. Access to

IMEI, IMSI, ICC-ID, and WiFi Mac address requires special permissions.

2.8.1. Small-Scale Validation

To validate the effectiveness of Playground in helping discover privacy leaks, we used Playground

to drive the same set of applications as that studied in the original TaintDroid paper. The TaintDroid

researchers had to manually explore the applications but we attempt to achieve the same detection

automatically here. Out of thirty total applications, we had to exclude nine because they were

now obsolete and non functional or would not run properly on the Android emulator. Of the rest

we were able to reproduce the exact findings from the manual tests conducted by the TaintDroid
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Table 2.2. Most common leaking domains. The percentages indicate the proportion
of apps which leak the corresponding information.

# uniq apps # uniq creators Android id IMEI IMSI Phone # Location

data.flurry.com 265 180 98.1% 2.2% 0 0 14.0%
mobclix.com 152 71 95.4% 68.4% 0 0 12.5%
Google related domains 63 58 0 0 0 0 96.8%
localwireless.com 58 1 0 0 100% 0 24.1%
admob.com 51 27 0 0 0 0 90.1%
ad.qwapi.com 45 26 97.8% 2.2% 0 0 13.3%
playgamesite.com 29 2 0 100% 0 0 0
ade.wooboo.com.cn 21 8 100% 0 0 100% 4.7%

authors except in two cases (Wisdom Quotes Lite, Traffic Jam) where location leaks were not

detected. In one other case (Babble) however, we detected an additional location leak which was

not found in the original TaintDroid experiments. Such discrepancies are possible due to non

deterministic behavior of applications which has been witnessed by others also [69]. Moreover,

we also detected several leaks of Android ID which was not being tracked in the TaintDroid paper.

This experiment thus conclusively establishes the effectiveness of Playground at automatically

detecting privacy leaks.

2.8.2. Large Scale Measurements

We used Playground to drive 3,968 applications. Our findings are summarized in Table 2.1. We

detected 946 applications to be leaking information to Internet, which is 23.8% of total number

of applications we evaluate. This is because many free applications likely include third party

ads and/or analytics libraries which track unique users based on these identifiers. Among the

identifiers, Android ID is the one with least risk, as it can be changed at any time. Other identifiers

are permanently associated with either the device or the SIM card. We find that in 52.3% of

applications leaking an identifier, there is at least one non Android ID identifier. In 56.7% of

instances of location leaks, both an ID and the location information is leaked out. In these cases,
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the applications can uniquely track the location history of the users. We also found 63 phone

number leaks. Since phone numbers are often found on social networking profiles, the privacy

implications of tracking are more significant than those of other identifiers.

Analysis of Results: We would like to know the final destinations of information leaks; if the leaks

are to advertisement/analytics networks or to developer’s own servers. Usually, the applications

from a single creator4 may share the same set of servers. If applications from multiple creators leak

the information to a single destination domain, it is most likely the domain belongs an advertise-

ment/analytics network, or a domain related to third-party libraries used by the applications. We

found a total of 392 unique domains. Of these 29 domains relate to at least two creators. These

are more likely to be advertisement/analytics networks. The rest of the domains come from single

creators and hence are very likely to be domains used by the developers.

In Table 2.2, we show the domains that are related to a large number of unique applications.

We also show what information has been leaked to this domain. For example, we find in 98.1%

of leaks to data.flurry.com, the Android ID has been leaked. We find most of these are advertise-

ment/analytics networks. localwireless.com and playgamesite.com are however developer sites.

We note that AdMob is known to track users on the basis of hashed device identifiers. TaintDroid

does not propagate taint through cryptographic hash functions and hence it appears, that none of

the identifiers were sent to AdMob.

2.8.3. Analyses on Known Malware

We also analyzed known malware to confirm that Playground is able to detect malware in the wild.

We considered three malware samples, FakePlayer, DroidDream, and DroidKungfu. The first one

is an SMS trojan that sends SMS messages to premium numbers. The other two are root exploits.

4We obtained the creator information from the Android Market
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Table 2.3. Malware samples used for testing anti-malware tools

Family Package name SHA-1 code Date found Remarks
Fakeplayer org.me.androidappli-

cation1
1e993b0632d5bc6f0741
0ee31e41dd316435d997

08/2010 SMS trojan

DroidDream com.droiddream.
bowlingtime

72adcf43e5f945ca9f72
064b81dc0062007f0fbf

03/2011 Root exploit

DroidKungFu com.sansec 4bf050f089a0d44d6865
ff74b75cb7f1706fdcaa

05/2011 Root exploit

Detailed information about the samples may be found in Table 2.3. Following is our experience of

analyzing these malware samples with Playground.

FakePlayer. This malware sample installs as a movie player. On starting the application, the

an activity came up momentarily and then closed. On checking the logging done by Playground,

we found that this app had sent three text messages to short numbers 3353, 3354, and 3353 in

sequence. Each message contained text “798657”. The SMS destinations being short would make

it highly suspicious that this sample is malware.

DroidDream. On starting the application inside Playground, we did not experience anything

suspicious; rather the app crashed. On disassembling the app’s code and examining it, it turned

out that the app would get stuck on the “phoning home” behavior. Apparently, it tries to connect to

a remote server sending private information about the phone, including IMEI and IMSI numbers,

but failed when we tested because the remote server did not respond. We removed this “phoning

home” behavior (which is a single method call with the name of postUrl()), and tested the

modified app again. It turns out that this time app did execute the rageagainstthecage exploit. We

could see several running processes with this app’s UID and finally could also see a root process;

the privilege escalation had completed. Next, we checked the logs collected by Playground. The

logs showed a huge number of forks and exceeding of a threshold number of processes. The logs

thus give sufficient evidence of the rageagainstthecage attack having being attempted.
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DroidKungFu. On launching this app inside Playground, the only thing we observed was the

“phoning home” behavior, which is quite well documented. The app sent the IMEI, Android

version, and phone model out of the phone. While IMEI was explicitly marked to be taint-traced;

the Android version and phone model appeared as plain text in the logs as being sent out of the

phone. We however did not observe any attempt to gain root privileges. On looking deeper into

the code, we found that the root exploits were not executed due to some condition checks, which

looked for the existence of /system/xbin/su and some version checks. Changing either the

analysis environment or the app code would allow us to see the attacks being executed. This is a

general problem in dynamic analysis that sometimes the environment conditions may not match.

Symbolic execution may be of help here.

2.9. Effectiveness of Automatic Exploration

In this section we evaluate and discuss the effectiveness of automatic exploration. For this, we

augmented the Dalvik VM to report code coverage in terms of the number of instructions executed.

Next we compare our system with GUI Ripper and then provide a discussion where we include

our experience on automatic exploration.

2.9.1. Comparison with GUI Ripper

We compare our system with GUI Ripper [96]. We ported it to Android based on the information

available in Memon et al. [96]. Playground is essentially a superset of GUI Ripper. This meant

that we simply remove some of the functionality of Playground (such as context determination and

repeatedly exercising widgets) to get a GUI Ripper configuration.

For Playground, we observed a code coverage mean of 33%. We observed 27% mean code

coverage GUI Ripper. The low coverage is expected because both the systems treat the application
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as a black-box. In fact, low coverage is one of the most limiting factors in dynamic analysis. It

is also true that many applications may not give close-to-100% coverage. There may be several

reasons for this. Applications may have dead code or code which executes only under special

circumstances such as special device configurations and so on.

To get a comparison between Playground and GUI Ripper, we (a) disregard instructions ex-

ecuted by simply starting the application (since these instructions are trivially executed without

the need of any navigation), and (b) calculate the percent difference between Playground and GUI

Ripper. Since, we are interested in the cases when Playground performs better (or worse) than the

other approaches, we do not use the absolute value of the difference, i.e., we useC(x, y) = (x−y)
(x+y)/2

.

Moreover, because GUI Ripper does not include fuzz testing, we use coverage results from only

the intelligent execution component for Playground. Using this metric, our measurements indicate

Playground’s intelligent component improves by a 31% in mean over GUI Ripper. We plot this

difference against the number of applications in Figure 2.5. For applications on the positive side,

Playground does better. Some applications lie on the negative side. This is likely because of non-

determinism in applications because of which a run of GUI Ripper may be able to execute more

code in an application than a different run of Playground. Such non deterministic behavior has

been encountered earlier also [69].

2.9.2. Discussion

While event triggering is undoubtedly needed, it was not clear to us before the experiments how

fuzz testing and intelligent execution would help and compare with each other. First, we found that

the code coverage at simply launching the applications is only 16% while our automatic exploration

techniques of fuzz testing and intelligent execution nearly double the code coverage. Second,
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Figure 2.5. Percentage difference in code coverage between Playground and GUI Ripper

intelligent execution cannot work in cases that it does not model; this applies to all the custom-

made widgets and, in the current implementation, to web-based GUI, which may also be embedded

in apps and which is not handled currently (the process would be similar to handling normal GUI

but in a different environment). In such cases, fuzz testing was found help, filling up the limitations

of intelligent execution.

Intelligent execution was primarily useful in cases where user credentials or some meaning-

ful information was required. In fact, for automatic login, we found that in several cases we had

received emails on the email account we used for testing from several services. Playground had

automatically created accounts with these services. In particular, we found emails from 34 dif-

ferent services. Some of these are popular social networking, cloud and media services such as

Pandora, Dropbox, Last.fm, and Kik Messenger. Most of these related to account registrations

while a few were received on supplying email address alone. We note that account registration for

most applications is done through web sites. Playground currently cannot work with web pages.

Moreover, many account registration routines also have captcha tests. However, once registered,

Playground can easily use these credentials for subsequent navigation. A few situations were also
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related to providing other meaningful inputs such as a city name or a zipcode. For example, the

Weather.com app asks for this in the absence of consent to location data access. Exploration is

quite stunted if this is not provided.

Intelligent execution is thus specially useful for complex apps, such as those for social net-

working. In these cases, fuzz testing is usually stuck at the beginning only due to need of login or

similar things. It is however, usually after login only, that there is access to the user’s databases,

files, location and other sensor information.

2.10. Related Work

Dynamic Malware Analysis. Given we are trying to run applications and detect security and

privacy breaches, our work naturally falls into the category traditionally known as dynamic mal-

ware analysis. For Android two works are quite comparable to our work. DroidScope [142] is a

malware analysis framework for Android applications. It is however different from our work in

that while we aim to detect malicious or unwanted functionality on a large scale (in thousands of

apps), they aim at malware forensics, to provide accurate analysis of apps that are known to be

malware. Their analysis does not provide automatic exploration and requires significant manual

effort to understand the working of the malware.

Google Bouncer is a tool that screens applications uploaded to the Google Play market for

malware. This tool appears to be similar to Playground in that it needs to provide automatic

exploration and detection techniques. It is however a closed, proprietary tool and not much is

known about it. Researchers [106,137] have however found that it is poor at disguising techniques

and many of the common identifiers may be used to identify the virtual environment.

Strider HoneyMonkey [136] loads webpages in the browser, automatically clicks dialog boxes

to allow installation of any binary and then detect if it is malware. CWSandbox [138] and Botlab
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[73] study malware behavior in monitored environments. All the above works have little or even no

interaction with the malware executables being studied. Playground however is designed to work

with highly interactive applications. These applications are different from the traditional malware

in that the former’s execution is primarily driven by interaction.

Driving Applications. Any dynamic program analysis approach may be classified as either a

black-box or a white-box approach depending on whether it meaningfully uses the program code

to do the analysis. For our automatic exploration, we decided to stick to the black-box (or a

somewhat gray-box) approach which is far simpler than the white-box paradigms. Approaches

like model checking [37] and symbolic and concolic execution [80,129] would fall into the white-

box space. We plan to include symbolic execution in the future in Playground. Zheng et al. [146]

also propose a framework for automatic UI exploration of Android apps. It is a grey-box technique

as some static analysis is involved. We can improve our approach by including similar static

analysis to guide the dynamic exploration. However, as they also note static analysis is insufficient

to analyze all aspects of the UI. Our black-box, yet sophisticated dynamic exploration techniques

can help to cover such aspects.

GUI Testing. Automatic GUI testing has for long been an intriguing area in software engineer-

ing, specifically because of the complexity of event interactions that are possible. Much of the

commercially available tools are directed towards capture-playback [21] or towards programmatic

descriptions of input and output event sequences [15, 123]. These however do not provide com-

pletely automatic solutions to GUI testing. Our task at GUI exploration is obviously very different

from what these tools can accomplish. Privacy Oracle [74] however uses capture-playback to

its advantage for multiple runs along same paths on application GUI but with slightly perturbed

inputs.
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GUI testing is often accomplished as model based testing [18], involving coming up with a

finite state machine model of the event space that the app provides and subsequent generation and

execution of test cases based on that model. Given a model, automatic techniques may be used to

come up with test cases [97, 114].

Memon et al. automatically deduce GUI models by exploring the GUI [95, 96]. We face a

similar problem of automatically generating an abstract state machine by exploring the application

UI. However, we model much more accurately window transitions without assuming a directed-

acyclic-graph organization amongst windows (in Android, for example, cycles are possible). More

importantly, Memon et al. do not provide abilities to fill contextual text input and do not talk about

modules such as widget tracking and sequencing policies which we found crucial for black-box

exploration. These advantages do show up in Section 2.9.

Hu and Neamtiu [70] have discover GUI bugs in Android applications. They fuzz applications

and monitor the system logs to discover bugs. Playground can complement their work by driving

applications automatically.

2.11. Conclusion and Future Work

In this chapter we proposed AppsPlayground, a tool automatic dynamic analysis of smartphone

applications. We integrated a number of detection, exploration, and disguise techniques to come

up with an effective analysis environment that may be used to evaluate Android applications on a

large scale.

The future directions for Playground include including symbolic execution for systematic ex-

ploration of the applications’ state space and to make Playground even more stealthy by enhancing

the disguise techniques.
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CHAPTER 3

DroidChameleon: Evaluating Android Anti-malware against

Transformation Attacks

3.1. Introduction

Mobile computing devices such as smartphones and tablets are becoming increasingly popular.

Unfortunately, this popularity attracts malware authors too. In reality, mobile malware has already

become a serious concern. It has been reported that on Android, one of the most popular smart-

phone platforms [38], malware has constantly been on the rise and the platform is seen as “clearly

today’s target” [51, 94]. With the growth of malware, the platform has also seen an evolution of

anti-malware tools, with a range of free and paid offerings now available in the official Android

app market, Google Play.

We aim to evaluate the efficacy of anti-malware tools on Android in the face of various evasion

techniques. For example, polymorphism is a common obfuscation technique that has been widely

used by malware to evade detection tools by transforming a malware in different forms (“morphs”)

but with the same code. Metamorphism is another common technique that can mutate code so

that it no longer remains the same but still has the same behavior. For ease of presentation, we

use the term polymorphism to represent both obfuscation techniques. In addition, we use the term

‘transformation’ broadly, to refer to various polymorphic or metamorphic changes.

Polymorphic attacks have long been a plague for traditional desktop and server systems. While

there exist earlier studies on the effectiveness of anti-malware tools on PCs [34], our domain of

study is different in that we exclusively focus on mobile devices like smartphones that require
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different ways for anti-malware design. Also, malware on mobile devices have recently escalated

their evolution but the capabilities of existing anti-malware tools are largely not yet understood. In

the meantime, there are warnings that Android malware will become more sophisticated, we will

soon see polymorphic malware, and they will be able to quickly propagate from device to device

using poisoned SMS messages and social network postings to infected links [58]. In fact, simple

forms of polymorphic attacks have already been seen in the wild [135]. It is thus imperative for

mobile security systems to have good defenses against polymorphic strains.

To evaluate existing anti-malware software, we develop a systematic framework called Droid-

Chameleon with several common transformation techniques that may be used to transform Android

applications automatically. Some of these transformations are highly specific to the Android plat-

form only. Based on the framework, we pass known malware samples (from different families)

through these transformations to generate new variants of malware, which are verified to possess

the originals’ malicious functionality. We use these variants to evaluate the effectiveness and ro-

bustness of popular anti-malware tools.

Our results on ten popular anti-malware products, some of which even claim resistance against

malware transformations, show that all the anti-malware products used in our study have little

protection against common transformation techniques. Many of them may even succumb to trivial

transformations such as repacking that do not involve any code-level transformation. This is in

contrast to the general understanding, also substantiated by reports from the industry [6, 14], that

mobile anti-malware tools work quite well. Our evaluation dataset includes products that these

reports claim to be perfect or nearly perfect. Our results also give insights about detection models

used in existing anti-malware and their capabilities, thus shedding light on possible ways for their

improvements. We hope that our findings work as a wake-up call and motivation for the community

to improve the current state of mobile malware detection.
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We emphasize that making judgment which anti-malware product is the best is a non-goal for

this research. There are other important characteristics of anti-malware, such as the completeness

of the signature database and resource consumption, that we do not evaluate. Additionally, security

vendors typically package malware detection with other functionalities such as locating missing

device or filtering spam SMS together in their offerings. Evaluating these functionalities remains

beyond the scope of this worl.

To summarize, we the following contributions here.

• We systematically evaluate anti-malware products for Android regarding their resistance

against various transformation techniques in known malware. For this purpose, we devel-

oped DroidChameleon, a systematic framework with various transformation techniques to

facilitate anti-malware evaluation. Apart from general transformations, we also develop

transformations that are specific to the Android platform.

• We have implemented a prototype of DroidChameleon and used it to evaluate ten popular

anti-malware products for Android. Our findings show that all of them are vulnerable to

common evasion techniques. Moreover, we find that 90% of the signatures studied do not

require static analysis of bytecode.

• We studied the evolution of anti-malware tools over a period of one year. Our findings

show that some anti-malware tools have tried to strengthen their signatures with a trend

towards content-based signatures while previously they were evaded by trivial transfor-

mations non involving code-level changes. The improved signatures are however still

shown to be easily evaded.

• Based on our evaluation results, we also explore possible ways to improve current anti-

malware solutions. Specifically, we point out that Android eases advanced static analyses

because much of the Android application code is high-level bytecodes rather than native
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codes. Hence, anti-malware products could implement the already proposed semantics-

based approaches for malware detection more easily for mobile platforms than for PCs

where most applications are native binaries. Furthermore, certain platform support (in

terms of offering higher privileges to anti-malware) can be enlisted to cope with advanced

transformations.

The rest of this chapter is organized as follows. We present in Section 3.2 the necessary back-

ground and detail in Section 3.3 the DroidChameleon design. We then provide implementation

details in Section 3.4 and summarize our malware and anti-malware data sets in Section 3.5. After

that, we present our findings in Section 3.6, followed by a brief discussion in Section 3.7 on how

to improve current anti-malware solutions. Finally, we examine related work in Section 3.8 and

conclude in Section 3.9.

3.2. Background

Android is an operating system for mobile devices such as smartphones and tablets. It is

based on the Linux kernel and provides a middleware implementing subsystems such as telephony,

window management, management of communication with and between applications, managing

application lifecycle, and so on. Third party applications run unprivileged on Android. The rest of

this section will cover some background on the Android middleware and application fundamentals,

application distribution, Android anti-malware, and signatures for malware detection.

3.2.1. Android Fundamentals

Applications are programmed primarily in Java though the programmers are allowed to do native

programming via JNI (Java native interface). Instead of running Java bytecode, Android runs

Dalvik bytecode, which is produced by the application build toolchain from Java bytecode. Dalvik
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is a virtual machine designed to run in low-memory environments and is similar to the Java Virtual

Machine (JVM) with the most notable difference being that it is register based (JVM is stack

based). Most of the JVM concepts such as classes, class loaders, reflection, and so on are adopted

as specified by the Java Language Specification in the Dalvik virtual machine. In Dalvik, instead

of having multiple .class files as in the case of Java, all the classes are packed together in a

single .dex (Dalvik Executable) file to minimize redundant strings and other constants. The dex

file format keeps the Dalvik bytecode and specifies the organization of the various sections and

items in the file. There are separate sections for keeping strings, class definitions, code items, and

so on.

Android applications are made of four types of components, namely activities, services, broad-

cast receivers, and content providers. These application components are implemented as classes

in application code and are declared in the AndroidManifest (see next paragraph). The Android

middleware interacts with the application through these components. The reader is referred to the

official Android Documentation for detail on these.

Android application packages are jar files1 containing the application bytecode as a classes.dex

file, any native code libraries, application resources such as images, config files and so on, and a

manifest, called AndroidManifest. It is a binary XML file, which declares the application pack-

age name, a string that is supposed to be unique to an application, and the different components

in the application. It also declares other things (such as application permissions) which are not

so relevant to the present work. The AndroidManifest is written in human readable XML and is

transformed to binary XML during application build.

Only digitally signed applications may be installed on an Android device. Application pack-

ages are signed similar to the signing of a jar file. Signing is only for the purpose of enabling better

1Java Archive format, which is really a zip file format
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sharing among applications from the same developer and recognizing packages that come from the

device vendor (such packages may have more privileges) and not verifying trust in the application.

Signing keys are thus owned by individual developers and not by a central authority, and there is

no chain of trust.

3.2.2. Android Anti-malware Solutions

With the proliferation of malware, there are now tens of both free and paid anti-malware products

available in the official Android market. Many are from obscure developers while well-established,

mainstream antivirus vendors offer others.

In order to get an insight on the workings of the anti-malware products, we briefly describe the

necessary parts of the Android security model. Android achieves application sandboxing by means

of Linux UIDs. Every application (with a few exceptions relating to how applications are signed)

is given a separate UID and most of the application resources remain hidden from other UIDs.

Android anti-malware products are treated as ordinary third party applications and have no

additional privileges over other applications. This is in contrast with the situation on traditional

platforms such as Windows and Linux where antivirus applications run with administrator priv-

ileges. An important implication of this is that these anti-malware tools are mostly incapable of

behavioral monitoring and do not have access to the private files of the application. The original

application packages however remain intact and are readable by all applications. (Copy protected

application packages are not readable by all applications but this feature is deprecated; paid appli-

cations are reportedly kept encrypted since Android 4.1.) These application packages may thus be

used for static, signature-based malware detection. Moreover, Android provides a broadcast when

a new application is installed. All the anti-malware applications we study have the ability to scan
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applications automatically immediately following their installation, most likely by listening to this

broadcast.

Android also provides a PackageManager API, which allows applications to retrieve all the

installed packages. The API also allows getting the signing keys of these packages and the in-

formation stored in their AndroidManifest such as the package name, names of the components

declared, the permissions declared and requested, and so on. Anti-malware applications have the

opportunity to use information from this API as well for malware detection.

3.2.3. Malware Detection Signatures

While developing malware transformations, it is important to consider what kind of signatures anti-

malware tools may use against malware. Signatures have traditionally been in the form of fixed

strings and regular expressions. Anti-malware tools may also use chunks of code, an instruction se-

quence or API call sequence as signatures. Signatures that are more sophisticated require a deeper

static analysis of the given sample. The fundamental techniques of such an analysis comprise data

and control flow analysis. Analysis may be restricted within function boundaries (intra-procedural

analysis) or may expand to cover multiple functions (inter-procedural analysis).

3.3. Framework Design

In this work, we focus on the evaluation of anti-malware products for Android. Specifically, we

attempt to deduce the kind of signatures that these products use to detect malware and how resistant

these signatures are against changes in the malware binaries. We generally use the term transfor-

mation to denote semantics preserving changes to a program. We next define transformations more

specifically.
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Let P be the set of all programs. A transformation is a mapping τ : P → P that preserves

the relevant semantics of the program. Note that we do not require all semantic behaviors to

be preserved; we instead look for preserving only an interesting subset of behaviors of a given

program. In case of malware, this interesting subset is the malicious behavior. For example, when

a transformation corresponds to changing the package name of an application, the system logs

about that application may show a different package name, but this behavior is not relevant. On the

other hand, sending out a text message to a premium rate number without user consent is a relevant

behavior when studying malware. Clearly, if two transformations preserve the relevant semantics,

so will their composition.

In this work, we develop several different kinds of transformations that may be applied to

malware samples while preserving their malicious behavior. Each malware sample undergoes one

or more transformations and then passes through the anti-malware tools. The detection results are

then collected and used to make deductions about the detection strengths of these anti-malware

tools.

The transformation set in the DroidChameleon framework is comprehensive in the sense that

we can expect to beat any static program analysis technique with these transformations. We also

provide some Android-specific transformations (repacking and package renaming) which would

give us important insights about the workings of Android anti-malware. Moreover, some trans-

formations such as renaming identifiers and reflection do not apply to native code files typical

to PCs. We classify our transformations as trivial (which do not require code level changes or

changes to meta-data stored in AndroidManifest), those which result in variants that can still be

detected by static analysis (DSA), and those which can render malware undetectable by static anal-

ysis (NSA). In the rest of this section, we describe the different kinds of transformations that we

have in the DroidChameleon framework. Where appropriate we give examples, using original and
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transformed code. Transformations for Dalvik bytecode are given in Smali (as in Listing 3.1), an

intuitive assembly language for Dalvik bytecode and very similar to Jasmin assembly language for

Java bytecode.

const-string v10, "profile"

const-string v11, "mount -o remount rw system\nexit\n"

invoke-static {v10, v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/lang/String

;Ljava/lang/String;)Ljava/lang/String;

move-result-object v7

Listing 3.1. A code fragment from DroidDream malware

3.3.1. Trivial Transformations

Trivial transformations do not require code-level changes or changes to meta-data stored in An-

droidManifest. These transformations are meant to defeat signatures based on whole files (or a

part of file that changes simply by reorganizing file sections) or the key used to sign an application

package. We have the following two transformations for this purpose.

Repacking. Recall that Android packages are signed jar files. These may be unzipped with the

regular zip utilities and then repacked again with tools offered in the Android SDK. Once repacked,

applications are signed with custom keys (the original developer keys are not available). Detec-

tion signatures that match the developer keys or a checksum of the entire application package are

rendered ineffective by this transformation. Note that this transformation applies to Android ap-

plications only; there is no counterpart in general for Windows applications although the malware

in the latter operating systems are known to use sophisticated packers for the purpose of evading

anti-malware tools.
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Disassembling and Reassembling. The compiled Dalvik bytecode in classes.dex of the

application package may be disassembled and then reassembled back again. The various items in

a dex file may be arranged or represented in different ways and thus a compiled program may be

represented in more than one form. Signatures that match the whole classes.dex are beaten

by this transformation. Signatures that depend on the order of different items in the dex file will

also likely break with this transformation. Similar assembling/disassembling also applies to the

resources in an Android package and to the conversion of AndroidManifest between binary and

human readable formats.

3.3.2. Transformation Attacks Detectable by Static Analysis (DSA)

The application of DSA transformations does not break all types of static analysis. Specifically,

forms of analysis that describe the semantics, such as data flows are still possible. Only simpler

checks such as string matching or matching API calls may be thwarted. Except for certain forms

(depending on the accuracy and detail of information needed) of data flow analysis and control

flow analysis, we can expect other forms of detection described in Section 3.2.3 to be vulnerable

to transformations described in this section.

3.3.2.1. Changing Package Name. Every application is identified by a package name unique to

the application. This name is defined in the package’s AndroidManifest. We change the package

name in a given malicious application to another name. Package names of apps are concepts unique

to Android and hence similar transformations do not exist in other systems.

3.3.2.2. Identifier Renaming. Similar to Java bytecode, Dalvik bytecode stores the names of

classes, methods, and fields. It is possible to rename most of these identifiers without changing the

semantics of the code. Constructors and methods that override super-class methods can however

not be renamed. In general, such transformations apply only to source code or bytecode (which
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preserve symbolic information) and not to native code. We note that several free obfuscation tools

such as ProGuard [10] provide identifier renaming. Listing 3.2 presents an example transformation

for code in Listing 3.1.

const-string v10, "profile"

const-string v11, "mount -o remount rw system\nexit\n"

invoke-static {v10, v11}, Lcom/hxbvgH/IWNcZs/jFAbKo;->axDnBL(Ljava/lang/String;Ljava/

lang/String;)Ljava/lang/String;

move-result-object v7

Listing 3.2. Code in Listing 3.1 after identifier renaming

3.3.2.3. Data Encryption. The dex files contain all the strings and array data that have been used

in the code. These strings and arrays may be used to develop signatures against malware. To

beat such signatures we transform the dex file as follows. All the strings are stored in an encoded

form, such as by the application of a simple Caesar cipher. Any access to an encoded string is

immediately followed by a call to a routine for decoding the string. As an illustration, Listing 3.3

shows code in Listing 3.1, transformed by string encryption.

const-string v10, "qspgjmf"

invoke-static {v10}, Lcom/EncryptString;->applyCaesar(Ljava/lang/String;)Ljava/lang/

String;

move-result-object v10

const-string v11, "npvou!.p!sfnpvou!sx!tztufn]ofyju]o"

invoke-static {v11}, Lcom/EncryptString;->applyCaesar(Ljava/lang/String;)Ljava/lang/

String;

move-result-object v11

invoke-static {v10, v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/lang/String

;Ljava/lang/String;)Ljava/lang/String;

move-result-object v7
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Listing 3.3. Code in Listing 3.1 after string encryption. Strings are encoded with a

Caesar cipher of shift +1.

The initialization data for arrays of primitive types is stored as bytes in the dex file. We en-

code these bytes using simple XOR cipher. Any operation to fill arrays with data is immediately

followed by a call to a routine to decode the newly filled array.

3.3.2.4. Call Indirections. This transformation can be seen as a simple way to manipulate call

graph of the application to defeat automatic matching. Given a method call, the call is converted to

a call to a previously non-existing method that then calls the method in the original call. This can

be done for all calls, those going out into framework libraries as well as those within the application

code. This transformation may be seen as trivial function outlining (see function outlining below).

3.3.2.5. Code Reordering. Code reordering reorders the instructions in the methods of a pro-

gram. This transformation targets detection schemes that rely on the order of the instructions,

based on either the whole instructions, or part of the instructions such as opcodes. This transfor-

mation is accomplished by reordering the instructions and inserting goto instructions to preserve

the runtime execution sequence of the instructions. We note that even though the Java language

does not have a goto statement, the JVM and the Dalvik virtual machine both have the goto

instruction. Since goto is not provided in the Java source language, a source level representation

of the transformed program may not exist. Listing 3.4 shows an example reordering. Note that

move-result-* must be the first instruction after a call to capture the return value.

goto :i_1

:i_3

invoke-static {v10, v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/lang/String

;Ljava/lang/String;)Ljava/lang/String;
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move-result-object v7

goto :i_4 # next instruction

:i_2

const-string v11, "mount -o remount rw system\nexit\n"

goto :i_3

:i_1

const-string v10, "profile"

goto :i_2

Listing 3.4. Code in Listing 3.1 reverse ordered

3.3.2.6. Junk Code Insertion. These transformations introduce code sequences that are executed

but do not affect rest of the program. Detection based on analyzing instruction (or opcode) se-

quences may be defeated by junk code insertion. We propose two different kinds of transforma-

tions for this purpose: nop insertion, and arithmetic and branch insertion.

NOP insertion. This transformation simply inserts sequences of nop instructions in the code.

It is easy to detect and undo.

Arithmetic and branch insertion. This transformation introduces junk arithmetic and branch

instructions based on simple templates. The branch instructions have arbitrary branch offsets. The

branch conditions are designed to be always false so that the branches are never actually taken. We

assume that the value of these conditions (true or false) will be opaque to anti-malware tools being

tested. Such obfuscation may create additional dependencies in control flow analysis. Listing 3.5

demonstrates some of the junk code that we generate. As in code reordering, we point out that

there may not be a source level equivalent which compiles to the transformed program because

branches are made to arbitrary offsets whereas control flow in Java is based on nested blocks (save

the limited use of break and continue).



64

const/16 v0, 0x5

const/16 v1, 0x3

add-int v0, v0, v1

add-int v0, v0, v1

rem-int v0, v0, v1

if-lez v0, :junk_1

Listing 3.5. An example of a junk code fragment

3.3.2.7. Encrypting Payloads and Native Exploits. In Android, native code is usually made

available as libraries accessed via JNI. However, some malware such as DroidDream also pack na-

tive code exploits meant to run from a command line in non-standard locations in the application

package. All such files may be stored encrypted in the application package and be decrypted at

runtime. Certain malware such as DroidDream also carry payload applications that are installed

once the system has been compromised. These payloads may also be stored encrypted. We cat-

egorize payload and exploit encryption as DSA because signature based static detection is still

possible based on the main application’s bytecode. These are easily implemented and have been

seen in practice as well (e.g., DroidKungFu malware uses encrypted exploit).

3.3.2.8. Function Outlining and Inlining. In function outlining, a function is broken down into

several smaller functions. Function inlining involves replacing a function call with the entire func-

tion body. It is typically used by compilers for optimizing code related to short functions. The

outlining refactoring has been proposed to eliminate duplicate code in programs [83]. However,

outlining and inlining can be used for call graph obfuscation also. Outlining can also be used to

impede all kinds of intra-procedural analyses. If a function is broken into sufficiently small chunks,
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intra-procedural analysis will not be able to give any useful information. Interprocedural analysis

is still possible though.

3.3.2.9. Other Simple Transformations. There are a few other transformations as well, specific

to Android. Bytecode typically contains a lot of debug information, such as source file names, local

and parameter variable names, and source line numbers. All this information may be stripped off.

Another possible transformation is due to the nature of Android packages, which are zip files. Files

archived in these zip files may be renamed. Finally, Android packages contain various resources

apart from the classes.dex and AndroidManifest. All these resources may be renamed or

modified appropriately.

3.3.2.10. Composite Transformations. Any of the above transformations may be combined with

one another to generate stronger obfuscations. While compositions are not commutative, anti-

malware detection results should be agnostic to the order of application of transformations in all

cases discussed here.

3.3.3. Transformation Attacks Non-Detectable by Static Analysis (NSA)

These transformations can break all kinds of static analysis. Some encoding or encryption is typi-

cally required so that no static analysis scheme can infer parts of the code. Parts of the encryption

keys may even be fetched remotely. In this scenario, interpreting or emulating the code (i.e., dy-

namic analysis) is still possible but static analysis becomes infeasible.

3.3.3.1. Reflection. Reflection is an easy way to obfuscate method calls. Reflection is the ability

provided by certain programming languages allowing a program to introspect itself and change its

behavior at runtime. In Java, the reflection API allows a program, among other things, to invoke a

method by using the name of the methods. In reflection transformation, we convert every method

call into a call to that method via reflection. This makes it difficult to analyze statically which
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method is being called. A subsequent encryption of the method name can make it impossible for

any static analysis to recover the call. Listing 3.6 illustrates code in Listing 3.1 after reflection

transformation.

const-string v10, "profile"

const-string v11, "mount -o remount rw system\nexit\n"

const/4 v13, 0x2

new-array v14, v13, [Ljava/lang/Class;

new-array v15, v13, [Ljava/lang/Object;

const/4 v13, 0x0

const-class v12, Ljava/lang/String;

aput-object v12, v14, v13

aput-object v10, v15, v13

const/4 v13, 0x1

const-class v12, Ljava/lang/String;

aput-object v12, v14, v13

aput-object v11, v15, v13

const-string v13, "runRootCommand"

const-class v12, Lcom/android/root/Setting;

invoke-virtual {v12, v13, v14}, Ljava/lang/Class;->getMethod(Ljava/lang/String;[Ljava/

lang/Class;)Ljava/lang/reflect/Method;

move-result-object v13

const/4 v16, 0x0

invoke-virtual {v13, v12, v15}, Ljava/lang/reflect/Method;->invoke(Ljava/lang/Object;[

Ljava/lang/Object;)Ljava/lang/Object;

move-result-object v7

check-cast v7, Ljava/lang/String;

Listing 3.6. Listing 3.1 with method call by reflection
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3.3.3.2. Bytecode Encryption. Code encryption tries to make the code unavailable for static anal-

ysis. The relevant piece of the application code is stored in an encrypted form and is decrypted

at runtime via a decryption routine. Code encryption has long been used in polymorphic viruses;

the only code available to signature based antivirus applications remains the decryption routine,

which is typically obfuscated in different ways at each replication of the virus to evade detection.

We discuss here code encryption alone; obfuscation of the decryption routine may be possible by

other methods discussed above.

We accomplish bytecode encryption by moving most of the application in a separate dex file

(packed as a jar) and storing it in the application package in an encrypted form. When one of

the application components (such as an activity or a service) is created, it first calls a decryption

routine that decrypts the dex file and loads it via a user defined class loader. In Android, the

DexClassLoader provides the functionality to load arbitrary dex files. Following this opera-

tion, calls can be made into the code in the newly loaded dex file. Alternatively, one could define

a custom class loader that loads classes from a custom file format, possibly containing encrypted

classes. We note that classes which have been defined as components need to be available in

classes.dex (one that is loaded by default) so that they are available to the Android middle-

ware in the default class loader. These classes then act as wrappers for component classes that have

been moved to other dex files.

3.4. Implementation

Apart from function outlining and inlining, we applied all other DroidChameleon transforma-

tions to the malware samples. We have implemented most of the transformations so that they

may be applied automatically to the application. Automation implies that the malware authors can

generate polymorphic malware at a very fast pace. Certain transformations such as native code
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Table 3.1. Anti-malware products evaluated.

Vendor Product Package name Version # downloads
AVG Antivirus Free com.antivirus 3.1 50M-100M
Symantec Norton Mobile Security com.symantec.mobilesecurity 3.3.0.892 5M-10M
Lookout Lookout Mobile Security com.lookout 8.7.1-EDC6DFS 10M-50M
ESET ESET Mobile Security com.eset.ems 1.1.995.1221 500K-1M
Dr. Web Dr. Web anti-virus Light com.drweb 7.00.3 10M-50M
Kaspersky Kaspersky Mobile Security com.kms 9.36.28 1M-5M
Trend micro Mobile Security Personal Ed. com.trendmicro.tmmspersonal 2.6.2 100K-500K
ESTSoft ALYac Android com.estsoft.alyac 1.3.5.2 5M-10M
Zoner Zoner Antivirus Free com.zoner.android.antivirus 1.7.2 1M-5M
Webroot Webroot Security & Antivirus com.webroot.security 3.1.0.4547 500K-1M

Table 3.2. Malware samples used for testing anti-malware tools

Family Package name SHA-1 code Date found Remarks

DroidDream
com.droiddream.
bowlingtime

72adcf43e5f945ca9f72
064b81dc0062007f0fbf

03/2011 Root exploit

Geinimi com.sgg.spp 1317d996682f4ae4cce6
0d90c43fe3e674f60c22

10/2011
Information exfiltration;
bot-like capabilities

Fakeplayer
org.me.androidappli-
cation1

1e993b0632d5bc6f0741
0ee31e41dd316435d997

08/2010 SMS trojan

Bgserv
com.android.vending.
sectool.v1

bc2dedad0507a916604f
86167a9fa306939e2080

03/2011
Information exfiltration;
bot-like capabilities;
SMS trojan

BaseBridge com.keji.unclear 508353d18cb9f5544b1e
d1cf7ef8a0b6a5552414

05/2011
Root exploit; SMS tro-
jan packed as payload

Plankton
com.crazyapps.angry.
birds.rio.unlocker

bee2661a4e4b347b5cd2
a58f7c4b17bcc3efd550

06/2011 Dynamic code loading

encryption are not possible to completely automate because one needs to know how native code

files are being handled in the code.2 Transformations that require modification of the AndroidMan-

ifest (rename packages and renaming components) have not been completely automated because

we felt it was more convenient to modify manually the AndroidManifest for our study. Never-

theless, it is certainly possible to automate this as well. Finally, we did not automate bytecode

encryption, although there are no technical barriers to doing that. However, we have implemented

a proof-of-concept bytecode encryption transformation manually on existing malware.

2Native code stored in non standard locations is typically copied from the application package to the application
directory by the application itself (possibly through an available Android API).
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We utilize the Smali/Baksmali [12] and its companion tool Apktool [1] for our implementation.

Apktool is able to unpack an application package, disassemble classes.dex into smali code

and convert AndroidManifest to human readable form among other things. It can also assemble and

repack a package. Most of the code transformations are applied to the smali assembly code, which

is assembled later into dex code. Only method and field renaming was implemented directly on

the dex code, yet using the underlying library for smali/baksmali. The assembling and disassem-

bling transformation is implemented simply by decoding and building with Apktool. This has the

effect of repacking, changing the order and representation of items in the classes.dex file, and

changing the AndroidManifest (while preserving the semantics of it). All other transformations

in our implementation (apart from repacking) make use of Apktool to unpack/repack application

packages. Our overall implementation comprises about 1,100 lines of Python and Scala code.

We verified that our implementation of transformations do not modify the semantics of the pro-

grams. Specifically, we tested our transformations against several test cases and verified their cor-

rectness on two malware samples, DroidDream and Fakeplayer. In general, verifying correctness

on actual malware is challenging because some of the original samples have turned non-functional

owing to, for example, the remote server not responding, and because being able to detect all the

malicious functionality requires a custom, appropriately monitored environment. Indeed, our orig-

inal DroidDream sample would not work because it failed to get a reply from a remote server; we

removed the functionality of contacting the remote server to confirm that the malicious functional-

ity works as intended.

3.5. The Dataset

This section describes the anti-malware products and the malware samples we used for our

study. We evaluated ten anti-malware tools, which are listed in Table 3.1. There are dozens of free
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and paid anti-malware offerings for Android from various well-established anti-malware vendors

as well as not-so-well-known developers. We selected the most popular products; in addition, we

included Kaspersky and Trend Micro, which were then not very popular but are well established

vendors in the security industry. We had to omit a couple of products in the most popular list be-

cause they would fail to identify many original, unmodified malware samples we tested. One of the

tools, Dr. Web, actually claims that its detection algorithms are resilient to malware modifications.

Our malware set is summarized in Table 3.2. We used a few criteria for choosing malware

samples. First, all the anti-malware tools being evaluated should detect the original samples. We

here have a question of completeness of the signature set, which is an important evaluation metric

for antivirus applications. In this work however, we do not focus on this question. Based on this

criterion, we rejected Tapsnake, jSMSHider and a variant of Plankton. Second, the malware sam-

ples should be sufficiently old so that signatures against them are well stabilized. All the samples

in our set were discovered in or before October 2011. All the samples are publicly available on

Contagio Minidump [110].

Our malware set spans over multiple malware kinds. DroidDream [92] and BaseBridge [2] are

malware with root exploits packed into benign applications. DroidDream tries to get root privileges

using two different root exploits, rage against the cage, and exploid exploit. BaseBridge includes

only one exploit, rage against the cage. If these exploits are successful, both DroidDream and

BaseBridge install payload applications. Geinimi [4] is a trojan packed into benign applications.

It communicates with remote C&C servers and exfiltrates user information. Fakeplayer [5], the

first known malware on Android, sends SMS messages to premium numbers, thus costing money

to the user. Bgserv [3] is a malware injected into Google’s security tool to clean out DroidDream

and distributed in third party application markets. It opens a backdoor on the device and exfiltrates
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Figure 3.1. Evaluating anti-malware

user information. Plankton [9] is a malware family that loads classes from additional downloaded

dex files to extend its capabilities dynamically.

3.6. Results

As has already been discussed, we transform malware samples using various techniques dis-

cussed in Section 3.3 and pass them through anti-malware tools we evaluate. We will now briefly

describe our methodology and then discuss the findings of our study.

We describe our methodology through Figure 3.1 and through Tables 3.4 and 3.5, which depict

the series of transformations applied to DroidDream and Fakeplayer samples and the detection

results on various anti-malware tools. Empty cells in the tables indicate positive detection while

cells with ‘x’ indicate that the corresponding anti-malware tool failed to detect the malware sample

after the given transformations were applied to the sample. The tables reflect a general approach

of our study. We begin testing with trivial transformations and then proceed with transformations

that are more complex. Each transformation is applied to a malware sample (of course, some like
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Table 3.3. Key to Tables 3.4, 3.5 and 3.6. Transformations coded with single letters
are trivial transformations. All others are DSA. We did not need NSA transforma-
tions to thwart anti-malware tools.

Code Technique

P Repack
A Dissassemble & assemble
RP Rename package
EE Encrypt native exploit or payload
RI Rename identifiers
ED Encrypt strings and array data
CR Reorder code
CI Call indirection
JN Insert junk code

All transformations contain P
All transformations except P contain A

exploit encryption apply only in certain cases) and the transformed sample is passed through anti-

malware. If detection breaks with trivial transformations, we stop.3 Next, we apply all the DSA

transformations. If detection still does not break, we apply combinations of DSA transformations.

In general there is no well-defined order in which transformations should be applied (in some

cases a heuristic works; for example, malware that include native exploits are likely to be detected

based on those exploits). Fortunately, in our study, we did not need to apply combinations of more

than two transformations to break detection. When applying combinations of transformations,

we stopped when detection broke. We do not show the redundant combinations in the tables for

the sake of conciseness. The last rows do not form part of our methodology; we construct them

manually to show the set of transformations with which all anti-malware tools yield.

Our results with all the malware samples are summarized in Table 3.6. This table gives the min-

imal transformations necessary to evade detection for malware-anti-malware pairs. For example,

3All DSA and NSA transformations also result in trivial transformations because of involving disassembling, assem-
bling and repacking. Hence, there is no use in proceeding further.
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Table 3.4. DroidDream transformations and anti-malware failure. Please see Table
3.3 for key. ‘x’ indicates failure in detection.

AVG Symantec Lookout ESET Dr. Web Kaspersky Trend M. ESTSoft Zoner Webroot
P x
A x x
RP x x x x
EE x x
RI x x x x
ED x x
CR x x
CI x x
JN x x
RI+EE x x x x x
EE+ED x x x
EE+RF x x x
EE+CI x x x
RP+RI+EE
+ED+RF+CI

x x x x x x x x x x

Table 3.5. Fakeplayer transformations and anti-malware failure. Please see Table
3.3 for key. ‘x’ indicates failure in detection. EE transformation does not apply for
lack of native exploit or payload in Fakeplayer.

AVG Symantec Lookout ESET Dr. Web Kaspersky Trend Micro ESTSoft Zoner Webroot
P
A x x
RP x x x x
RI x x x x
ED x x
CR x x
CI x x x
JN x x
RP+RI x x x x x x x x x
RP+RI+CI x x x x x x x x x x

DroidDream requires both exploit encryption and call indirection to evade Dr. Web’s detection.

These minimal transformations also give insight into what kind of detection signatures are being

used. We next describe our key findings in the light of the detection results.

Finding 1 All the studied anti-malware products are vulnerable to common transformations.

All the transformations appearing in Table 3.6 are easy to develop and apply, redefine only certain
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Table 3.6. Evaluation summary. Please see Table 3.3 for key. ‘+’ indicates the
composition of two transformations.

DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton
AVG RP RI RP + RI RI RI RP + RI
Symantec RI RI RP + RI RI + ED ED P
Lookout P RI + ED RP + RI RI + ED EE + ED RI
ESET RI + EE ED RI RI EE + ED RI + ED
Dr. Web EE + CI CI CI CI EE + CI CI
Kaspersky EE + ED RI RI RI + ED EE + ED A
Trend M. EE + RF RI A A EE + RF A
ESTSoft RP RP RP RP RP RP
Zoner A RI A A A RI
Webroot RI RI RP RI RP RI

syntactic properties of the malware, and are common ways to transform malware. Transforma-

tions like identifier renaming and data encryption are easily available using free and commercial

tools [10, 13]. Exploit and payload encryption is also easy to achieve. We point out that some of

these transformations may already be seen in the wild in current malware. For example, Geinimi

variants have encrypted strings [91]. Similarly, the DroidKungFu malware uses encrypted exploit

code [8]; a similar transformation to DroidDream allows easy evasion across almost all the anti-

malware tools we studied. No transformations just discussed thwart static analysis.

We found that only Dr. Web uses a somewhat more sophisticated algorithm for detection. Our

findings indicate that the general detection scheme of Dr. Web is as follows. The set of method

calls from every method is obtained. These sets are then used as signatures and the detection

phase consists of matching these sets against sets obtained from the sample under test. We also

tested Dr. Web against reflection transformation (not shown in the tables) and were able to evade

it. This offers another confirmation that signatures are based on method calls. Furthermore, we

also found (by limiting our transformations) that only framework API calls matter; calls within the

application make no difference. It seems that the matching is somewhat fuzzy (requiring only a

threshold percentage of matches) because we found on DroidDream and Fakeplayer that results
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are positive even when a few classes are removed from the dex file. For these two families, we

could create multiple minimal sets of classes that would result in positive detection. As mentioned

earlier, Dr. Web indeed claims it has signatures that are resilient to malware modifications. It is

difficult to say if the polymorphic resistance of these signatures is any stronger than other signatures

depending on identifier names and string and data values. In particular, such signatures do not

capture semantic properties of malware such as data and control flow. Our results aptly demonstrate

the low resistance.

Finding 2 At least 43% signatures are not based on code-level artifacts. That is, these are based

on file names, checksums (or binary sequences) or information easily obtained by the PackageM-

anager API. We also found all AVG signatures to be derived from the content of AndroidManifest

only (and hence that of the PackageManager API). In case of AVG, the signatures are based on

application component classes or package names or both. Furthermore, this information is derived

from AndroidManifest only. We confirmed this by placing a fake AndroidManifest in malware

packages and assembling them with the rest of the package kept as it is. This AndroidManifest

did not have any of the components or package names declared by the malware applications. The

results were that detection was negative for all the malware samples.

Finding 3 90% of signatures do not require static analysis of bytecode. Only one of ten anti-

malware tools was found to be using static analysis. Names of classes, methods, and fields, and

all the strings and array data are stored in the classes.dex file as they are and hence can be

obtained by content matching. The only signatures requiring static analysis of bytecode are those

of Dr. Web because it extracts API calls made in various methods.

Finding 4 Anti-malware tools have evolved towards content-based signatures over the past

one year. We studied compare our findings that we obtained in February 2012 (Table 3.7) to

our present findings obtained in February 2013 (Table 3.6). Some of the anti-malware tools have
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<manifest ... package= "com.crazyapps.angry.birds.rio.unlocker" ... >

<application android:label="@string/app_name" android:icon="@drawable/icon">
<activity android:label="@string/app_name" android:name=

".AngryBirdsRioUnlocker" ... >

:
</activity>

<service android:name= "com.plankton.device.android.AndroidMDKProvider" ... />

</application>

<manifest ... package= "com.hDEWJu.oYlCvk.hFYkwc.FgDOHA.UPkmVF" ... >

<application android:label="@string/app_name" android:icon="@drawable/icon">
<activity android:label="@string/app_name" android:name= ".LncHMH" ... >

:
</activity>

<service android:name= "com.rawJbA.DKPTQc.aaMYse.QUivSk" ... />

</application>

Figure 3.2. An example evasion. Changes required in AndroidManifest of Plank-
ton to evade AVG (original first and modified second; only relevant parts are shown
with differences highlighted). No other changes are required. The application will
not work though until the components are also renamed in the bytecode. We con-
firm that AVG’s detection is based on the contents of AndroidManifest alone (see
Finding 2).

Table 3.7. Summary of results from anti-malware tools downloaded in February
2012. Please see Table 3.3 for key. ‘+’ indicates the composition of two transfor-
mations. Results that have changed since then are depicted in bold (see Table 3.6
for comparison).

DroidDream Geinimi Fakeplayer Bgserv BaseBridge Plankton
AVG RP RI RP + RI RI RI RP + RI
Symantec P RI RP P P P
Lookout P ED P P EE + ED RI
ESET EE ED RI RI EE A
Dr. Web EE + CI CI CI CI EE + CI CI
Kaspersky EE RI RI RI + ED EE + ED A
Trend M. EE RI A A EE A
ESTSoft P P P P P P
Zoner A A A A A A
Webroot RP P RP P P RP

changed considerably for the same malware samples. Last year, 45% of the signatures were evaded

by trivial transformations, i.e., repacking and assembling/disassembling. Such signatures have

virtually no resilience against polymorphism. Our present results show a marked decrease in this
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fraction to 16%. We find that in all such cases where we see changes, anti-malware authors have

moved to content-based matching, such as matching identifiers and strings.

Furthermore, for malware using native code exploits, many anti-malware tools previously

matched on the native exploits and payloads alone. The situation has changed now as all of these

additionally match on some content in the rest of the application as well. Although the changes

in the signatures over the past one year may be seen as improvement, we point out that the new

signatures still lack resilience against polymorphic malware as our results aptly demonstrate.

3.7. Defense against Transformation Attacks

In this section, we discuss how the current state of malware detection on Android may be

improved. We identify how anti-malware tools should improve their detection techniques and that

mobile platforms should provide special support to antimalware tools.

3.7.1. Semantics-based Malware Detection

We point out that owing to the use of bytecodes, which contain high-level structural information,

analyses of Android applications becomes much simpler than those of native binaries. Hence,

semantics-based detection schemes could prove especially helpful in the case of Android. For

example, Christodorescu et al. [36] describe a technique for semantics based detection. Their al-

gorithms are based on unifying nodes in a given program with nodes in a signature template (nodes

may be understood as abstract instructions), while preserving def-use paths described in the tem-

plate. Since this technique is based on data flows rather than a superficial property of the program

such as certain strings or names of methods being defined or called, it is not vulnerable to any of

the transformations (all of which are trivial or DSA) that show up in Table 3.6. Such a detection
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scheme is arguably slower than current detection schemes but offers higher confidence in detec-

tion. This is just another instance of the traditional security-performance tradeoff. Christodorescu

et al. had actually reported the running times to be in the order of a couple of minutes on their

prototype and had suggested real performance is possible with an optimized implementation [36].

Semantics-based detection is quite challenging for native codes; their analyses frequently

encounters issues such as missing information on function boundaries, pointer aliasing, and so

on [68, 126]. Even disassembly of native binaries can be error prone [88, 128]. Stripped binaries

pose even greater problems, which are not fully solved yet and current solutions for accurate disas-

sembly require combination of static and dynamic techniques [102]. Bytecodes, on the other hand,

preserve much of the source-level information, thus easing analysis. We therefore believe that

anti-malware tools have greater incentive to implement semantic analysis techniques on Android

bytecodes than they had for developing these for native code.

3.7.2. Support from Platform

Note that the use of code encryption and reflection (NSA transformations) can still defeat the above

scheme. Code encryption does not leave visible code on which signatures can be developed (of

course, the decryption routing may still be used for generating signatures). The use of reflection

simply hides away the edges in the call graph. A sophisticated data flow analysis can still uncover

those edges; however, if the method names used for reflective invocations are encrypted, these

edges are rendered completely opaque to static analysis. Furthermore, it is possible to use function

outlining to thwart any forms of intra-procedural analysis as well. Owing to these limitations, the

use of dynamic monitoring is essential.
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Recall that anti-malware tools in Android are unprivileged third party applications. This im-

pedes many different kinds of dynamic monitoring that may enhance malware detection. We be-

lieve special platform support for anti-malware applications is essential to detect malware amongst

stock Android applications. This can help malware detection in several ways. For example, a

common way to break evasion by code encryption is to scan the memory at runtime. The Android

runtime could provide all the classes loaded using user-defined class loaders to the anti-malware

application. Once the classes are loaded, they are already decrypted and anti-malware tools can

analyze them easily.

We note that providing privileges for dynamic monitoring to anti-malware applications would

promote opportunities for malware to trick users to grant high privileges. This is again a trade-off.

Anti-malware tools on PCs typically require high privileges and do useful work even though there

are issues of fake antiviruses [98].

We note that Google recently introduced on-phone app verification [119], which checks the

app checksum against a malware database upon installation. This however is not sufficient against

polymorphic attacks each instance of a malicious app is unique. Google also performs offline

app analysis for malware detection using its Bouncer service [90]. This is based on emulation

(using virtual machines) of real phone environments. Such scanning by emulation however has

its own problems, ranging from detection of a virtualized environment to the malicious activity

not getting triggered in the limited time for which the emulation runs; Bouncer is no exception

to this [106, 137]. We therefore believe offline emulation must be supplemented by strong static

analysis or real-time dynamic monitoring.
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3.8. Related Work

3.8.1. Evaluating Anti-malware Tools

AV-Test.org, an antivirus evaluation lab, rated anti-malware products for Android for the com-

pleteness of their detection [6, 14]. Our study is orthogonal to their study in that we evaluate how

anti-malware products perform in detecting polymorphic variants of known malware. Most of the

tools (9/10) we studied are rated as “very good” by them. This provides us reason to believe that

the tools we did not study will not have any better resistance to polymorphism.

Zheng et al. [147] also studied the robustness of anti-malware against Android malware re-

cently. They implement a subset of our transformations, use them generate several malware vari-

ants, and test these on VirusTotal, a webservice that tests submitted samples against over 40 anti-

virus products. Their results however only show the change in overall detection percentages as

the transformations are applied. Our results are much stronger in that we can show that all anti-

malware tools actually succumb for all malware samples tested. Moreover, we also deduce the

weaknesses and strengths of some of the products. Finally, we abstained from using VirusTotal be-

cause we found that detection rates for some anti-malware (such as AVG and Dr. Web) are vastly

different for the mobile version and the VirusTotal (perhaps desktop-based) version.

Christodorescu and Jha [34] conducted a study similar to ours on desktop anti-malware applica-

tions eight years ago. They also arrived at the conclusion that these applications have low resilience

against malware obfuscation. Our study is based on Android anti-malware, and we include several

aspects in our study that are unique to Android. Furthermore, our study dates after many research

works (see below) on obfuscation resilient detection, and we would expect the proposed techniques

to be readily integrated into new commercial products.
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Finally, there are many works in the industry about the evaluation of desktop antivirus tools on

metrics such as signature completeness, usability and so on [7, 124].

3.8.2. Obfuscation Techniques

Collberg et al. [39] review different types of obfuscations and classify them based on reverse en-

gineering by a human and by automated tools, and the overhead added to the application. They

propose many different obfuscations possible on Java (or Dalvik) code. Collberg et al. further

propose sophisticated transformations such as modifying inheritance graphs and method cloning

and implementation of opaque predicates (predicates whose outcome is difficult to arrive at while

reverse engineering but is known to the obfuscator) to insert junk code [40, 41]. DroidChameleon

provides only a few of the transformations proposed by them. Nonetheless, the set of transforma-

tions provided in DroidChameleon is comprehensive (together with the advanced transformations)

in the sense that they can break typical static detection techniques used by anti-malware. As for

opaque predicates, we use such techniques in our transformation for inserting junk code with the

assumption that anti-malware tools will not be able to resolve conditions we use therein.

There are many tools that provide obfuscation for Java bytecode. Proguard [10] provides re-

naming of classes and class members. Other tools like Klassmaster [13] additionally provide flow

obfuscation and string encryption. We provide much of these functionalities. While the goal of

these tools is to evade manual reverse engineering, we aim at thwarting analysis by automatic tools.

3.8.3. Obfuscated Malware Detection

As already discussed, to deal with malware obfuscation, the detection techniques must be based on

semantics rather than the syntax of the code. These detection techniques should therefore be based

on data flow and control flow analyses of the samples under test. Christodorescu et al. [36] present
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one such technique. Their algorithm is based on matching given samples against a template by

unifying nodes in samples with nodes in the template while preserving def-use relationships. In

subsequent work, Preda et al. [113] propose a semantics-based framework to prove properties about

malware detectors. Kruegel et al. [84] tackle the problem of disassembling binaries that have been

made hard to disassemble for malware analysis. Christodorescu et al. [35] and Fredrikson et al. [59]

attempt to generate semantics based signatures by mining malicious behavior automatically. Kol-

bitsch et al. [82] also propose similar techniques. The last three works are for behavior-based

detection and use different behavior representations such as data dependence graphs and informa-

tion flows between system calls. Due to lower privileges for anti-malware tools on Android, these

approaches cannot directly apply to these tools presently. Sequence alignment from bioinformat-

ics [104, 132] has also been applied to malware detection and related problems [72, 139]. Further

work is also there to compute statistical significance of scores given by these classical sequence

alignment algorithms [16, 17]. It may be possible to adapt such techniques to detect transformed

malware with high performance.

3.8.4. Smartphone Malware Research

With the growth of malware on smartphones, several research works have been done in this di-

rection. DroidRanger [149] and Riskranker [64] use (mostly) static analysis to detect unknown

malware from both known and unknown malware families. They identified several new malicious

applications in the official Android market as well as alternative application markets. Peng et

al. [111] investigate probabilistic models to rank risks for Android apps. Anti-malware authors

may explore their approaches, which may serve as heuristics to raise malware suspicions. Crow-

droid [30] uses crowd sourcing to collect system calls from applications running on mobile devices

then uses clustering to identify malicious behavior. Such techniques cannot be currently used by
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unprivileged third-party anti-malware applications on Android. Felt et al. [52] present a survey

of smartphone malware. They present taxonomy of smartphone malware and explore the incen-

tives to develop mobile device malware. Zhou et al. [148] provide another, more recent survey

of Android malware. They study how well anti-malware tools detect malware samples found in

the wild. The tools have good detection on some families, like Fakeplayer and Geinimi, but fail

in our tests when the samples are transformed. Airmid [101] proposes new mobile infrastructure

for malware mitigation. Apart from Android, they also explored malware on Symbian and iOS.

Bose et al. [28] and Kim et al. [78] have used logical ordering of applications’ actions and power

consumption respectively to construct behavioral detection of Symbian malware. VirusMeter [89]

also uses power consumption to catch misbehaving Symbian malware. It is still to be demonstrated

if these techniques apply well to Android also. In a summary, none of the above works focuses on

evaluating current mobile anti-malware solutions.

3.9. Conclusion

We evaluated ten anti-malware products on Android for their resilience against malware trans-

formations. To facilitate this, we developed DroidChameleon, a systematic framework with vari-

ous transformation techniques. Our findings show that all the anti-malware products evaluated are

susceptible to common evasion techniques and may succumb to even trivial transformations not

involving code-level changes. Finally, we explored possible ways in which the current situation

may be improved and next-generation solutions may be developed.
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CHAPTER 4

AutoCog: Measuring the Description-to-permission Fidelity in Android

Applications

4.1. Introduction

Modern operating systems such as Android have promoted global ecosystems centered around

large repositories or marketplaces of applications. Success of these platforms may in part be attrib-

uted to these marketplaces. Besides serving applications themselves, these marketplaces also host

application metadata, such as descriptions, screenshots, ratings, reviews, and, in case of Android,

permissions requested by the application, to assist users in making an informed decision before in-

stalling and using the applications. From the security perspective, applications may access users’

private information and perform security-sensitive operations on the devices. With the application

developers having no obvious trust relationships with the user, these metadata may help the users

evaluate the risks in running these applications.

It is however generally known [56] that few users are discreet enough or have the professional

knowledge to understand the security implications that may be derived from metadata. On Google

Play, users are shown both the application descriptions and the permissions1 declared by applica-

tions. An application’s description describes the functionality of an application and should give an

1In Android, security-sensitive system APIs are guarded by permissions, which applications have to declare and which
have to be approved at install-time.
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idea about the permissions that would be requested by that application. We call this description-

to-permission fidelity. For example, an application that describes itself as a social networking ap-

plication will likely need permissions related to device’s address book. A number of malware and

privacy-invasive applications have been known to declare more permissions than their purported

functionality warrants [52, 149].

With this belief that descriptions and permissions should generally correspond, we present

AutoCog, a system that automatically identifies if the permissions declared by an application are

consistent with its description. AutoCog has multi-fold uses.

• Application developers can use this tool to receive an early, automatic feedback on the

quality of descriptions so that they improve the descriptions to better reflect the security-

related aspects of the applications.

• End users may use this system to understand if an application is over-privileged and risky

to use.

• Application markets can deploy this tool to bolster their overall trustworthiness.

The key challenge is to gather enough semantics from descriptions in natural language to rea-

son about the permissions declared. We apply state-of-the-art techniques from natural language

processing (NLP) for sentence structure analysis and computing semantic relatedness of natural

language texts. We further develop our own learning-based algorithm to automatically derive a

model that can be queried against with descriptions to get the expected permissions.

AutoCog is a substantial advancement over the previous state-of-the-art technique by Pandita

et al. [108], who have also attempted to develop solutions with the same goals. Their tool called

Whyper is primarily limited by the use of a fixed vocabulary derived from the platforms’ API

documents and the English synonyms of keywords there. Our investigations show that Whyper’s
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methodology is inherently limited regarding the following issues: (a) Limited semantic informa-

tion: not all textual patterns associated with a permission can be extracted from API documents,

e.g., <“find”, “branch atm”> relate to location permissions and <“scan”, “barcode”> relate to

the permission for accessing the camera in our models but cannot conceivably be found from API

documents; (b) Lack of associated APIs: certain permissions do not have associated APIs so that

this methodology cannot be used; and (c) Lack of automation: it is not clear how the techniques

could be automated. We have confirmed these limitations with Whyper’s authors as well.

Our methodology is radically different from Whyper’s as is evident from the following contri-

butions of this chapter.

• Relating descriptions and permissions. We design a novel learning-based algorithm for

modeling the relatedness of descriptions to permissions. Our algorithm correlates textual

semantic entities (second contribution) to the declared permissions. It is noteworthy that

the model is trained entirely from application descriptions and declared permissions over

a large set of applications without depending on external data such as API documents, so

that we do not have the problems of limited semantic information or lack of associated

APIs from the very outset. Both training and classification are completely automatic.

• Extracting semantics from descriptions. We utilize state-of-the-art NLP techniques to

automatically extract semantic information from descriptions. The key component for

semantics-extraction in our design is Explicit Semantic Analysis (ESA), which leverages

big corpuses like Wikipedia to create a large-scale semantics database, and which has

been shown to be superior to dictionary-based synonyms and other methods [61] and

is being increasingly adopted by numerous research and commercial endeavors. Such

superior analysis further largely mitigates the problem of limited semantic information.
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• System prototype. We design and implement an end-to-end tool called AutoCog to au-

tomatically extract relevant semantics from Android application descriptions and permis-

sions to produce permission models. These models are used to measure description-to-

permission fidelity: given an application description, a permission model outputs whether

the permission is expected to be declared by that application. If the answer is yes, Au-

toCog further provides relevant parts of description that warrant the permission.

We further have the following evaluation and measurement highlights.

• Evaluation. Our evaluation on a set of 1,785 applications shows that AutoCog outper-

forms the previous work on detection performance and ability of generalization over vari-

ous permissions by a large extent. AutoCog closely aligns with human readers in inferring

the evaluated permissions from textual descriptions with an average precision of 92.6%

and average recall of 92.0% as opposed to previous state-of-the-art precision and recall of

85.5% and 66.5% respectively.

• Measurements. Our findings on 45,811 applications using AutoCog show that the description-

to-permissions fidelity is generally low on Google Play with only 9.1% of applications

having permissions that can all be inferred from the descriptions. Moreover, we observe

the negative correlation between fidelity and application popularity.

The remainder of this chapter is organized as follows. Section 4.2 gives further motivation

of our work and presents a brief background and problem statement. Next we cover AutoCog

design in detail in Section 4.3, followed by the implementation aspects in Section 4.4. Section 4.5

deals with the evaluation of AutoCog and introduces our measurement results. We have relevant

discussion and related work in Sections 4.6 and 4.7. Finally, we conclude our work in Section 4.8.
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4.2. Background and Problem statement

4.2.1. Background

Android introduces a sophisticated permission-based security model, whereby an application de-

clares a list of permissions, which must be approved by the user at application installation. These

permissions guard specific functionalities on the device, including some security and privacy-

sensitive APIs such as access contacts.

Modern operating systems such as Android, iOS, and Windows 8 have brought about the ad-

vent of big, centralized application stores that host third-party applications for users to view and

install. Google Play, the official application store for Android, hosts both free and paid applica-

tions together with a variety of metadata including the title and description, reviews, ratings, and

so on. Additionally, it also provides the user with the ability to study the permissions requested by

an application.

4.2.2. Problem Statement

The application descriptions on Google Play are a means for the developers to communicate the

application functionality to the users. From the security and privacy standpoint, these descriptions

should thus indicate the reasons for the permissions requested by an application, either explicitly

or implicitly2. We call it fidelity of descriptions to permissions.

As stated in Section 4.1, Android applications often have little in their descriptions to indicate

to the users why they need the permissions declared. Specifically, there is frequently a gap between

the access of the sensitive device APIs by the applications and their stated functionality. This may

not always be out of malicious intent; however users are known to be concerned about the use of

2By implicit, we mean that the need for permission is evident from stated functionality.



89

sensitive permissions [54]. Moreover, Felt et al. [56] show that few users are careful enough or

able to understand the security implications derived from the metadata. In this work we thus look

into the problem of automatically assessing the fidelity of the application descriptions with respect

to the permissions.

Detection of malicious smartphone applications is possible through static/run-time analysis

of binaries [48, 69, 142]. However, the techniques to evaluate whether application oversteps the

user expectation are still lacking. Our tool can assist the users and other entities in the Android

ecosystem assess whether the descriptions are faithful to the permissions requested. AutoCog may

be used by users or developers individually or deployed at application markets such as Google Play.

It may automatically alert the end users if an application requests more permissions than required

for the stated functionalities. The tool can provide useful feedback about the shortcomings of the

descriptions to the developers and further help bolster the overall trustworthiness of the mobile

ecosystem by being deployed at the markets.

As for automatically measuring description-to-permission fidelity, we need to deal with two

concepts: (a), the description semantics, which relates to the meaning of the description, and

(b), the permission semantics, which relates to the functionality provided (or protected) by the

permission. The challenges in solving our problem therefore lie in:

• Inferring description semantics: Same meaning may be conveyed in a vast diversity of

natural language text. For example, the noun phrases “contact list”, “address book”, and

“friends” share similar semantic meaning.

• Correlating description semantics with permission semantics: A number of functionali-

ties described may map to the same permission. For example, the permission to access

user location might be expressed with the texts “enable navigation”, “display map”, and
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“find restaurant nearby”. The need for permission to write to external disk can be implied

as “save photo” or “download ringtone”.

In AutoCog, we consider the decision version of the problem stated above: given a description

and a permission, does the description warrant the declaration of the permission? If AutoCog

answers yes, it provides the sentences that warrant the permission, thus assisting users in reasoning

about the requested permission. As a complete system, AutoCog solves this decision problem for

each permission declared.

Whyper [108] is a previous work with goals similar to ours. Whyper correlates the description

and permission semantics by extracting natural language keywords from an external source, An-

droid API documents. Since APIs and permissions can be related together [20], the intuition is that

keywords and patterns expressed in the API documentation will also be found in the application

descriptions and are therefore adequate in representing the respective permissions. Based on our

investigation, the methodology has the following fundamental limitations:

• Limited semantic information: the API documents are limited in the functionality they

describe and so Whyper cannot cover a complete set of semantic patterns correlated with

permissions. For example, in our findings, the pattern <“deposit”, “check”> is related to

the permission CAMERA with high confidence but cannot be extracted from API docu-

ments. The mobile banking applications, such as Bank of America3, support depositing

by snapping its photo with the device’s camera. Analysis on this issue in detail will be

shown in Section 4.5.2.

• Lack of associated APIs: certain sensitive permissions do not have any associated APIs.

RECEIVE BOOT COMPLETED is one example [20]. It is thus not possible to generate

the correlated textual pattern set with the API documents.

3https://play.google.com/store/apps/details?id=com.infonow.bofa

https://play.google.com/store/apps/details?id=com.infonow.bofa
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Figure 4.1. Overall architecture of AutoCog

• Lack of automation: Whyper’s extraction of patterns from API documents involved man-

ual selection to preserve the quality of patterns; what policies could be used to automate

this process in a systematic manner is an open question.

Our learning-based approach automatically discovers a set of textual patterns correlated with

permissions from the descriptions of a rich set of applications, hence enabling our description-

to-permission relatedness model to achieve a complete coverage over the natural language texts

with great diversity. Besides, the training process works directly on descriptions. So we easily

overcome the limitations of the previous work as stated above.

4.3. System Design

Figure 4.1 gives an architectural overview of AutoCog. The description of the application is

first processed by the NLP module, which disambiguates sentence boundaries and analyzes each

sentence for grammatical structure. The output of the NLP module is then passed in together

with the application permissions into the decision module, which, based on models of description

semantics and description-to-permission relatedness outputs the questionable permissions that are
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not warranted from the description and the sentences from which the other permissions may be

inferred. These outputs together provide description–to-permission fidelity. This section provides

a detailed design of each of the modules and the models that constitute AutoCog.

4.3.1. NLP Module

The goal of the NLP module is to identify specific constructs in the description such as noun and

verb phrases and understand relationship among them. Use of such related constructs alleviates the

shortcomings of simple keyword-based analysis. The NLP module consists of two components,

sentence boundary disambiguation and grammatical structure analysis.

4.3.1.1. Sentence boundary disambiguation (SBD). The whole description is split into sen-

tences for subsequent sentence structure analysis [81, 122]. Characters such as “.”, “:”, “-”, and

some others like “*”, “♠”, “♦” that may start bullet points are treated as sentence separators.

Regular expressions are used to annotate email addresses, URLs, IP addresses, Phone numbers,

decimal numbers, abbreviations, and ellipses, which interfere with SBD as they contain the sen-

tence separator characters.

4.3.1.2. Grammatical structure analysis. We leverage Stanford Parser [133] to identify the gram-

matical structure of sentences. While our design depends on constructs provided by the Stanford

Parser, it is conceivable that other NLP parsers could be used as well.

We first use the Stanford Parser to output typed dependencies, which are semantic hierarchies of

sentences, i.e., how different parts of sentences depend on each other. As illustrated in Figure 4.2,

the dependencies are triplets: name of the relation, governor and dependent. Part of Speech (PoS)

tagging additionally assigns a part-of-speech tag to each word; for example, a verb, a noun, or an

adjective. The results are fed into phrase parsing provided by Stanford Parser to break sentences
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into phrases, which could be noun phrases, verb phrases or other kinds of phrases. We obtain a

hierarchy of marked phrases and tagged words for each sentence.

The governor-dependent pair provides the knowledge of logic relationship between various

parts of sentence, which provides the guideline of our ontology modeling. The concept of ontology

is a description of things that exist and how they relate to each other. In our experience, we find

the following ontologies, which are governor-dependent pairs based on noun phrase, to be most

suitable for our purposes.

• Logical dependency between verb phrase and noun phrase potentially implies the actions

of applications performing on the system resources. For example, the pairs <“scan”,

“barcode”> and <“record”, “voice”> reveal the use of permissions camera and record-

ing.

• Logical dependency between noun phrases is likely to show the functionalities mapped

with permissions. For instance, users may interpret the pairs <“scanner”, “barcode”>

and <“note”, “voice”> as using camera and microphone.

• Noun phrase with own relationship (possessive, such as “your”, followed by resource

names) is recognized as requesting permissions. For example, the RECORD AUDIO and

CAMERA permissions could be revealed by the pairs <“own”, “voice”> and <“your”,

“camera”> .

We extract all the noun phrases in the leaf nodes of the hierarchical tree output from grammat-

ical structure analysis. For each noun phrase, we record all the verb phrases and noun phrases that

are its ancestors or siblings of its ancestors. We also record the possessive, if the noun phrase itself

contains the own relationship. For the sake of simplicity, we call the extracted verb phrases, noun

phrases, and possessives as np-counterpart for the target noun phrase. The noun-phrase based
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Figure 4.2. Example output of Stanford Parser

governor-dependent pairs obtained signify direct or indirect dependency. The example hierarchy

tree for sentence “Search for a place near your location as well as on our interactive maps” is

shown in Figure 4.2 with the pairs extracted: <“search”, “interactive map”>, <“our”, “interac-

tive map”>, <“search”, “place”>, <“search”, “location”>, <“place”, “location”>, and <“your”,

“location”>.

We process these pairs to remove stopwords and named entities. Stopwords are common words

that cannot provide much semantic information in our context, e.g., “the”, “and”, “which”, and so

on. Named entities include names of persons, places, companies, and so on. These also do not

communicate security-relevant information in our context. To filter out named entities, we employ

named entity recognition, a well-researched NLP topic, also implemented in Stanford Parser. The

remaining words are normalized by lowercasing and lemmatization [45]. Example normalizations

include “better”→ “good” and “computers”→ “computer”.
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4.3.2. Description Semantics (DS) Model

The goal here is to understand the meaning of a natural language description, i.e., how different

words and phrases in a vocabulary relate to each other. Similarly meaning natural language descrip-

tions can differ vastly; so such an analysis is necessary. Our model is constructed using Explicit

Semantic Analysis (ESA), the state of the art for computing semantic relatedness of texts [61]. The

model is used directly by the decision module and also for training the description-to-permission

relatedness model discussed in Section 4.3.3.

ESA is an algorithm to measure the semantic relatedness between two pieces of text. It lever-

ages big document corpuses such as Wikipedia as its knowledge base and constructs a vector

representation of text. In ESA, each (Wiki) article is called a concept, and transformed into a

weighted vector of words within the article. As processing an input article, ESA computes the

relatedness of the input to every concept, i.e. projects the input article into the concept space, by

the common words between them. In NLP and information retrieval applications, ESA computes

the relatedness of two input articles using the cosine distance between the two projected vectors.

We choose ESA because it has been shown to outperform other known algorithms for com-

puting semantic relatedness such as WordNet and latent semantic analysis [61]. We offer intuitive

reasons of out-performance over WordNet as this has been used in Whyper. First, WordNet-based

methods are inherently limited to individual words, and adoption for comparing longer text re-

quires an extra level of sophistication [99]. Second, considering words in context allows ESA to

perform word sense disambiguation. Using WordNet cannot achieve disambiguation, since infor-

mation about synsets (sets of synonyms) is limited to a few words; while in ESA, concepts are

associated with huge amounts of text. Finally, even for individual words, ESA offers a much more

detailed and quantitative representation of semantics. It maps the meaning of words/phrases to a
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Table 4.1. Distribution of noun phrase patterns used

Pattern #Noun Phrase (Percentage %)

Noun 1,120,850 (52.37 %)
Noun + Noun 414,614 (19.37 %)
Adjective + Noun 278,785 (13.03 %)
Total 1,814,249 (84.77 %)
Note: The above patterns are from a to-
tal of 2,140,225 noun phrases extracted from
37,845 applications.

weighted combination of concepts, while mapping a word in WordNet amounts to simple lookup,

without any weight.

4.3.3. Description-to-Permission Relatedness (DPR) Model

Description-to-permission relatedness (DPR) model is a decisive factor in enhancing the accuracy

of AutoCog. We design a learning-based algorithm by analyzing the descriptions and permissions

of a large dataset of applications to measure how closely a noun-phrase based governor-dependent

pair is related to a permission. The flowchart for building the DPR model is shown in Figure 4.3.

We first leverage ESA to group the noun phrases with similar semantics. Next, for each permis-

sion, we produce a list of noun phrases whose occurrence in descriptions is positively related to

the declaration of that permission. Such phrases may potentially reveal the need for the given

permission. In the third stage, we further enhance the results by adding in the np-counterparts

(of the noun-phrase based governor-dependent pairs) and keeping only the pairs whose occurrence

statistically correlates with the declaration of the given permission.

4.3.3.1. Grouping Noun Phrases. A noun phrase contains a noun possibly together with adjec-

tives, adverbs, etc. During the learning phase, since analyzing long phrases is not efficient, we

consider phrases of only three patterns: single noun, two nouns, and noun following adjective
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Figure 4.3. Flowchart of description-to-permission relatedness (DPR) model construction

(Table 4.1). In our dataset of 37,845 applications, these patterns account for 85% of the 302,739

distinct noun phrases. We further note that we focus on these restricted patterns only during DPR

model construction; all noun phrases are considered in the decision module of AutoCog, which

checks whether the description of application indicates a given permission. The DS model, which

is also employed during decision-making, can match longer patterns with similarly meaning noun

phrases grouped here. Hence the negative effect of such simplification is negligible.

We construct a semantic relatedness score matrix leveraging DS model with ESA. Each cell

in the matrix depicts the semantic relatedness score between a pair of noun phrases. Define the

frequency of noun phrase to be the number of applications whose descriptions contain the noun

phrase. As constructing the semantic relatedness score matrix has quadratic runtime, it is not

scalable and efficient. We filter out noun phrases with low frequencies from this matrix, as the

small number of samples cannot provide enough confidence in our frequency-based measurement.

If a low-frequency phrase is similar to a high-frequency phrase, our decision process will not be

affected as the decision module employs DS model. We choose a threshold; only phrases with
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frequency above 15 are used to construct the matrix. The number of such phrases in our dataset is

9,428 (3.11%).

Using the semantic relatedness score matrix, we create a relatedness dictionary, which maps a

given noun phrase to a list of noun phrases, all of which have a semantic relatedness score higher

than the threshold θg. The interpretation is that the given noun phrase may be grouped with its list

of noun phrases as far as semantics is concerned. Our implementation takes θg to be 0.67. The lists

also record the corresponding semantic relatedness scores for later use. A sample dictionary entry

of the noun phrase “map” is:

< “map”, [(“map”, 1.00), (“map view”, 0.96), (“interactive map”, 0.89),...] >

4.3.3.2. Selecting Noun Phrases Correlated With Permissions. Whether a certain noun phrase

is related to a permission is learnt statistically from our dataset. If a permission perm and a noun

phrase np appear together (i.e., perm in permission declarations and np in the description) in a

high number of applications, it implies a close relationship between the two. This is however not

trivial; some noun phrases (e.g., “game” and “application”) may occur more frequently than others,

biasing such calculations. Moreover, some noun phrases may actually be related to permissions

but statistical techniques may not correlate them if they occur together in only a few cases in the

dataset. The latter is partially resolved by leveraging the relatedness dictionary from the previous

step. Based on existing data mining techniques [107], we design a quality evaluation method that

(a) is not biased to frequently occurring noun phrases, and (b) takes into account semantic related-

ness between noun phrases to improve the statics of meaningful noun phrases that occurs less than

often. For the permission perm and the noun phrase np, the variables in the learning algorithm are

defined as:

MP(perm,np): An application declares perm. Either np or any noun phrase with the semantic
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relatedness score to np above the threshold θg is found in the description. This variable will in-

crease by 1, if np is in the description, or it will increase by the maximal relatedness score of the

noun phrase(s) related to np.

MMP(perm,np): An application does NOT declare perm. Either np or any noun phrase with

the semantic relatedness score to np above the threshold θg is found in the description. This vari-

able will increase by 1, if np is in the description, or it will increase by the maximal relatedness

score of the noun phrase(s) related to np.

PR(perm,np): The ratio ofMP (perm, np) to the sum ofMP (perm, np) andMMP (perm, np):

PR(perm, np) =
MP (perm, np)

MP (perm, np) +MMP (perm, np)
.

AVGPR(perm): The percentage of all the applications in our training set that request perm.

INCPR(perm,np): This variable measures the increment of the probability that perm is re-

quested with the presence of np or its related noun phrases given the unconditional probability as

the baseline:

INCPR(perm, np) =
PR(perm, np)− AV GPR(perm)

AV GPR(perm)
.

MMNP(perm,np): An application declares perm. This variable will increase by 1, if none of

np and noun phrases related to it in the Relatedness Dictionary are found in the description.

NPR(perm,np): The ratio ofMP (perm, np) to the sum ofMP (perm, np) andMMNP (perm,

np):

NPR(perm, np)=
MP (perm, np)

MP (perm, np) +MMNP (perm, np)
.

AVGNP(np): Expectation on the probability that one description contains np or related noun

phrases over the training set. Assume the total number of applications is M . This variable is
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expressed as:

AV GNP (np) =
Σi=M

i=1 λi
M

,

where λi equals 1, if np is in the description of the i-th application. Or it equals to the maximal

semantic relatedness score of its related noun phrase(s) found in description. If neither np nor noun

phrases related to it in the Relatedness Dictionary are found, λi = 0.

INCNP(perm,np): This variable measures the growth on the probability that one description

includes np or the related noun phrases with the declaration of perm given expectation as the

baseline:

INCNP (perm, np) =
NPR(perm, np)− AV GNP (np)

AV GNP (np)
.

Semantic relatedness score is taken as weight in the calculations of variables MP (perm, np) and

MMP (perm, np), which groups the related noun phrases and resolves the minor case issue. We

should note that INCPR(perm, np) and INCNP (perm, np) evaluate the quality of np by the

growth of the probabilities that perm is declared and np (or noun phrases related to np) is detected

in description with the average level as baseline. This design largely mitigates the negative effect

caused by the intrinsic frequency of noun phrase. To roundly evaluate the quality of np of describ-

ing perm, we define the Q(perm, np), which is the harmonic mean of INCPR(perm, np) and

INCNP (perm, np):

Q(perm, np)=
2 · INCPR(perm, np) · INCNP (perm, np)

INCPR(perm, np) + INCNP (perm, np)
.

np with negative values of INCPR or INCNP is discarded as it shows no relevance to perm.

Each permission has a list of noun phrases, arranged in descending order by the quality value. The

top-k noun phrases are selected for the permission. We set k=500 after checking the distribution

of quality value for each permission. It is able to give a relatively complete semantic coverage of
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the permission. Increasing the threshold k excessively would enlarge the number of noun-phrase

based governor-dependent pairs in the DPR model. So it would reduce the efficiency of AutoCog

in matching the semantic meaning for the incoming descriptions.

4.3.3.3. Pair np-counterpart with Noun Phrase. By following the procedure presented in Sec-

tion 4.3.3.2, we can find a list of noun phrases closely related to each permission. However, simply

matching the permission with noun phrase alone fails to explore the context and semantic depen-

dencies, which increases false positives. Although a noun phrase related to “map” is detected in

the example sentence below, it does not reveal any location permission.

“Retrieve Running Apps” permission is required because, if the user is not looking at the widget

actively (for e.g. he might using another app like Google Maps)”

To resolve this problem, we leverage Stanford Parser to get the knowledge of context and typed

dependencies. For each selected noun phrase np, we denote as G(np) the set of noun phrases

that have semantic relatedness scores with np higher than θg. Given a sentence in description, our

mechanism identifies any noun phrase np′ ∈ G(np) and records each np-counterpart nc (recall

that np-counterpart was defined as a collective term for verb phrases, noun phrases, and posses-

sives for the target noun phrase), which has direct/indirect relation with np′. For each noun-phrase

based governor-dependent pair < nc, np >, let the total number of descriptions where the pair

< nc, np′ > is detected be SP . In the SP applications, let the number of application requesting

the permission is tc. We keep only those pairs for which (1) tc/SP > PreT , (2) SP > FreT ,

where PreT and FreT are configurable thresholds. Thus we maintain the precision and the number

of samples large enough to yield statistical results with confidence.
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4.3.4. Decision

In DPR model, each permission has a list of related pairs of np-counterpart ncdpr and noun phrase

npdpr, which reveal the security features of the permission. For an input application whose de-

scription has to be checked, the NLP module extracts the pairs of np-counterpart ncnew and noun

phrase npnew in each sentence. We leverage the DS model to measure the semantic relatedness

score RelScore(txtA, txtB) between the two texts txtA and txtB. The sentence is identified as re-

vealing the permission, if < ncnew, npnew > is matched with a pair < ncdpr, npdpr > by fulfilling

the conduction:
RelScore(ncnew, ncdpr)>Υ,

RelScore(npnew, npdpr)>Θ.

Here, Υ and Θ are the thresholds of the semantic relatedness score for np-counterparts and noun

phrases. The sentences indicating permissions will be annotated. Besides, AutoCog finds all the

questionable permissions, which are not warranted in description.

4.4. Implementation

NLP Module: We use the NLTK library in Python and regular expression matching to implement

the SBD. NLTK is also used for removing stopwords and normalizing words using lemmatization

based on WordNet. Stanford Named Entity Recognizer is used for removing named entities.

DS and DPR Models: Noun phrases are classified by frequency. High-frequency noun phrases

are grouped based on semantic relatedness score by utilizing the library esalib4. This library

is the only currently maintained, open-source implementation of ESA that we could find. Our

training algorithm on descriptions and permissions of large-scale applications selects the semantic

patterns, which strongly correlate with the target permission by leveraging the frequency-based

4https://github.com/ticcky/esalib

https://github.com/ticcky/esalib
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measurement and ESA. Our current implementation pairs np-counterpart of length one (noun,

verb, and possessive) with noun phrases. The np-counterpart could be easily extended to multiple

words, possibly with a few considerations about maximum phrase length, and so on.

Overall, We implement AutoCog with over 7,000 lines of code in Python and 500 lines of code

in Java.

4.5. Evaluation

We first describe our dataset and methodology for collecting sensitive permissions. Then,

AutoCog’s accuracy is evaluated by comparing with Whyper [108]. Finally, we discuss our mea-

surements, which investigate the overall trustworthiness of market and the correlation between

description-to-permission fidelity and application popularity.

4.5.1. Permission Selection and Dataset

The Android APIs have over a hundred permissions. However, some permissions such as the

permission VIBRATE, which enables vibrating the device, may not be as sensitive as, for example,

the permission RECORD AUDIO, which enables accessing the microphone input. It is not so

useful to identify permissions that are not considered sensitive. The question to ask then is, what

permissions are the users most concerned about from the security/privacy perspective?

Felt et al. [54] surveyed 3,115 smartphone users about 99 risks and asked the participants to

rate how upset they would be if a given risk occurred. We infer 36 Android platform permissions

from the risks with highest user concerns. Since we focus here on third-party applications, we first

remove from this list the Signature/System permissions, which are granted only to applications that

are signed with the device manufacturer’s certificate. Seven permissions were removed as a result.

The 29 remaining permissions are arranged in descending order by the percentage of applications
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requesting it in our dataset, which is collected randomly. We select the top 14 permissions in

our evaluation, because the ground-truth of our evaluation relies on readers to identify whether

sentences in application description imply sensitive permissions; the consequent human efforts

make it difficult to review large number of descriptions.

We collected the declared permissions and descriptions of 37,845 Android applications from

Google Play in August 2013 for the purpose of training the DPR model and evaluate AutoCog’s

accuracy. The permissions that constitute the subject of our study can be divided into 3 categories

according to the abilities that they entail: (1) accessing user privacy, (2) costing money, and (3)

other sensitive functionalities. Applications request the permissions to access privacy may leak

users’ personal information such as location to third parties without being awared. Permissions

costing money, such as CALL PHONE, may be exploited resulting in financial loss to the users.

Other sensitive permissions may change settings, start applications on boot, thus possibly wast-

ing phone’s battery, and so on. In Table 4.2, we list the number and percentage of applications

declaring each permission in our dataset.

We also parsed the metadata of another 45,811 Android applications from Google Play in May

2014 for our measurements, which assess the description-to-permission fidelity of large-scale ap-

plications in Google Play and investigate the correlation between description-to-permission fidelity

with application popularity. The metadata include the following features: category of application,

developer of application, number of installations, average rating, number of ratings, descriptions

and declared permissions of application.



105

Table 4.2. Permissions used in evaluation over 37,845 applications

Permission #App (Percentage %)

WRITE EXTERNAL STORAGE 30384 (80.29 %)
ACCESS FINE LOCATION 16239 (42.91 %)
ACCESS COARSE LOCATION 15987 (42.24 %)
GET ACCOUNTS 12271 (32.42 %)
RECEIVE BOOT COMPLETED 9912 (26.19 %)
CAMERA 6537 (17.27 %)
GET TASKS 6214 (16.42 %)
READ CONTACTS 5185 (13.70 %)
RECORD AUDIO 4202 (11.10 %)
CALL PHONE 3130 (8.27 %)
WRITE SETTINGS 3056 (8.07 %)
READ CALL LOG 2870 (7.58 %)
WRITE CONTACTS 2176 (5.74 %)
READ CALENDAR 817 (2.16 %)

4.5.2. Accuracy Evaluation

4.5.2.1. Methodology. Whyper studied three permissions: READ CALENDAR, READ CONT-

ACTS, and RECORD AUDIO; Their public results are directly utilized5 as the ground-truth. The

validation set contains around 200 applications for each of the three permissions, where each sen-

tence in the descriptions is identified if revealing the permission by human readers. Moreover,

to assess AutoCog’s ability of generalization over other permissions in Table 4.2, we further ran-

domly select 150 applications requiring each one (except the three permissions previously evalu-

ated in public results of Whyper) as the validation set. For each permission, the complementary set

of the validation set is used as the training set to construct the DPR model, which ensures that the

validation set is independent of the training set. To get the results of Whyper on other permissions,

we leverage the output of PScout [20] and manually extract the semantic pattern set from Android

5https://sites.google.com/site/whypermission/

https://sites.google.com/site/whypermission/
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API document6 following the method presented by Pandita et al. [108]. Whyper’s methodology

does not work for some permissions such as RECEIVE BOOT COMPLETED as they do not have

any associated API. To ensure the correctness of our understanding of Whyper’s methodology,

we contacted Whyper’s authors and confirmed our understanding and conclusions. We also tested

the system over the applications in their public results and get exactly the same output as those

published, further validating the system deployment (source code is released publicly).

Regarding the ground-truth of other permissions that we extend to, we invite 3 participants

who are not authors of this chapter to read the description and label each sentence as whether or

not it suggests the target permission. The description will be classified as “good” when at least

two human readers could infer the permission by one sentence in that, or it will be labeled as

“bad”. Column Gd” in Table 4.3 is the percentage of “good” descriptions for applications request-

ing each sensitive permission. The percentage values of “good” descriptions for the 3 permis-

sions GET TASKS, CALL PHONE, and READ CALL LOG are lower than 10%. We call these

permissions rarely described well in descriptions, hidden permissions. The scarcity of qualified

descriptions leads to the lack of correlated semantic patterns. It would hinder the measurement

of description-to-permission fidelity. After removing the 3 hidden permissions, our evaluation

focuses on the other 11 permissions.

In training the DPR model, the two thresholds PreT and FreT balance the performance on

precision and coverage of AutoCog. The settings in Table 4.3 depend on the percentage of appli-

cations requesting the permission in the training set. For a permission with fewer positive samples

(application requires that permission), each pair of np-counterpart and noun phrase related to it

6http://pscout.csl.toronto.edu/download.php?file=results/jellybean_
publishedapimapping

http://pscout.csl.toronto.edu/download.php?file=results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_publishedapimapping
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Table 4.3. Statistics and settings for evaluation

Permission FreT PreT Gd %

WRITE EXTERNAL STORAGE 9 0.87 38.7
ACCESS FINE LOCATION 6 0.85 40.7
ACCESS COARSE LOCATION 5 0.8 35.3
GET ACCOUNTS 4 0.8 26.0
RECEIVE BOOT COMPLETED 5 0.85 37.3
CAMERA 3 0.8 48.7
GET TASKS 3 0.9 2.0
READ CONTACTS* 3 0.8 56.8
RECORD AUDIO* 3 0.8 64.0
CALL PHONE 2 0.8 10.0
WRITE SETTINGS 2 0.85 44.7
READ CALL LOG 3 0.95 6.0
WRITE CONTACTS 2 0.9 42.0
READ CALENDAR* 1 0.85 43.6
* Sampled by around 200 applications, others by 150 applications
Hidden permissions are grayed

tends to be less dominant in amount, we adjust FreT accordingly to maintain the performance on

recall. We keep PreT high across permissions, which aims at enhancing the precision of detection.

Within the process of deciding if each application description in valuation set warrants per-

missions, we set the two thresholds Υ=0.8 and Θ=0.67 by empirically finding the best values for

them. Low threshold reduces the performance on precision and increasing the threshold exces-

sively causes the increment on false negatives. We set up the threshold Θ lower than Υ, because

noun phrases has more diversity in patterns than np-counterparts; phrases containing various num-

bers of words organized in different orders may express the similar meaning.

Our objective is to assess how closely the decision made by AutoCog on the declaration of

permission approaches human recognition given a description. The number of true positives, false

positives, false negatives, and true negatives are denoted as TP : the system correctly identifies

a description as revealing the permission, FP : the system incorrectly identifies a description as
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Figure 4.4. Interpretation of metrics in evaluation

revealing the permission, FN : the system incorrectly identifies a description as not revealing the

permission, and TN : the system correctly identifies a description as not revealing the permission.

Interpretation of the metrics is shown in Figure 4.4. Intersection of decisions made by AutoCog

and human is true positive. Difference sets between decisions made by AutoCog and human are

false positive and false negative, respectively. Complementary set of the union of decisions made

by AutoCog and human is true negative. Values of precision, recall, F -score, and accuracy

represent the degree to which AutoCog matches human reader’s recognition in inferring permission

by description.

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F -score =
2 · Precision ·Recall
Precision+Recall

,

Accuracy =
TP + TN

TP + FP + TN + FN
.

4.5.2.2. Results. Results of our evaluation are given in Table 4.4. AutoCog matches human

in inferring 11 permissions with the average precision, recall, F-score, and accuracy as 92.6%,
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Table 4.4. Results of evaluation

System Permission TP FP FN TN Prec (%) Rec (%) F (%) Accu (%)

AutoCog WRITE EXTERNAL STORAGE 53 6 5 86 89.8 91.4 90.6 92.7
ACCESS FINE LOCATION 57 3 4 86 95.0 93.4 94.2 95.3
ACCESS COARSE LOCATION 49 1 4 96 98.0 92.5 95.1 96.7
GET ACCOUNTS 34 4 5 107 89.5 87.2 88.3 94.0
RECEIVE BOOT COMPLETED 51 6 5 88 89.5 91.1 90.3 92.7
CAMERA 67 7 6 70 90.5 91.8 91.2 91.3
READ CONTACTS 99 5 9 77 95.2 91.7 93.4 92.6
RECORD AUDIO 117 10 11 62 92.1 91.4 91.8 89.5
WRITE SETTINGS 65 7 2 76 90.3 97.0 93.5 94.0
WRITE CONTACTS 57 4 6 83 93.4 90.5 91.9 93.3
READ CALENDAR 79 5 6 105 94.0 92.9 93.5 94.4
Total 728 58 63 936 92.6 92.0 92.3 93.2

Whyper WRITE EXTERNAL STORAGE 11 8 47 84 57.9 19.0 28.6 63.3
ACCESS FINE LOCATION 31 1 30 88 96.9 50.8 66.7 79.3
ACCESS COARSE LOCATION 28 1 25 96 96.6 52.8 68.3 82.7
GET ACCOUNTS 9 2 30 109 81.8 23.1 36.0 78.7
RECEIVE BOOT COMPLETED Failed to get results
CAMERA 26 4 47 73 86.7 35.6 50.5 66.0
READ CONTACTS 89 9 19 73 90.8 82.4 86.4 85.3
RECORD AUDIO 105 10 23 62 91.3 82.0 86.4 83.5
WRITE SETTINGS 59 24 8 59 71.1 88.1 78.7 78.7
WRITE CONTACTS 53 9 10 78 85.5 84.1 84.8 87.3
READ CALENDAR 78 15 7 95 83.9 91.8 87.6 88.7
Total 489 83 246 817 85.5 66.5 74.8 79.9

92.0%, 92.3%, and 93.2%. As discussed before, Whyper fails to get results for permission RE-

CEIVE BOOT COMPLETED. For the remaining 10 permissions, Whyper achieves the average

precision, recall, F-score, and accuracy as 85.5%, 66.5%, 74.8%, and 79.9%.

Across the permissions evaluated, the least precision and recall of AutoCog are 89.5% and

87.2%. Even for the cases with low percentage of “good” descriptions and low number of positive

samples (permissions GET ACCOUNT and READ CALENDAR), our learning-based algorithm

and employment of ESA could still get the DPR model aligning with user’s recognition well. Why-

per could only infer 5 permissions from description (last 5 in Table 4.4) with both the values of

precision and recall higher than 70%. For these permissions, the API documents provide a rela-

tively complete and accurate semantic pattern set. The example patterns such as <“scan”,“wifi”>,
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<“enable”,“bluetooth”>, and <“set”,“sound”> could be extracted from the API document of the

permission WRITE SETTINGS. However, Whyper does not perform well on the other 5 permis-

sions. Our understanding is that the patterns extracted from API documents in these cases are

very limited to cover the natural-language descriptions with great diversity. For example, the APIs

mapped with the permission to write to external storage are related only to download management.

Many intuitive patterns, such as <“save”, “sd card”>, <“transfer”, “file”>, <“store”, “photo”>

cannot be found in its API document. It is the same with <“scan”, “barcode”>, <“record”,

“video”> for camera permission, <“integrate”, “facebook”> (in-app login) for permission to get

user’s accounts, and <“find”, “branch”>, <“locate”, “gas station”> for location permissions.

Given Whyper’s big variance of performance and our investigation on its source of textual pattern

set, we find that suitability of API document to generate a complete and accurate set of patterns

varies with permissions due to the limited semantic information in APIs. AutoCog relies on large

number of descriptions in training, which would not be restricted by the limited semantic informa-

tion issue and has stronger ability of generalization over permissions.

Whether or not the API documents are suitable for the evaluated permissions, we note that

AutoCog outperforms Whyper on both precision and recall. Next we discuss several case studies

to thoroughly analyze the benefits and limitations of our design.

AutoCog TP/Whyper FN: The advantage of AutoCog over Whyper on false negative rate (or re-

call) is caused by: (1) the difference in the fundamental method to find semantic patterns related to

permissions, (2) we include the logical dependency between noun phrases as extra ontology. Why-

per is limited by the use of a fixed and limited set of vocabularies derived from the Android API

documents and their synonyms. Our correlation of permission with noun-phrase based governor-

dependent pair is based on clustering results from a large application dataset, which is much richer

than that extracted from API documents. Below are 3 examples:
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“Filter by contact, in/out SMS”

“Blow into the mic to extinguish the flame like a real candle”

“5 calendar views (day, week, month, year, list)”

The first sentence describes the function of backing up SMS by selected contact. The second

sentence reveals a semantic action of blowing into the microphone. The last sentence intro-

duces one calendar application, which provides various views. In our DPR model, the noun-

phrase based governor-dependent pairs <filter, contact>, <blow, mic>, and <view, calendar>

are found to be correlated to the 3 permissions, READ CONTACTS, RECORD AUDIO, and

READ CALENDAR. While the semantic information for the first two sentences cannot be found

by leveraging the API documents. For the last one, Whyper could only detect it, as “view” and

“calendar” are tagged with verb and noun, respectively (both of them are tagged as noun here).

AutoCog TN/Whyper FP: One major reason for this difference in detection is that Whyper is not

able to accurately explore the meaning of noun phrase with multiple words. Below is one example:

“Saving event attendance status now works on Android 4.0”

The sentence tells nothing about requiring the permission to access calendar. However, Whyper

incorrectly labels it as revealing the permission READ CALENDAR, because it parses resource

name “event” and maps it with action “save”. AutoCog differentiates the two phrases “ event

attendance status” and “event” by using ESA and effectively filters the interference in DPR model

training and decision-making.

AutoCog FN/Whyper TP: This difference is caused by the fact that some semantic patterns im-

plying permissions are not included in the DPR model. Below is one example:

“Ability to navigate to a Contact if that Contact has address”

Whyper detects the word “contact” as resource name and maps it with the verb “navigate”. The

sentence is thus identified as revealing the permission to read the address book. However, no
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noun-phrase based governor-dependent pair in our DPR model could be mapped to the permission

sentence above, because the pair <navigate, contact> is not dominant in the training process. The

DPR model might not be knowledgeable enough to completely cover the semantic patterns related

to the permission. However, the coverage could be enhanced as the size of training set increases.

AutoCog FP/Whyper TN: In the training process, some semantic patterns, which do not directly

describe the reason for requesting the permission in the perspective of user expectation, are selected

in the frequency-based measurement. One example is given as:

“Set recordings as ringtone”

From this sentence, user could customize her/his ringtone with recording, but it does not directly

imply the functionality of recording sound. Our model assigns a high relatedness score between

<set, recording> and RECORD AUDIO due to quite a few training samples with related keywords

and this permission together. Such cases are due to the fundamental gap between machine learning

and human cognition.

AutoCog and Whyper both leverage Stanford Parser [133] to get the tagged words and hierar-

chal dependency tree. The major cause of the common erroneous detection of two systems (FP,

FN) is the incorrect parsing of sentence by underlying NLP infrastructure, which has been well

stated by Pandita et al. [108]. Thus, we would not discuss it in detail given the page limit. As the

research in the field of NLP advances underlying NLP infrastructure, the number of such errors

will be reduced.

We further list some representative semantic patterns in Table 4.5, which are found to be closely

correlated by our DPR model to the permissions evaluated.

Apart from the accuracy of detection, the runtime latency is a key metric in the practical deploy-

ment of AutoCog. We select 500 applications requiring each permission and assess the runtime
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Table 4.5. Example semantic patterns

Permission Semantic Patterns

WRITE EXTERNAL STORAGE <delete, audio file>; <convert, file format>; <download, ringtone>
ACCESS FINE LOCATION <display, map>; <find, branch atm>; <your, location>
ACCESS COARSE LOCATION <set, gps navigation>; <remember, location>; <inform, local traffic>
GET ACCOUNTS <manage, account>; <integrate, facebook>; <support, single sign-on>
RECEIVE BOOT COMPLETED <change, hd wallpaper>; <display, notification>; <allow, news alert>
CAMERA <deposit, check>; <scanner, barcode>; <snap, photo>
READ CONTACTS <block, text message>; <beat, facebook friend>; <backup, contact>
RECORD AUDIO <send, voice message>; <note, voice>; <blow, microphone>
WRITE SETTINGS <set, ringtone>; <customize, alarm>; <enable, flight mode>
WRITE CONTACTS <wipe, contact list>; <secure, text message>; <merge, specific contact>
READ CALENDAR <optimize, time>; <synchronize, calendar>; <schedule, appointment>

latency of our system in measuring the description-to-permission fidelity. AutoCog achieves the

latency less than 4.5s for all the 11 permissions.

4.5.3. Measurement Results

Our measurements begin with assessing the overall trustworthiness of application market, which is

depicted by the distribution of questionable permissions. We utilize AutoCog with the DPR model

trained in the accuracy evaluation to analyze 45,811 applications. The training set and dataset for

measurements are thus disjoint. The histogram for distribution of questionable permissions is illus-

trated in Figure 4.5. Only 9.1% of applications are clear of questionable permissions. Moreover,

we measure and observe the negative Spearman correlation [76] between the number of question-

able permissions of one application by a specific developer with the total number of applications

published by that developer (with r = −0.405, p < 0.001). A possible explanation is that devel-

oper publishing more applications are more experienced and likely to be a development team in a

company, who is more standardized and better regulated at developing and deploying its mobile

software. The above results reflect the severity of the permission-to-description fidelity issue: ap-

plication publishers, especially the new or personal developer, generally fail to completely cover
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Table 4.6. Correlation between application popularity and the number of question-
able permissions and permissions requested. All values are statistically significant
with p < 0.001

Correlation with application popularity
Permission Type # Installs # Ratings avg rating

#Pq -0.106 -0.105 -0.110
#P 0.044 0.050 0.044
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Figure 4.5. Histogram for distribution of questionable permissions

all the sensitive permissions. The deployment of AutoCog could thus assist developers produce

applications with high description-to-permissions fidelity.

We further investigate the correlation between description-to-permission fidelity and applica-

tion popularity. Application popularity reveals the developers’ benefit and users’ attitude towards

the application, which thus plays a key role in the interaction between users and developers. In our

measurements, application popularity is interpreted by the following features: number of installa-

tions, number of ratings, average ratings. Thus, we measure the Spearman correlation coefficient

between these three features with the number of questionable permissions (#Pq) and the number of

permissions (#P ) requested by application, respectively. Table 4.6 shows that there is a weak pos-

itive correlation between application popularity and the number of permissions requested, which
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is consistent with the results by other researchers [32, 55]. It is because that rich functionality of

application which implies the need of more permissions is the main feature to drive application

popularity.

However, we also find the weak negative correlation between the number of questionable per-

missions and the popularity of application. We should note that all the measured results achieve

a p-value less than 0.001, which means the statistical significance. We have the following two

guesses. First, for the negative correlation, there are a small part of users who are discreet enough

or have the professional knowledge to fully understand the security aspects of application meta-

data [56]. They expect to get permission-related information from the description. Thus the low

description-to-permission fidelity negatively affects their decisions of application installation, ap-

plication assessment, and interest in applications. Secondly, such correlation is weak because most

average users cannot tell the questionable permissions based on the description without a tool like

AutoCog. Although we could only confirm correlation but not causation here, we expect that wide

adoption of AutoCog will help average users to be more security conscious.

4.6. Discussion

AutoCog measures the description-to-permission fidelity by finding relationships between tex-

tual patterns in the descriptions and the permissions. Because of the state-of-the-art techniques

used and the new modeling techniques developed, AutoCog achieves good accuracy. Still, Au-

toCog does have limitations because of the approach it uses and the current implementation.

The models learnt in AutoCog are examples of unsupervised learning, which has the drawback

of picking relationships that may not actually exist directly. If a noun phrase appears frequently

with a permission, the DPR model will learn that they are actually related. For example, if many
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antivirus applications use the permission GET TASKS, the “antivirus” noun may become asso-

ciated with this permission even if there is no direct relationship between the two. From another

perspective though, one could argue that this is even better because AutoCog may be able to extract

implicit relationships that human readers may easily miss. Anecdotally, for applications with per-

mission GET TASKS in our experiments, even if human readers could find only 2% of applications

whose descriptions reveal that permission, AutoCog finds 18% of such applications.

For the implementation of AutoCog, we could possibly improve the accuracy by including

longer noun phrases and np-counterparts. It is an efficiency-accuracy tradeoff. The evaluation of

AutoCog also had some limitations. Manual reading is subjective and the results may be biased.

However, given that our readers have a technical background, they may be able to discover many

implicit relationships that average users ignore, thus putting up greater challenges for AutoCog.

Given that whether a description implies a permission itself is subjective and is consequently lack

of ground-truth, manual labeling is the best we can do here.

Malicious developers may provide wrong descriptions to evade this approach. But it will be

much easier for even average users to find such mismatch between the app’s description and its

functionality. And given that most apps are not malicious, such attacks will not affect the training

of AutoCog.

4.7. Related Work

NLP has been widely used in the security area. Potharaju et al. [112] propose an approach to

analyzing natural language text in network tickets to infer the problem symptoms and resolution

actions. Some efforts have focused on automating mining of network failures from syslogs [116]

and network logs [85]. Compared with the network tickets and logs, descriptions of applications

have much more complex structures and diverse contents, which largely increases the difficulties
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of ontology modeling. For example, the developer could choose to use either complete sentences

or enumeration lists in description; introduction and contact of company may be included for

commercial purpose. There are also approaches using a mix of NLP and learning algorithm to infer

specifications from API descriptions, code comments, and formal requirement documents [109].

The methods proposed in these papers require meta-information from source code. Our design

only needs the natural language text of descriptions, which is not constrained by the availability of

source code and meta-information.

The permission system in Android security framework manages the access of third-party appli-

cations to privacy- and security-relevant parts of API. Many previous studies analyze the permis-

sion system and resolve the overprivilege issue [20,53], confused deputy [33,44,57] and collusion

attack [29]. Moreover, some studies also investigate the effectiveness of permission model [55,77].

Some researchers have alluded to lack of correlation between permissions and descriptions [25];

however, even if permissions and descriptions do not correlate, our solution can bring an improve-

ment to the current situation. Lin et al. [86] utilize crowdsourcing collect users expectations of

the permissions required by application and Han et al. [66] propose a text mining-based similarity

measure method to obtain similar security polices among Android applications, which are both

complimentary to our work. While the static/run-time analysis of binaries and programming lan-

guage analysis enable these approaches to detect overprivilege and confused deputy attack, the end

user does not have knowledge about why the permission is requested or tools to assess whether

applications overstep user expectation. Our system analyzes the descriptions of applications that

the end user has direct and easy access to and labels the sentences revealing sensitive permissions,

which enables users to know the reason for declaring the permission in the semantic level.

The most relevant work is Whyper [108], which is the only previous work to our knowledge

on bridging the gap between what user expects an application to do and what it really does. Our
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automatic learning-based approach works directly on large-scale descriptions to select noun-phrase

based governor-dependent pairs related to each permission. Thus we would not come across the

limitations of Whyper discussed in Section 4.2.2.

4.8. Conclusion

In this chapter, we propose the system AutoCog that measures the description-to-permissions

fidelity in Android, i.e., whether the permissions requested by Android applications match or can

be inferred from the applications’ descriptions. The use of a novel learning-based algorithm and

advanced NLP techniques allows us to mine relationships between textual patterns and permis-

sions. AutoCog outperforms previous work on both performance of detection and ability of gen-

eralization over permissions by a large extent. In inferring eleven permissions by description, our

system achieves the average precision of 92.6% and the average recall of 92.0% as compared to

previous state-of-the-art 85.5% and 66.5%. Our measurements show a generally weak description-

to-permissions fidelity on the Google Play store.
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CHAPTER 5

Uranine: Real-time Privacy Leakage Detection without System Modification

for Android

5.1. Introduction

Privacy encompasses an individual’s or a party’s control of information concerning themselves.

With the advent of smartphones and tablets, third party applications play an important role in the

lives of individual consumers and in enterprise businesses by providing enriched functionality and

enhanced user experience but have simultaneously also led to privacy concerns. On the consumers’

side, how third-party applications deal with the wealth of private data stored on the mobile devices

is not quite clear. Enterprises, on the other hand, need to protect sensitive business data. With

the implementation of Bring Your Own Device (BYOD) policies to better accommodate the needs

of employees, the issue is further aggravated as the business data is stored on devices that are

not completely trusted. Leakage of business data to the Internet or from business applications to

personal applications is an important concern. Some leakage of private data may be legitimate

and even intended; yet, other leakages may be questionable. We therefore believe that information

about the privacy leaks should be completely transparent and accessible to the user (or the IT

administrator in case of enterprises). The user may then choose to allow or disallow the leaks

either through real-time interaction with an on-device controller or through preset policies. In

particular, apart from good accuracy and performance, the detection of privacy leaks should have

the following requirements.
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• Real-time. Real-time detection, or detection right at the time leaks happen, enables

situationally-aware decision making. The situation (condition) under which a leak hap-

pens is important; a privacy leak may be user-intended and in that case legitimate. For

example, upload of a user’s address book to a social network under user’s consent is legit-

imate. Offline detection of leaks may be helpful but does not usually identify the complete

situation under which a leak happens.

• No system modification. Mobile devices typically come locked and it is beyond an average

user to root or unlock the devices to install a custom firmware.

• Easily configurable. The user should be able to enable the privacy leak detection just for

the apps she is concerned about. Other parts of the device such as system server processes

and possibly some trusted apps from the device vendor should run without overhead.

• Portability. The framework should work across different devices with potentially different

architectures, e.g., ARM and x86, and with different runtimes, e.g., Dalvik and ART (a

recently introduced Android runtime1), with little or no code modification.

There have been many earlier systems targeted at detecting privacy leaks but all have some

drawbacks with regards to the above characteristics. TaintDroid [48] detects privacy leaks in real-

time but requires the installation of a custom Android firmware, which is possibly only for the most

expert users. Furthermore, TaintDroid’s firmware code modifications must be adapted to different

architectures and even different Android versions. Phosphor [24] is a dynamic taint tracking system

for Java and can work on Android. It instruments the application and library code to detect privacy

leaks in real-time. However, it requires modification of bytecode of platform libraries, which again

requires custom firmware and hinders wide-scale deployment. Static analysis systems fail on the

real-time requirement; inputs from the user or from the remote server may affect what is sent out

1https://source.android.com/devices/tech/dalvik/art.html
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Table 5.1. A comparison of Uranine with dynamic approaches. + is better, − is worse.

TaintDroid [48] Phosphor [24] Uranine

Real Time Yes (+) Yes (+) Yes (+)
System Modification Yes (−) Yes (−) No (+)
Configurability Little (−) Little (−) High (+)
Accuracy Good (+) Good(+) Good (+)
Performance (runtime) Good (+) Good(+) Good (+)
Portable No (−) Yes(+) Yes (+)

of the device and thus the leak may or may not be considered legitimate. Offline dynamic analysis

systems such as AppsPlayground [120] have false negatives due to incomplete code coverage and

by definition are not real-time.

In this chapter, we propose Uranine, a real-time system for monitoring privacy leaks in An-

droid applications without platform modification. Our detection of privacy leaks involves soundly

tracking information flow at runtime. The major challenge comes from the requirement of no plat-

form modification, including not instrumenting framework code:2 we need to approximate flow

through the framework code and for callbacks, i.e., the application code called by the framework

code. This is further complicated by the existence of heap objects, which often point to other heap

objects and whose effects may easily lead to missing leaks if care is not taken.

Uranine provides a framework for instrumenting stock Android applications without the need

of application source code. It begins by converting the application bytecode to an intermediate

representation, which it instruments employing the techniques presented in this chapter. The in-

strumented IR is assembled back to a new application installable on an Android device. As the

instrumented application runs, privacy leakages are automatically tracked.

Apart from the benefits described above, our approach also brings the added benefit of in-

strumenting just the apps that the user is concerned about; the rest of the system, including the
2Throughout the chapter, app code refers to the code contained in the app; framework code refers to the code defined
in the Android platform and may be called through Android APIs.
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middleware and other apps, run without overhead. Finally, since we do not touch the Android

middleware and the Dalvik runtime, our approach ensures portability. Table 5.1 summarizes the

comparison between Uranine and other similar systems.

We note that Uranine is a framework for information-flow tracking. While we present it here

for privacy leakage detection, it may be used for other applications such as hardening applications

against information flow vulnerabilities.

This work makes the following contributions.

• We solve the problem of tracking private information through platform APIs and libraries

without modifying the platform by developing appropriate data structures and algorithms

in Section 5.3.1.1.

• The Java language and especially the Android platform builds around callbacks, functions

in app code that are called by the platform libraries. We discuss the challenge of handling

callbacks for real-time information flow tracking and propose the first solution for this

problem in Section 5.3.1.2.

• Aspects of Java, including reference semantics for objects and garbage collection, pose

a problem with regards to developing a clean solution that does not interfere with the

Java model. Our solution centered on hashtables with weak references to hold necessary

data-structures for different objects solves this problem (Section 5.3.1.3).

• We have developed a system prototype for Uranine for real-time detection of privacy

leakages in Android apps without system modification. The implementation involved

addressing multiple challenges (Section 5.4 and is likely the most sophisticated bytecode

manipulation framework for Android to date.
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We evaluated (Section 5.5) a working prototype of Uranine on both DroidBench, a benchmark

suite developed by researchers, and real-world applications from Google Play. The evaluation

shows that Uranine is accurate in tracking information flows. Our evaluation of performance over-

head shows that Uranine has acceptable overhead on real-world applications. We also note that it

is possible to further reduce the performance overhead of Uranine by performing static analysis

and instrumenting only paths along which private information flows can take place.

The rest of this chapter is organized as follows. Section 5.2 gives the background and states our

approach together with the challenges involved. A detailed description of the Uranine framework

is covered in Section 5.3 while Section 5.4 covers the implementation aspects. Section 5.5 gives

our evaluation of Uranine. We then have some relevant discussion in Section 5.6 and related work

in Section 5.7. We finally conclude in Section 5.8.

5.2. Background and Problem Statement

This section gives a brief background of Android and privacy leakage detection and then goes

to identify the problem, how a solution could be deployed, and the associated challenges.

5.2.1. Android Background

The Android OS is based on the Linux kernel and implements middleware for telephony, appli-

cation management, window management, and so on. Applications are typically written in Java

and compiled to Dalvik bytecode, which can run on Android. The bytecode and virtual machine

mostly comply with the Java Virtual Machine Specification. Unlike the JVM, The Dalvik Virtual

Machine is a register-based VM. Each method has its own set of registers (not overlapping with

other methods). Instructions address these registers to perform operations on them.
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Figure 5.1. Deployment by Vendor or Third-party Service

5.2.2. Problem Statement

Static analysis has its own advantages for information flow tracking but a dynamic information flow

tracking solution may also be desirable for the following reasons: (a) static analysis may only tell

what may happen but cannot tell what actually happens. Runtime conditions, including inputs

from the user and the server may influence what actually happens and so that any privacy leaks

may be classified as legitimate or illegitimate. Even if a static analysis can detect user interaction,

what exactly a user confirms is very difficult for it to capture. (b) Private sources in Android,

which are based on URIs, such as contacts, cannot be soundly tracked by static analysis (unless it

marks all database queries as possible private sources). Databases such as contacts are accessed

through corresponding URIs, which are but wrapped strings and may be obfuscated or inaccessible

statically. Lastly, (c) Static analysis is often conservative due to scalability reasons and may have

false positives. In the light of all these points, we focus on dynamic information flow tracking.
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Previous dynamic analysis approaches on Android for tracking information flow have modified

the Dalvik VM or the library code to propagate taints [24, 48]. As this requires platform modifi-

cation and thus limits the usability, we question if dynamic information flow tracking is possible

without platform modification by rewriting the apps alone. Uranine answers this question posi-

tively. It accepts stock apps from the user, and returns a ready-to-run instrumented app enabled

with information flow tracking.

5.2.2.1. Deployment Models. Figure 5.1 shows the two possible deployment models of our ap-

proach. The first model is suitable when there is no control on the source of apps. It is suitable for

enterprise, third-party subscription services, individual users, and smartphone vendors and carriers.

As the user downloads a third-party app, the downloaded app is passed to our system for instru-

mentation. Such a system would typically reside in the cloud as a service supported by the vendor

or a third-party. It is also possible to place this service on the users’ own personal computers or

enterprise’s servers. Once the app has been analyzed and instrumented by the system, it is installed

on the user’s device. The app is then constantly monitored on-device as it runs. We note that the

whole process may be completely automated with the use of an on-device app so the user needs to

only confirm the removal of the original app and installation of the instrumented app. Furthermore,

laymen users may be provided with preset information flow tracking and enforcement policies.

The second deployment model is suitable for application markets or enterprise application

stores, which want to instrument all apps with some general security policies to protect the con-

sumers. In this case, the apps are instrumented in the cloud before the user downloads and installs

the app. Thus, there is no need for the original app to be uploaded from the device to the service for

instrumentation. There is no other difference between the two models. We note that other existing

real-time taint-tracking systems do not have similar deployment models.
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Figure 5.2. A depiction of challenges C1 and C2 met in Uranine. There are paths
between app code and framework code depicted as meandering function call paths
and return paths, together with callbacks (the app code that is called by frame-
work code). The left path results from ordinary calls while the right path includes
callbacks. Information flow tracking can only be done for app code, requiring ap-
proximations for framework code. Callbacks must be handled soundly. Objects on
the heap point to each other and their effect on information flow should be properly
accounted for during approximations.

Android apps are digitally signed by their developers and so instrumenting an app would re-

quire an application to be re-signed. The current app update system at Google Play (and possibly

other Android markets) depends on apps’ signatures. Deployment by third party services will

therefore have to provide out-of-band mechanisms to notify users of available updates. This is

however not much of a concern: mobile app management and app wrapping products such as

Good [63] and MobileIron [100] already provide similar deployment models to enterprises in the

context of API interposition similar to [42, 43, 140].

5.2.2.2. Challenges. Following are the challenges that we solve in Uranine.
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C1 Framework code cannot be modified. This means we cannot instrument framework code.

We summarize the effect of framework APIs according to a custom policy, combined

with manual summarization for a few special cases. Previous works on static or dynamic

binary instrumentation [105, 141, 151] have needed to summarize system calls or very

simple functions in low-level libraries like libc, which are much simpler. Static analysis

works also typically use summarization [60,93] to achieve scalability. However, we show

by example that in our context of dynamic analysis and complex framework with Java

data structures in Android, summarization alone is not sufficient. Heap objects can be

particularly challenging to handle and we need additional techniques for effective taint

propagation.

C2 The effect of callbacks should be accounted for. Callbacks are functions in app code that

may be invoked by the framework code. Since framework code cannot be instrumented,

we cannot do taint propagation when callbacks are invoked. We propose a technique,

using over-tainting to avoid false negatives. Challenges C1 and C2 are represented in

Figure 5.2.

C3 In the Java language model, objects follow reference semantics and so we must have a way

to taint the locations referenced. Furthermore, objects are deallocated automatically by

garbage collection; so our taint-tracking data structures should not interfere with garbage

collection.

As noted above, there are trade-offs between system modification and detection accuracy.

However, we note that even though we resort to over-tainting to solve some of the above chal-

lenges, our results demonstrate that a carefully conceived design may still have a low false positive

rate in practice. We discuss our solutions in detail in the next section.
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5.3. Uranine Design

Uranine offers a general framework for instrumenting applications statically and for providing

information flow tracking, which may be used in a number of applications, including tracking pri-

vacy leaks and hardening applications against vulnerabilities. Figure 5.3 depicts the architecture of

Uranine. When an app is given to Uranine, the app code is first converted to a custom intermediate

representation (IR) that can be instrumented for taint propagation to happen at run time. The in-

strumented IR is then converted back to bytecode and a new app is prepared. Since the framework

code cannot be instrumented, it approximates the effects of framework code through a few general

but customizable summarization rules. The rest of this section first describes our techniques for

taint storage and propagation and the instrumentation details. The latter part of the section then

describes our static analysis.

5.3.1. Taint Storage and Propagation

The techniques of taint storage and propagation influence the accuracy and runtime performance

of privacy leakage detection. Our techniques focus on providing privacy leakage detection without

false negatives under the constraints of not modifying the platform. Much of the design for taint

tracking here is fairly routine and may be found in previous work [24, 48, 127]. We describe

the routine or obvious aspects very briefly and then discuss in detail the specific challenges and

corresponding solutions in our work.



129

Each entity that may be tainted is associated with a taint tag, which identifies what kind of

private information may be carried by the entity. In the Uranine model, taints are stored and prop-

agated for local variables (i.e., method registers), fields, method parameters and returns, and ob-

jects. Different bytecode instructions handle different storage types (i.e., local variables, fields and

so on) and accordingly have different taint propagation rules. Additionally, in a complete system,

IPC (inter-process communication) taints and file taints may be handled at a coarser granularity.

For IPC, the entire message carries the same taint. Similarly, an entire file is assigned a single taint

tag. In our design, tracking IPC and file taints requires communication with an on-phone Uranine

app, which keeps track of all file taints and IPC taints from instrumented applications. We focus

on taint tracking withing Java code (more specifically, Dalvik bytecode) and further discussion on

IPC and file taints is out of scope of this work.

We next describe the taint propagation rules for the different situations. We begin our discus-

sion by assuming we can instrument all the code (including the framework) and then introduce

changes that would be required to leave the framework code intact.

Method-local registers. For each register that may possibly be tainted, we introduce a shadow

register that stores the taint for this register. Any move operations simply also move the shadow

registers. The same also happens for unary operations while for binary operations, we combine

the taints of the operands and assign to the shadow register of the result. Instructions assigning

constants or new object instances zero the taint of the registers.

Heap objects. Heap objects include class objects, containing fields, and arrays. For each field

that may possibly be tainted, we insert an additional shadow taint field in the corresponding class.

The load and store instructions for instance fields and static fields are instrumented to assign to or

load from these taint fields to the local registers. We note that we may not insert additional fields
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into framework classes. In this case we taint the entire object. How this is done and the effects of

this will be discussed shortly.

In the case of arrays, each array is associated with only a single taint tag. If anything tainted is

inserted into an array, the entire array becomes tainted. This policy is used for efficiency reasons

and has been also adopted by other works such as TaintDroid. We also support index-based tainting

so that if there is an array-get (i.e., a load operation) with a tainted index, the retrieved value is

tainted. We will discuss shortly how we associate taint with Array objects.

Method parameters and returns. Methods may be called with tainted parameters. In this case,

we need to pass on the tainted information from the caller to the callee. We take a straightforward

approach to achieve this; for each method parameter that may be tainted, we add an additional

shadow parameter that carries the taint of the parameter. These shadow parameters may then

convey the tainted information to the local registers. Method returns are trickier. Since we can

return only one value, we instead introduce an additional parameter to carry the taint of the return

value. In Java, we have call-by-value semantics only so that making assignments to the parameter

inside the callee will not be visible to the caller. We therefore pass an object as the parameter,

which is intended to wrap the return taint. The caller can then use this object to see the return taint

set by the callee.

Our next part of discussion relates to specific challenges discussed in Section 5.2 and mostly

relates to requirements of not changing the framework code.

5.3.1.1. Calls into the framework (Challenge C1). Whereas the application code may be instru-

mented for taint propagation, we may only approximate the effects of calls into the framework

code on taint propagation. We use a worst case taint policy to propagate taints in this case:

• Static methods. For static methods with void return, we combine the taints of all the

parameters and assign this to all the parameter taints. For static methods with non-void
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returns, the taints of all the parameters are combined and assigned to the taint of the

register holding the return value.

• Non-static methods. Non-static methods often modify the receiver object (the object on

which the method is invoked) in some way. Therefore, we combine the taints of all the

non-receiver parameters; apart from its original taint, the receiver object is now addition-

ally tainted with this combined taint. In case the method returns a value, the return taint

is defined as the receiver taint.

Note that these rules are not enough to summarize the effects of framework code. Non-static

methods often have arguments that are stored into some field of the receiver. Consider the following

piece of code.

List list = new ArrayList();

StringBuffer sb = new StringBuffer();

list.add(sb);

sb.append(taintedString);

String ret = list.toString();

In this case, sb and list are untainted until line 4. Thereafter, sb is tainted and ret should

be tainted because it will include the contents of taintedString. Our general solution is that

when an object becomes tainted, any objects containing that should also become tainted. For

every object o1 that may be contained in another object o2, we maintain a set of the containing

objects. If the taint of o1 ever changes, we propagate this taint to all the containing objects. The

set of containing objects is updated whenever we have a framework method call o2.meth(.., o1, ..),

where meth is a method on o2 and possibly belongs to the framework code. This is a worst case

solution; in certain cases, such a method would not lead o1 to be contained in o2. The update

operation may be recursive, so that an update to taint of o2 may lead to updating the taint of the
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objects containing o2, and so on. Objects may point to (contain) each other and hence there may be

cycles; the update operation will however achieve a fixed point at some point and then terminate.

5.3.1.2. Handling callbacks (Challenge C2). A callback is a piece of code that is passed onto

another code to be executed later on. In Java, these are represented as methods of objects that are

passed as arguments to some code, and the code may later invoke methods on that object. These

objects typically implement an interface (or extend a known class) so that code is aware which

methods are available on the object.

Android makes an extensive use of callbacks, which often serve as entry points to the applica-

tion. Examples of such callbacks are Activity.onCreate() and View.onClick() when

overridden by subclasses. Apart from these, callbacks may be found at other places as well. For

example, toString() and equals() methods on objects are callbacks. Identifying callback

methods correctly may be done using class hierarchy analysis. A class hierarchy analysis analyzes

the inheritance relationships between different classes and, based on these results, the overriding

relationships between different methods. The class hierarchy analysis acts as a guide to the rest of

the instrumentation by defining how different methods are dealt with during instrumentation.

Since callback methods override methods in the framework code, their method signatures may

not be changed to accommodate shadow taint parameters and returns, lest the overriding relation-

ships are disturbed. For example, consider the following class.

class DeviceIdKeeper {

private String id;

public DeviceIdKeeper(TelephonyManager m) {

id = m.getDeviceId();

}

public toString() { return id; }

}
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Figure 5.4. Associating taint data-structures with objects

The app code may call toString() on a DeviceIdKeeper instance. Since the return

here may not be instrumented to propagate taint, we may lose the taint here. Furthermore, it is also

possible that this method is called at some point by the framework code.

Our solution. In order to not lose taint in this case, our solution is to lift the return taints of

all callback methods to the receiver objects. That is, in the instrumented callback method, the

return taint is propagated to the receiver object taint. In case a possible callback method is called

by app code with tainted parameters, we taint the receiver object with the taint of the parameters

and then inside the method definition taint the parameter registers with the taint of the receiver.

Since heap objects can carry taints in our model, such over-tainting needs to be done only in case

of parameters of primitive types. With the parameter and return tainting in place, we may use the

techniques described for calls into the framework (Section5.3.1.1) to summarize the effect of this

call. The key to note here is that the receiver object of the callback serves as a handy taint carrier

and thus taint is not lost in both the cases: when the callback is called by an app method, and when

it is called by the framework.

5.3.1.3. Taint data-structures (Challenge C3). From the above, it is quite clear that we need a

way to taint objects. Java uses reference semantics to address objects. That is, object variables are

pointers to object values on the heap and assignment for objects is only a pointer copy. Thus, we
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may have two types of tainting, either tainting the pointer, or tainting the object. Storing pointer

taints is simple and has been discussed as storing taints for method-locals and fields. In addition,

we also need to associate a set of containing objects with each object (Section 5.3.1.1).

Our solution. In our solution, we use a global hashtable, in which the keys are objects and

the values are records containing their taints and the set of containing objects. Any time, the

taints or containing objects needs to be accessed or updated, we access these records through

the hashtable. Our hashtable uses weak references for keys to prevent interference with garbage

collection. In Java, heap memory management is automatic; so we cannot know when an object

gets garbage-collected. Weak references are references that do not prevent collection of objects and

so are ideally suited for our applications. We further note that these data-structures should allow

concurrent access as the instrumented app may have multiple threads running simultaneously. A

schematic of our global hashtable is presented in Figure 5.4.

We considered but rejected an alternative method of keeping these data structures. With every

object, we can possibly keep a shadow record, which is an object that stores the object taint and

the set of containing objects in its fields. The instrumentation may then move this shadow record

together with the main object through method-local moves, function calls and returns, and heap

loads and stores. This technique however does not work well with the way we handle calls into the

framework. Consider the following code fragment.

// list is a List

// obj is an object

list.add(obj);

obj2 = list.get(0);

In the above code, obj and obj2 could be the same objects. However, since the loads/stores

and moves inside the List methods are not visible to us, we cannot track the shadow record of
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Figure 5.5. Uranine implementation depicting the use of existing code (white
boxes) and the features we implemented (gray, discussed in detail in Section 5.3).

obj there. The shadow record of obj2 may at most depend on the record of list. Thus, there is

no way to make the shadow records of obj and obj2 the same, something that we achieve easily

with our approach of weak hashtables.

5.4. Implementation

5.4.1. Toolchain and IR

We have implemented a working prototype of Uranine. We use a library called dexlib [12] to

disassemble and assemble Dalvik bytecode. The disassembled representation is converted to an

intermediate representation (IR). In addition, we also use apktool [1] to disassemble the binary

Android XML format (needed for discovering entry points for static analysis) and other tools from

the Android SDK and elsewhere to prepare an instrumented app. Figure 5.5 provides these details

graphically.
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We choose to work on an IR very close to the bytecode and do not require decompilation to

either Java bytecode or the source code as some previous works have required. Since decompila-

tion is not always successful, this approach improves the robustness of our system. Disregarding

details like register widths, the Dalvik bytecode instructions3 generally have a direct correspon-

dence with the instructions in the IR. Similar instructions (such as all binary operations or all

kinds of field accesses) are represented as variants of the same IR instruction. Range instructions

(invoke-*/range and filled-new-array-*/range) access a variable number of regis-

ters; these are converted to the simple representations of invoke-* and filled-new-array-*

instructions with a variable number of register arguments in the IR. Even though we use this IR

for instrumentation, it is also suitable for performing static control flow and data flow analysis. In

fact, the same IR is used as input to our class hierarchy analysis, the results of which then guide

the instrumentation. The instrumented IR is then finally assembled back to Dalvik bytecode.

Most of our instrumentation code is written in Scala, with about a hundred lines of Python code.

The taint-tracking data structures and related code is written in Java. The instrumentation adds a

compiled version of this code to every app for runtime execution. The total Uranine codebase sizes

to over 6,000 lines of code. We note that Scala allows for writing terse code; the equivalent Java

or C++ code is usually two to three times as long.

5.4.2. Instrumentation Details

The instrumentation of instructions for information-flow tracking at the Dalvik byte-code level

with our design is particularly challenging. Some of the challenges we handled during implemen-

tation are:

3http://s.android.com/devices/tech/dalvik/dalvik-bytecode.html
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Code Templates

Instruction Instrumentation

Method Preamble Insertion

Control Flow Preservation

Class-level
Instrumentation

Figure 5.6. Instrumentation organization

• Handling exceptional control flow. Many instructions such as method invokes and array

and field accesses can lead to exceptions. The Dalvik verifier pessimistically assumes

that such exceptional control flow will be there in the presence of such instructions. This

leads to failures when it type checks registers (the verifier implements a primitive type

checking where it checks integer, object, and wide register types). We must therefore

exercise additional care so that the added instrumentation instructions do not alter the

control flow possibilities.

• Limited register addressing. Several frequent instruction opcodes permit only four-bit

registers, implying that only the first sixteen registers can be addressed in those instruc-

tions. Thus, one has to prudently write the instrumentation instructions, sometimes even

shifting registers around to get data into an addressable register.

• Limited context. This challenge comes because we choose to simplify the implementation

by not knowing the current type of every register. This means that for instrumenting a

given instruction, we can use only the registers specified in that instruction and a few

temporaries.

• Temporary allocation. A few temporary registers are needed when moving registers, for

invoking object-tainting functionality, and so on. We keep a count of the maximum tem-

porary registers needed and provide necessary instrumentation at the beginning of the

methods.
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The above challenges make our instrumentation system more complex than any other systems

on Android that we know of [?, 42, 67]. We organize our implementation in three-layered stack as

shown in Figure 5.6, where each layer addresses some of the challenges. The top layer deals with

individual instruction instrumentation. Even though each instruction opcode has a specific way

of instrumentation, certain sequences are common and we extract them out as templates, which

promote code modularity. For instance, consider the following Scala snippet for instrumenting the

field put instruction.

val (s0, s1, setTaintMoves) = templates.generateMoves(r2, taintRegOf(r1), aType1 =

NAType)

lst ++= setTaintMoves

lst += templates.setTaint(s0, s1)

The prime purpose of this code is to update the taint of object referenced by register r2 with

the taint of register r1. This requires calling a function. The method invoke instruction has certain

restrictions (if parameter registers are addressed with more than four bits they must be consecutive),

and so register moves into temporaries may be required. The templates generate the appropriate

instrumentation instructions while helping keep code organized and simple.

The second layer inserts a method preamble (some instrumentation code at the beginning of

a method) that takes care of allocating the requisite number of temporary registers. In Dalvik

bytecode, method parameters are stored in the last registers. Thus, if the register count of a method

is increased, the parameters need to be explicitly shifted to their original position so that original

instructions are not disturbed. After this shift, the last registers are available to be used as temporary

registers.

The third layer takes care of the first challenge, ensuring that the original control flow in the

method is not disturbed. It does this by inserting as many catchall clauses around the newly
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Table 5.2. Accuracy evaluation of Uranine and comparison with TaintDroid

App Uranine TaintDroid App Uranine TaintDroid

mobi.android-
cloud.app.ptt.client

Contact Contact com.ama.lovetest.cal-
culator

IMEI, Phone# IMEI

com.enlightened.An-
droidskyjewelsfree

IMEI None com.flashlight.tre-
film.coins

IMEI IMEI

com.magmamobile.ga-
me.Slots

IMEI None com.silkenmermaid.g-
au.dldic

IMEI IMEI

me.zed 0xff.android.al-
chemy

IMEI None com.gamevolution.Ma-
rbleMadnessPro

IMEI IMEI

com.magmamobile.ga-
me.BubbleBlast2

IMEI None com.reverie.game.toilet-
paper

IMEI IMEI

com.rhs.wordhero Loc Loc com.red.white.blue.free IMEI IMEI
com.rferl.almalence.st-
aringcat

IMEI IMEI com.gameloft.andro-
id.ANMP.GloftGTFM

IMEI IMEI

app.win.conforl1 ICCID, IMEI,
Phone#

None com.alloright.trib IMEI, Loc, Phone# IMEI, Loc

com.anbgames.open-
thedoor.hoola2

IMEI IMEI com.euro2012.geekbea-
ch.acquariusoft

IMEI IMEI

com.aceviral.top-truckfree IMEI IMEI com.fjj24512014.korea IMEI None
com.flirtalike.android IMEI, ICCID IMEI, ICCID net.aaronsoft.poker.eva IMEI IMEI
com.keithe.lwp.aq-uarium IMEI IMEI com.mobizi.scratchers IMEI None
com.androiminigsm.fs-
cifree

Contact, IMEI Contact, IMEI sg.vinay.FourpicsOne-
wordcheatsanswers

IMEI, Phone# None

mobi.jackd.android Loc Loc com.electricpocket.rin-go Contact Contact
com.topface.topface IMEI IMEI com.keek IMEI, ICCID IMEI
com.pilotfishme-
diainc.happyfish

IMEI, Loc,
Phone#

Loc com.phantomefx.re-eldeal IMEI IMEI

added instrumentation instructions (we are sure that the new instructions will not misbehave) as

required so that the verifier can type-check correctly.

In addition to this stack, we also have class-level instrumentation, which inserts fields, changes

method names, and so on.

5.5. Evaluation

We evaluate Uranine on two aspects: accuracy and performance overhead. To perform accu-

racy evaluation we configured Uranine to detect the leakage of location, phone identifiers (like
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IMEI and phone number), and contacts (address book). We can similarly add other private infor-

mation sources as well. Our sinks include all APIs that send data to the network, write to the file

system, or send SMS messages.

Our app dataset consists of 1,490 apps randomly selected from Google Play. Apps are in-

strumented automatically and run with random inputs (fuzz testing) provided by Android Monkey

tool. For understanding privacy leakage results, we also conducted manual tests for a smaller set

of apps.

5.5.1. Accuracy

In the accuracy evaluation, we measure whether Uranine is able to detect any privacy leaks and

how does it fare on the false positive rate. We performed two distinct experiments: one using the

DroidBench benchmarking suite [19] and the other using real-world applications collected from

Google Play and comparing the results with TaintDroid.

5.5.1.1. DroidBench. DroidBench is an open-source suite of simple Android applications to test

information flow analysis tools on Android. Many applications contain data leaks similar to what

might be seen in the real works, while others present scenarios meant to confuse analysis tools into

flagging false positives. Even though originally meant for testing static analysis tools, the suite can

serve as a ground for testing dynamic analysis tools such as Uranine as well.

Out of a total of 61 applications in DroidBench 1.1, we tested all test-cases except 15, which

relate to implicit flows and Android lifecycle. Implicit flows are a general limitation for dynamic

analysis whereas many Android lifecycle leaks happen through persistence of state in files, leading

us to miss such leaks as we do not handle taint propagation through files and other persistence

mechanisms in our prototype. We also did not test 3 Android-specific test cases related to leaking of
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passwords (we do not have a systematic way of identifying password fields) and taint propagation

through files.

In testing with Uranine, most test cases were either true positives or true negatives. We discuss

here those where the detection was either a false positive or a false negative. The four ArraysAn-

dLists test cases tested placing both untainted and tainted data in data structures and then accessing

untainted data from them and leaking it. Because of our decision to taint at the granularity of arrays

and framework objects (Lists are framework objects), the results were expected to be false postives,

and so was the outcome. We also encountered a false negative in the Generaljava/Exceptions4 test

case, which constructs an exception with a tainted parameter and throws it. The exception handler

subsequently leaks the tainted parameter. The false negative was due to a wrong assumption that

we made in the implementation: we assumed that a newly constructed object has only one pos-

sible reference (the local register to which they are assigned), that all subsequent references will

be derived from this reference, and thus tainting this reference (instead of the object) is sufficient.

The reasoning is flawed because exceptions will get a new reference not connected to the original

reference. This bug was easily fixable. Finally, there was a false negative in a reflection test-case

because the instrumentation could not properly determine taint propagation through a method of

reflective class (the other three reflection test cases passed).

To summarize, Uranine met our expectations in our evaluation of DroidBench.

5.5.1.2. Google Play applications. In this section we evaluate how Uranine performs in detecting

privacy leaks in real-world applications. An experiment on real-world applications is important

because a benchmarking suite may miss some kinds of leakage scenarios and also because we

need to understand the false positive and false negative rates in the wild.

Unlike DroidBench, Google Play applications do not come with ground truth of what they

would leak. We therefore used TaintDroid results to compare with our results. Our methodology
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involves running Uranine-instrumented applications on a TaintDroid build. This allows us to gen-

erate both TaintDroid’s and Uranine’s results together in one run, thus eliminating any differences

that may come because of random inputs or non-determinism in multiple runs.

Manual tests. We conducted manual tests on a physical device (Samsung Nexus S) over a small,

random subset of apps. These results enable us to carefully study the differences between Taint-

Droid and Uranine. The results are depicted in Table 5.2. The results, where neither TaintDroid

nor Uranine detected any leakage, are not shown in the table.

Our results show some disagreement with TaintDroid. We see that TaintDroid does not de-

tect any phone number leaks that we detect; a look into TaintDroid code then revealed to us that

TaintDroid has disabled tracking of phone numbers with the comment “causes overflow in logcat,

disable for now” in source code. In all other cases of disagreement between Uranine and Taint-

Droid, we manually confirmed the correctness of Uranine. It turns out that in the cases where

Uranine does detects an IMEI (or ICCID) leak while TaintDroid does not, there is some kind of

hashing of the identifier involved, such as the calculation of MD5 or SHA1 digests. It appears

that TaintDroid does not propagate taint across the functions that calculate these digests. This is

also confirmed in AppsPlayground [120]. In conclusion, our results are generally consistent with

TaintDroid. Any apparent inconsistencies result from implementation artifacts of taint tracking. It

is worth emphasizing here that our contribution is not to show an improvement over other systems

in terms of detecting more privacy leaks but to do the detection without system modification.

Automatic tests. We further conducted automatic, random testing on a bigger dataset of 1,490

apps. The tests were conducted on Android emulator (provided with the Android SDK) running a

TaintDroid image. Since the emulator does not provide most of the device identifiers (such as IMEI

and phone number), we further added some code to our emulator image to provide real-looking
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Table 5.3. Leaks detected in automatic tests

Leak type Apps leaking Leak type Apps leaking

IMEI 310 IMSI 18
ICCID 16 Phone # 79
Location 107 Contacts 5

identifiers on the respective APIs for accessing these identifiers. Because of these modifications,

our emulator’s TaintDroid can also detect phone number and IMSI leaks.

Our runs detected privacy leaks in a total of 360 apps; in the rest of the apps, no leak was

detected either by TaintDroid or Uranine. The results for TaintDroid and Uranine differed for 177

apps. We have manually analyzed each of these cases, and have found that Uranine was accurate

in most cases. Below, we detail our findings and bring out relevant insights.

For 92 apps where Uranine detected privacy leaks but TaintDroid did not, we confirmed that

these were TaintDroid’s false negatives. In all these cases, the apps leak the device identifiers after

hashing (with, for example, MD5). In most cases, we were able to see the MD5 checksum of the

device identifier being leaked (IMEI leaks were most frequent) in plaintext. Further, in other cases,

these leaks were in ad libraries that are known to have the leaks flagged by Uranine. For example,

our analysis of an older version of Admob library shows that it leaks the MD5 of a string derived

from the phone’s IMEI number.

Uranine’s detection of leakage in 4 apps is likely to be a false positive. In two apps, our logs

reveal Uranine flags leakage when an empty string is being written to a file. In the other two cases,

Uranine detects IMEI leakages on writing strings that look like base64 codes. Decoding those

codes however does not reveal the IMEI number nor anything that looks like a hash of that. False

positives are actually expected in Uranine, due to overtainting as part of our design. Considering

this, 0.2% false positives are insignificant.
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There was another set of 13 apps where Uranine flagged leakage but TaintDroid did not. In all

these cases, we can see strings looking like MD5 or SHA hashes being leaked, but were unable

to derive them from known identifiers (perhaps they were mixed with some salt before hashing).

Though we could not classify these cases, we believe them to be TaintDroid false negatives. Fi-

nally, we detected 14 cases that were false negatives for Uranine; we could however correct them

by adding additional sinks that we missed earlier.

In summary, we found Uranine to be fairly accurate in detecting privacy leaks with few errors.

Table 5.3 shows the privacy leaks detected by Uranine.

5.5.2. Performance

Measuring the runtime overhead of applications instrumented by Uranine is not trivial. First, there

are no popular macrobenchmarks for Android. The DaCapo benchmarks [27], which are popular

Java benchmarks, are not easily ported to Android (due to their use of Java-specific libraries and

GUI) and moreover, may also differ from real-world application workloads on Android. Second,

conventional microbenchmark suites for evaluating virtual machine performance may also give

skewed results as we are instrumenting applications here rather than the virtual machine. Never-

theless, for documentation, we present our evaluation on CaffeineMark 3 microbenchmark. For

macrobenchmarking, we chose to evaluate certain events from real-world Android applications.

All performance evaluation tests were done on a Samsung Galaxy Nexus running Android 4.3.

5.5.2.1. Microbenchmarks. We used CaffeineMark 3 microbenchmark to measure the overhead

of our instrumentation. For this purpose, we used com.android.cm3 application from Google Play,

that packages this benchmark suite. We ran both the original application and the instrumented

version of this application on the device. Table 5.4 presents the results.
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Table 5.4. CaffeineMark 3 performance. This benchmark may not adequately rep-
resent the real-world performance of Uranine

Benchmark Original Instrumented

Sieve 2615 36
Loop 16572 22
Logic 10268 450
String 6373 418
Float 6833 22
Method 5349 216

Overall 6853 94

The above table shows an overhead of about 70 times. Given the complex instrumentation

we perform (such as for method calls and fields), we had expected the performance overhead to

be high. However, we suspect this benchmark itself also exacerbates the reported overhead. One

possible reason is that all the test cases use method calls and have instructions such as move at the

bytecode level. All these additional instructions are instrumented, sometimes with high overhead,

resulting in a skewed report. For example, the Logic test case contains simple condition checks

and branches, which are themselves not instrumented in Uranine; however, the other instruction

such as method calls and moves are still instrumented.

It should be noted that the above benchmark does not mix in application code with framework

code. In real applications, where a large chunk of framework code, mixes with the application code,

we expect the performance to be much better, as is also shown in the following macrobenchmarks.

5.5.2.2. Macrobenchmarks. As discussed earlier, traditional macrobenchmarks are not easy to

port on Android. Using real-world Android applications is the next obvious choice. However,

most applications are GUI intensive and interactive in nature. Thus, one cannot simply run the

benchmark application and obtain the results. We devise our own methodology of evaluating

performance of Android applications in response to certain events. For our benchmarks, we select

a total of six events from three very popular applications: BBC News, Last.fm (a music application
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Table 5.5. Macrobenchmark performance. The reported times (Original/Instru-
mented columns) are medians over five independent runs.

Benchmark Event Original (ms) Instrumented (ms) Overhead

BBC News (version 2.5.2 WW) Launch 953 1418 49%
BBC News (version 2.5.2 WW) Click (“Live BBC World Service”) 450 434 -
Last.fm (version 1.9.9.2) Launch 523 567 10%
Last.fm (version 1.9.9.2) Click (“Sign up”) 132 140 6%
Contacts (from AOSP 4.0.4) Launch 580 645 11%
Contacts (from AOSP 4.0.4) Click (“Done” after contact creation) 23 59 156%

with social networking features), and the stock Android application for managing contacts. For

each application, we evaluate the time to launch the main activity of the application and the time to

complete a click of a pre-selected feature on the application. The time to launch the main activity is

as reported by the ActivityManager (part of the Android middleware). The time to complete a click

is measured by instrumenting the click handler function to report the interval from its beginning to

the point it returns.

Table 5.5 presents the comparison of the original applications and those instrumented for infor-

mation flow-tracking. As can be seen from the table performance overhead is usually low, almost

always within 50% and often around 10%. We attribute this to the fact that the Android framework

does most of the heavy-lifting during runtime, from creating the UI to managing the data structures

and data stores. Thus, even though we saw a huge performance overhead in the microbenchmark,

real-world application overhead appears quite low in comparison. Anecdotally, in our runs, we

have seen noticeable performance overheads but the overheads have never been intolerable.

Finally, we would like to reiterate that our approach is highly amenable to static analysis. We

expect that in production, a tool such as Uranine will be guided by a static analysis, which will be

able to identify that most paths cannot propagate the relevant information flow and thus need not

be instrumented.
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5.6. Discussion

5.6.1. Static Analysis and Optimizations

We believe that Uranine has great potential for optimizations so that runtime overhead can be min-

imized. First, it is possible to tune the instrumentation, and perform constant propagation passes

to reduce the instrumentation overhead. Second and more importantly, it is possible to perform a

static information flow analysis that identifies the paths along which the relevant information flow

could take place. Such paths are usually small in number and thus if Uranine instruments those

paths only, applications may run with negligible overhead. Note that the use of static analysis does

not obviate the need for a dynamic analysis system (Section 5.2.2).

We note that the opportunity for static analysis is present in our approach only, involving no

platform modification. Previous work such as Phosphor [24] modify the platform libraries to track

information-flow and will therefore not benefit much from optimizing app instrumentation by static

analysis.

5.6.2. Limitations

We discuss here our limitations and avenues of future work. While Uranine is good for detecting

privacy leaks in legitimate applications, a truly malicious app may be able to evade the system

through some of these limitations.

Implicit flows. A fundamental limitation of dynamic taint tracking is the inability to track im-

plicit information flows via control flow [127]. Our work shares this limitation. Static analysis

may be used to track control flow. However, this leads to the risk of severe over-tainting. Research

is underway to make implicit flow tracking practical [75].
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Native code. We currently also do not support taint tracking through native code, which some

Android applications include in addition to bytecodes. Previous works such as Phosphor and

TaintDroid , and all static analysis works on Android, which only analyze bytecodes, all have this

limitation. Taintdroid does not allow third-party apps to load native code, mostly resulting in a

crash. Greater research is needed in this area to come up with practical solutions for ensuring

safety of apps with native code.

Dynamic aspects of Java. As a limitation of static instrumentation, the dynamic aspects of

JVM, such as reflection and dynamic class loading (using DexClassLoader or similar features

in Android) do not cleanly fit in. These may however be supported in the future in our approach.

We may apply worst-case tainting for all method calls made by reflection as we do for other meth-

ods. Furthermore, we can instrument calls by reflection and alert the user if they do not pass certain

security policies (such as restricting reflective calls to only certain API in the Android platform).

Code loaded by dynamic class loading may also not be available during static instrumentation. In

a deployment, it may be possible to prompt the user to allow reanalysis whenever dynamic code

loading is detected so that an instrumented version of the code being loaded can be created.

Incorrect summarization. Policy-based summarization of framework code, as used in our work

not only has the problem of over-tainting but could also result in under-tainting of data passing

through APIs that do not fit within those policies. For example, some classes may update a global

state when their methods are called. We are not aware of such a situation but such cases could

be used to bypass the system. Manual summarization of known cases is obviously one solution.

Automatic method summarization is an open research problem in static analysis, any progress

there will benefit our cause as well.
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5.7. Related Work

Information flow tracking. The closest to our work are TaintDroid [48] and Phosphor [24]. The

key advantage of our technique is that we do not require modification of the Android platform as

these do.

Dynamic taint analysis has been employed in a variety of applications from vulnerability de-

tection and preventing software attacks [105, 115,134] and malware analysis [23, 130,143] to pre-

venting privacy exposures [47, 151]. Schwartz et al. describe dynamic taint analysis together with

its applications and the details that may be needed to implement it [127]. Depending on the appli-

cation, the works cited here employ operating system modification, virtual machine introspection,

and so on. We present a general technique for taint tracking in this chapter without modifying the

Android platform. Our technique may be used for the above applications, especially when there is

a constraint to run applications on an unmodified platform.

Apart from the above works, there are also works doing taint tracking by bytecode instrumen-

tation. Haldar et al. [65] implement taint tracking by instrumenting Java String class. Chandra and

Franz [31] instrument the Java bytecode for taint tracking and also provide for tracking implicit

flows. Their bytecode instrumentation also uses certain taint tracking data structures. These works

share the same limitation as Phosphor as discussed earlier.

There are also a number of related works using static analysis. PiOS [46] uses it to detect pri-

vacy leaks on iOS apps. Enck et al. [49] and Gibler et al. [62] decompile Dalvik to Java bytecode

and perform static analysis on that using existing tools for Java. FlowDroid [19] also converts

Dalvik back to Java bytecode and builds on top of Soot4 while adding in Android-specific require-

ments to the analysis. Chex converts Dalvik bytecode to WALA5 IR and then employs WALA for

4http://www.sable.mcgill.ca/soot/
5http://wala.sourceforge.net
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static analysis [93]. Other similar static analysis efforts [19,60,79] also exist. As discussed earlier,

there are disadvantages of static analysis over real-time dynamic analysis.

Static instrumentation. Static instrumentation is not a new technique. It has been used earlier

for Android applications [42, 43, 140]. These works have focused on API interposition rather than

tracking information flow; the latter is more challenging because of the need to instrument many

instructions and to encode the semantics of information-flow tracking. AppSealer [144] statically

instruments Android applications to repair component hijacking vulnerabilities. Capper [145] is a

follow-up work that detects privacy leakages without platform modification. Both these works are

similar to Uranine; however, their taint tracking will have false negatives: they try to address C1

but do not solve it adequately and do not even discuss C2 and C3. Instrumentation has been used

in other applications as well, some of which even use static analysis to optimize it. Saxena et al.

use static analysis to make their binary instrumentation efficient [126]. Xu et al. [141] instrument

C sources for taint tracking and further optimize it using static analysis. Slowinska et al. [131]

instrument binaries to prevent buffer overflow attacks. AppInsight is another system that uses

static instrumentation [121]. It instruments Windows Phone applications to identify critical paths

in them as they are used in the wild. The results can subsequently be used to optimize the apps.

Other related work in mobile device security. Kirin [50] defines security policies based on

Android permissions. Permissions however are often coarse-grained and also do not give any

indication of what may happen at runtime. A number of works additionally prevent access of

private information or supply fake data to apps [26, 103, 150]. Information access however does

not imply information leakage. For example, an application may have legitimate need to access

user’s contacts (say for providing editing functionality) but should not leak them out. Furthermore,

dynamic taint tracking can also establish the final recipients of private information, e.g., remote

servers and so on. Another line of works [22, 87] investigates the user perceptions as related to
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mobile privacy. They conclude that users are often not aware of privacy leakages and that proper

awareness and usable controls can mitigate users’ concerns about privacy.

5.8. Conclusion

This chapter describes Uranine, a framework for dynamic privacy-leakage detection in An-

droid applications without modifying the Android platform. To achieve this, Uranine statically

instruments Android apps only and does not need support for information flow tracking from the

platform. We provide a design and implementation of Uranine and have evaluated its performance

and accuracy. Our results show that Uranine has good accuracy and incurs acceptable performance

overhead.
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CHAPTER 6

Conclusion

Entire ecosystems are based around modern operating systems such as Android. Different

parties such as OS developers, vendors, application developers, carriers, users, and so on come

together and play crucial roles in these ecosystems. With all these parties having conflicting inter-

ests, it is difficult for them to agree upon solutions to improve the security and privacy properties of

these ecosystems. In this dissertation, I presented four works that show that it is possible to deploy

solutions without support from the OS developers, vendors, application developers, etc., and still

gain security and privacy benefits. Without the support of operating system and the applications,

it may at the first thought appear that any possible improvements will be limited, but we have still

gone a long way, at least for the Android ecosystem. I will now briefly discuss some possible

extensions of this dissertation.

The Android Ecosystem that we examined was more or less centered around Google Play. A

straightforward extension of this dissertation is to study the Android Ecosystems centered around

other application stores. Different application stores operate with different properties. For exam-

ple, the Amazon App Store appears to have a more stringent approval process, potentially using

manual vetting, and so may improve the overall security of the ecosystem. As another example,

numerous third-party application stores operate in China; many of them do not provide as strong

safety as the major stores in the US and their properties may also differ from those of the US
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stores simply because of a different demographic. Some of the chapters, specifically AppsPlay-

ground and AutoCog, involve extensive measurements over applications, and thus comparisons of

different ecosystems around various application stores are relevant here.

It may also be worthwhile examining if similar solutions are possible in other operating system

ecosystems, such as iOS and Windows. These other operating system ecosystems are not as open

as Android and so it may not be possible to deploy some solutions proposed here. Moreover, the

implementation aspects on different operating systems may also be completely different.

Even on Android, it is possible to develop many more solutions that deal with different parts

of the ecosystem, some of which are not even discussed in this dissertation. One example is ad-

vertisements and ad networks. Advertisements largely form the monetary backbone of the mobile

ecosystems but at the same time have been associated with privacy issues and concerns relating

to spreading malware. It will be worth examining and proposing solutions for these parts of the

ecosystem as well. It is likely that some of the core techniques described in this dissertation will

prove useful for these future solutions and studies. For example, AppsPlayground may be used to

run Android applications automatically on a large scale so as to extract and analyze advertisements

from them.
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