
A Voronoi Partitioning Approach to Support Massively
Multiplayer Online Games

Adwait Tumbde
Department of Computer Sciences

University of Wisconsin
Madison, WI, 53706

adwait@cs.wisc.edu

Shreepadma Venugopalan
Department of Computer Sciences

University of Wisconsin
Madison, WI, 53706

vshree@cs.wisc.edu

ABSTRACT
We propose an approach to support massively multiplayer online
games on a peer-to-peer system. Our approach is based on the fact
that players are more interested in their region of visibility and
influence than in the other regions. We use a computational
geometry technique – Voronoi Diagram – to partition the game
space into regions. The Voronoi partitioning gives some good
closeness and locality properties. The players in a region
communicate with other players through the coordinator of the
region. The resulting system scales up with the number of players
and is able to distribute region updates in a scalable manner. We
also propose techniques for fault tolerance in the wake of node
failures. We have implemented a simple game to study the
feasibility of this approach.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Applications

General Terms
Design, Performance.

Keywords
Peer-to-Peer, Multiplayer Game, Voronoi Diagram, Net Games.

1 INTRODUCTION
We propose the use of a computational geometry technique –
Voronoi Diagram [6] – to partition the game space into regions
based on some locality properties and support it on a peer-to-peer
structure. The players participating in the game form an overlay
structure based on their location in the game space. Thus all the
players contribute memory, CPU cycles to manage the shared
game state.

The game space in a massively multiplayer online game (MMOG)
is shared and inhabited by thousands of players. Some popular
games like Ultima Online and Quake have recorded 200,000
simultaneous users. Apart from the exciting story line and

graphics, MMOGs are a shared distributed application with some
private state maintained locally, and the shared state
communicated to other players.

Traditionally the MMOGs were supported by a client – server
architecture. Since the single server solution did not scale well,
mirror server architectures were proposed. But the mirror servers
constrain the number of simultaneous players in a geographic
location. Cluster of server architecture was proposed to share the
load by dividing the game space into regions. But even this
solution does not scale with the number of simultaneous players
in a given region of the game space.

Massively Multiplayer Games are natural application for peer-to-
peer systems. Game players have incentive to provide resources
for managing the shared state because the participation in
resource sharing is limited to the duration of the game play. A
recent proposal [7] to support MMOGs on a peer-to-peer system
divides the game space into a fixed number of regions. Although
this architecture scales with the number of players, it does not
fully exploit the locality property. The coordinator of a region
may not be playing in the region but still has to handle the burden
of state management and communication in the region.

Games are different from the existing peer-to-peer applications
that mostly harness only the storage and bandwidth of the peers.
Games utilize memory and CPU cycles to manage the shared
game state. Hence some of the problems that have to be addressed
are:

• Performance - games have frequent updates that must
be quickly propagated to other players. Further the
propagation of updates must scale with the number of
players.

• Scalable State Management – the state maintained by
the peers must be based on their current location. Also
each peer must manage state only for the region of
game space that is closest to it.

• Fault Tolerance - replicating game state to improve
availability has some problems. With high frequency of
updates maintaining a large number of synchronous
replicas in the system become a performance
bottleneck.

• Security – with the state being maintained on the peers,
instead of the central game server, player get increased
opportunity to cheat.

This paper discusses the first two problems in detail. We propose
a technique to partition the game space and assign coordinators

for regions based on some closeness and locality properties. As
we shall see in the later sections, this technique addresses the first
two problems well. We also address the problem of fault tolerance
with an initial proposal.

The main contribution of this work is architectural and evaluative.
We present an architecture marrying MMOGs, peer-to-peer
systems and Voronoi Partitioning technique and we also provide
an initial evaluation of the technique to demonstrate its feasibility.

The key to a feasible peer-to-peer architecture is the locality of
interest and influence [10]. Typically players in a MMOG are
interested in a small area of the game space at any point in time,
typically correlating to the sensory capability of the game
character being modeled. Also each node maintains game state for
region that is closer to it than to any other node. This intuitive
natural approach is achieved using Voronoi partitioning.

The rest of the paper is organized as follows: Section 2 discusses
the background and related work in detail, Section 3 describes
some of the terms used and our design, Section 4 discusses some
of our proposals, which forms future work, Section 5 gives some
initial evaluation. We conclude in Section 6. The appendix
provides the details needed to install and run our implementation.

2 RELATED WORK
Traditionally MMOGs have been supported using a client – server
architecture, where the server keeps player account information
and handles all shared state and communication between players.
This architecture clearly does not scale up with the players. To
achieve scalability the servers have to be over-provisioned for the
worst case scenario. Further this architecture suffers from a single
failure point and has little fault tolerance.
Mirror Server architecture was proposed to isolate players based
on their geographic locations. Players typically join the closest
geographic mirror. Hence the number of simultaneous players in a
geographic region is constrained. Further the mirrors have to be
synchronized and this synchronization is normally done on a high
speed backbone.
Later, Server clusters were used instead of a single server to
achieve scalability. But even this scheme limits the number of
simultaneous players in a region. All the client-server
architectures lack flexibility and have to be over-provisioned for
peak loads. Further the client-server model limits the deployment
of user designed game extensions, which is an important trend in
game development and design. Since a centralized game server is
required to host the core game, the development is slowed down
considerably.
Recently there have been proposals for peer-to-peer gaming
systems with application layer multicast. One such system is
SimMud [7], which is built on top of Pastry [12] and uses Scribe
[3] application layer multicast for communication. The game
space is divided into a fixed number of regions and each region is
managed by a node assigned to be the coordinator for that region.
Players in a region of the game space form a multicast group and
communicate using Scribe multicast system. Players, on
switching between regions, leave the multicast group in the old
region and join the multicast group in the new region.
Even though the above described system takes into account the
locality of interest in a MMOG, it does not fully exploit it. A
player may be a coordinator for a region, but may be playing in
another region of the game space. But still the player has to

maintain state and handle communication for that region. Hence
in this system players maintain state for regions of game space
this is no longer close to them. As the players move in the virtual
space, their region of influence and interest continuously change,
but this system does not take this into consideration.
We target Massively Multiplayer Online Games, which currently
use the client-server architecture or a peer-to-peer architecture
described above. Although the peer-to-peer architecture lowers
the deployment cost with all nodes providing CPU and memory, it
incurs a security risk because the game state is distributed to
peers. Hence some techniques like Run Time Verification [5] for
Anomaly Detection proposed by Honghui Lu et al., may be
applied to our system.
Replication is an integral part in any peer-to-peer file sharing
system [4], [8], [13] for both improved availability and
performance. However these systems are read only system,
whereas a gaming system has frequent updates. As a result our
system must maintain data consistency while tolerating network
and node failures. Our approach is to maintain the replicas at the
neighbors. The intuition in maintaining the replicas at the
neighbors is that when a node leaves or fails, the Voronoi region
has to be refined and the refined mesh has the neighbors taking
over the region of the failed node. However consistency
requirements require us to design a consistency mechanism with a
small window of vulnerability.
Fault tolerant consistent data services can be built with quorum
systems [9]. In these systems, updates cannot proceed if the
number of nodes in a region is not large enough to form a
quorum.
Group communication and interest management is used in some
distributed game implementations including AMaze [1] and
Mercury [2]. The SimMud system as discussed before makes use
of Pastry and Scribe. Since our system partitions the game space
into regions using Voronoi Diagram, it is closer to CAN [11] than
to any other DHT like Chord [14] or Pastry.
CAN is a scalable, robust and self organizing DHT that considers
a d-dimensional Cartesian coordinate space. The coordinate space
is completely logical and bears no resemblance to any physical
coordinate system. At any point in time, the entire coordinate
space is partitioned among all the nodes in the system such that
every node owns its individual distinct zone within the overall
space. The node that owns a particular zone stores all keys that
map to any point within the zone. Hence the lookup for an object
may be routed through the CAN infrastructure until it reaches the
node whose zone the point P, onto which the object maps, lies.
Routing in CAN works by following the straight line path through
the Cartesian Space from the source to the destination
coordinates. A CAN node maintains a coordinate routing table
that holds the IP address and the virtual coordinate zone of each
of its immediate neighbors in the coordinate space. This neighbor
information is sufficient to route between any two arbitrary
locations in the space. Using its neighbor coordinate set a node
routes a message towards it destination by simple greedy
forwarding to the neighbor with coordinates closest to the
destination coordinates.
For our purpose we need to consider a 2-d CAN like system to
perform the message routing. Since the Voronoi Partitioning
divides the 2-d game space into regions similar to zones in CAN,
we can use CAN type routing to communicate with players in
other regions. Further in our system each node knows the address

of its neighbors. Message routing to nodes that are far off in the
game space is needed for team player strategy games like War
Craft. In these games, it becomes essential to have
communication between team mates, who may be at different
regions of the game space at a given time.

3 PROPOSED SOLUTION
This section proposes a mechanism to support massively
multiplayer games, based on voronoi partitioning approach. The
contents of this section so organized to act as a step by step guide
leading us to development of the proposed solution. Analyzing
the problem and challenges involved in the support of massively
multiplayer games on peer to peer system, we explain what
motivates the design of proposed solution. Following that is a
detailed explanation of voronoi partitioning, its application to
support massively multiplayer games, a communication
mechanism amongst peers involved in the game.

3.1 Multiplayer Games on Peer-to-Peer System
In multiplayer games, actions and state of a player need to be
communicated to other players. For example, during a fight
between two players if one player shoots at other; the other player
must be communicated that it has been shot at. (Typically, a
player is controlled by a peer and hence the terms peer and player
are used interchangeably in the further paper.) Considering this,
one obvious approach to support such games on peer-to-peer
system is to have every player communicate with every other
player in the network. But it is clearly not scalable to massively
multiplayer game as a peer may not be capable of handling
communication with tens of thousands of other peers involved, at
the same time. It may lead to explosion in the number of
messages leading to network congestion, packet drops and
increased latencies. To make the system scalable, a peer must be
required to communicate with only a subset of other peers
involved in the game. A challenge here is to find such a subset of
nodes so as to enable communication within the latency
constraints imposed by the game design and to minimize
messages within the network.

3.2 Region of Influence (RoI)

Fig 1 .Region of Influnce

Consider a game field as shown in Figure 1 with players A-G. The
region of influence (RoI) of a player is defined as region in which
the player’s actions may can be seen or perceived by other
players. This region is dependent upon game terrain design.
Above figure shows region of influence of A. Actions of player A
will be perceived by only those players who are within this
region. Thus, only Players B and C can perceive A’s actions. In
other words, B and C form subset of nodes A should
communicate to. In addition to this, A may be required to send
some status updates to other players not in this region. For
example, if A and E are team-mates then A will be required to
send its status updates to E. A may also be required to send status
updates to F, like number of kills in a First Person Shooter game
like Quake. F may not be interested in the actions taken by A but
only in the state of A resulting from these actions. Although the
subset of peers, a node should communicate to, is completely
dependent on game design, it will always be required to
communicate with the players within its RoI. This is because if,
say, A decides to move forward, then the movement will be seen
by B and C on their display. But G will not be interested in this
update because A is not displayed on its screen.
Although RoI is indicative of which players a node should
communicate with, challenge lies in finding the nodes within RoI.
For the reasons of scalability, a node may not be aware of all
other peers currently playing. Position of players is seldom fixed
in a game. So, problem lies in finding which nodes are currently
within RoI and their addresses for communication. This problem
can be overcome by partitioning the game space into regions and
assigning a node to coordinate all communication within this
region. The node, called a coordinator, acts like a server for the
particular region. As in client server model, all players in a region
communicate their status to the region’s coordinator who, in turn,
informs them about the status of other players.
To make this strategy work, a player should be able to find the
coordinator of the region it is in at any given moment. In most of
the games, players move around in the game arena. In other
words, players tend to change their region with time. Hence, after
switching region it must be able to locate coordinator of region it
is in, currently. The key design issues for this approach based on
partitioning of game space into regions are:

• What is a good partition?
• How to determine current region?
• How to determine coordinator of current region?
• How to handle node join and leave?
• How to handle fault tolerance?

As an answer to first question as to what a good partition is, this
project proposes voronoi partitioning based approach. The
following section explains voronoi partitioning in detail.

3.3 Voronoi Partitioning
Voronoi Partitioning is a general concept applicable to n-
dimensional space. This section, however, explains and defines it
only for 2-dimensional space to maintain simplicity and relevance
to this project.

A

C

B

E

F

G

D

?

A’s region of
influence

Fig 2. Sample Voronoi Partition

Above figure is a screenshot of applet VoroGlide [15]
demonstrating voronoi partitioning. Consider a set of input
vertices, represented as dots, in a 2-dimensional plane. The figure
shows the partitioning of the plane into polygonal regions. The
partitioning is done such that any point within a polygon is closest
to input vertex enclosed within that polygon than to any other
input vertex. It is restated, for the ease of understanding, that the
input vertices are the points represented as dots in above figure.
Formal definition of voronoi partitioning is as follows:

Definition: Give a set of points in a 2-dimensional
plane, voronoi partitioning of the plane is sub-division
of plane into polygonal regions where each region is a
set of points that are closer to some input vertex than to
any other input vertex.

To apply voronoi partitioning to divide the plane of the game
area, consider that the input vertices represent positions of the
players at any particular instant. The voronoi partitioning thus
divides game area into polygonal regions, such that, any point in a
polygon is closest to some player than to any other player. This
player, which is closest to all points within a polygon than any
other player, is assigned as coordinator for the region.
The advantages of partitioning the region this way are:

• “Closeness”: Consider that there are more players in
the game than those assigned the task of coordination.
The details of this will be clear in subsequent sun

sections. For all such players, their communication is
handled by coordinator which is closest to it in game
space. Ignoring the effect of game terrain on RoI, we
claim that the coordinator chosen using voronoi
partitioning (as described above) is likely to be within
RoI of a player than any other coordinator. This implies
that only the nodes which are “close” communicate.

• “Relevance”: Since the coordinator is part of the
region, all the communication it handles is of relevance
to it as well. Contrast this with an approach, in which a
player may be coordinator of the region it is not part of.
In that case, it has an overhead of handling messages
not relevant to it.

Voronoi partitioning can lead to formation of very small regions,
in case of clustering of nodes. Figure 2 shows such a clustering
and breakup of the plane into small regions. This can lead to
formation of regions which are smaller than RoI of a player. Such
a small fragmentation is unnecessary and as will be clear later
when communication mechanism is explained, it may lead to
additional communication overhead. To avoid this, adjacent
regions can be merged together to form a larger region. One
answer to decide which regions to merge could be to merge the
regions with smallest area. This however incurs additional
overhead of determining such regions. Alternative approach is to
merge any two regions. This can then be implemented recursively
to merge multiple regions. Since the regions are small, merging of
any two adjacent regions may serve the purpose equally well.
Both the techniques have various issues and trade-offs but those
are neither discussed nor addressed as the problem is outside the
scope of this project. This results in some players without
coordination responsibilities.
One major disadvantage of voronoi partitioning is the time
complexity associated with it. Fortune’s algorithm [6] has the best
known time complexity of O(n log n). This is for the static points.
For nodes moving at variable speed, which is typical of any game,
the upper bound is predicted to be cubic. Hence, there is need for
an efficient distributed implementation of algorithm to make it
scalable. No such algorithm exists to the authors’ knowledge.
However, not all games have players moving continuously. While
First Person Shooter (FPS) games like Quake have players
continuously changing their position, their activity is largely
limited to a particular region in case of strategy games like Age of
Empires. Voronoi partitioning can be efficiently implemented for
such games. Another way to overcome this problem is to consider
only a fraction of nodes as input vertices for partitioning. This
also results in nodes without any coordination responsibilities at a
particular instance.

3.4 Communication
Explained first are the terms used frequently in the subsequent
report.

• Player: Any node which is alive and participating in
the game.

• Coordinator: A process running on player node with
responsibilities similar to server of client-server model,
within specific region.

• Neighbor: Coordinator of adjoining region with respect
to the node under consideration.

Consider the state of the game after it has been divided into
voronoi partitions and coordinators assigned for the regions. Each
coordinator is informed of its neighbors.

A player sends its status update to the coordinator of the region it
is in, currently. For the moment, assume that player knows the
coordinator. This status message is multicast to other nodes in the
region as well as to neighbors. Figure 3 explains the message
flow.

Fi g3. Message Flow in the System

As a player moves around, it may move across a region at some
point. At this point, it should be informed of the new coordinator
it should contact to. This is done by the coordinator of the region
it was in, previously. This is explained with the following figure.

Fig 4. Movement across regions

Consider player B moving from A’s region to D’s region.
Suppose A and D happen to be coordinators. B sends its status
update coordinator A notifying its position and direction of
motion. From this information A infers that B is moving into D’s
region and hence, sends a join request to D on behalf of B. D then
sends the join approval message to B. However, this coordinator
switch is performed after time δ, as the player may cross the
region and return immediately.
If the coordinator of a region leaves the region, the particular area
may be repartitioned to reflect the current state of the game. We
advocate periodic refining of the partitioning to appropriately
reflect the current state of the game and thereby maintaining the
properties of closeness and relevance.
Obviously, there is additional overhead and latency involved
when a player tries to switch region. Hence, if voronoi regions are
very small then players will switch regions more frequently. This
increases communication overhead.

3.5 Node Join and Leave
The system has a bootstrap node whose address is known to other
nodes. This can be thought of as a web server hosting the game.
Any node can join the game by sending a JoinRequest message to
this node. The player can select its position or it may be randomly
assigned some position by the coordinator. Alternatively, a player

can join by sending a JoinRequest message directly to the
coordinator of the region it wishes to join provided it knows the
coordinator. A player may leave the game by sending leave
message to coordinator. A coordinator can leave by informing the
bootstrap node. The bootstrap node, in turn, can take action to
select new coordinator of the region. It can be a node which was
closest to the coordinator before the coordinator left or the
bootstrap node may choose to repartition the space.

3.6 Fault Tolerance
A node failure can be detected by other nodes, in communication
with it at the time of failure, if they do not hear from it for some
time period. A coordinator may detect a player failure if it does
not receive any updates from the node within a specific time
period. Similarly, a player or neighbors may detect coordinator
failure if they do not hear from the node for long enough. These
nodes may choose to send “Are you alive?” messages to confirm
the failure of nodes. The state at every coordinator is replicated at
neighboring nodes periodically, when the updates of player are
multicast to neighbors. This mirrored state can be used by the
bootstrap node to restore state when the coordinator fails.
Bootstrap may also be required to inform other players about the
failure. For example, node failure implying exit of the player from
the game needs to be communicated to other players.
The main focus of this project is to evaluate the performance of
voronoi partitioning approach. As a first step, we focused on
testing the performance of it and hence, fault tolerance
mechanism is not implemented. It is presented here to show that
our proposed solution is fault-tolerant.

4 RESULTS
We present the experimental results obtained with a prototype
implementation of our system in this section. We have used a
LAN environment to perform the initial evaluation of our
prototype. We concentrate on the networking aspect of results,
mainly the latencies experienced by the players, and the messages
sent and received by the coordinators.
All experiments were performed on nodes with 1.2 GHz Pentium
III CPUs and 512 MB of main memory. The machines run Linux
2.4.17 and Sun JDK 1.4. Our prototype system is written fully in
Java and each node runs in a separate Java Virtual Machine. We
run two processes in each node – one to act as a coordinator for
the region and another to act as a player in the region. Each of
these processes runs in a separate Java Virtual Machine.
We analyze the effect of total population on the latencies
experienced by the players and the messages sent and received by
the players. We also compare our results with SimMud, run on a
UDP communication system. In every instance, our initial results
collaborate with our hypothesis that Voronoi Partitioning
technique provides good closeness and locality property.
Since we have not implemented the dynamic distributed
partitioning scheme, we study the effect of static partitioning by
modeling the game to make sure the players stay within their
respective regions. In our model simulated players eat and fight
every 10 seconds and always stay within their region. We are
restricting the players to their regions to perform an initial study
of our scheme.
Similarly in our game three or four position updates would be
sufficient, but we send updates every 100 milliseconds to stress
our system to see how our scheme can be applied to other gaming
environments that need more frequent updates.

A

C

B

E

F

G

D

H

multicast Other players
(in region)
Neighbors

Coordinator
Update Message

State Replication

Each region of the game space is described using an MxN array
depending upon the area spanned. Associated with each node is a
map of the entire game space, consisting of immutable landscape
information. In our implementation, object updates are sent in 200
bytes serialized Java records. The object arrays, which contain the
mutable object information, are inherently sparse, and in packed
format the messages to transfer objects are around 20 KB. In our
simulations, we randomize the actions performed by the players
and average the results over 10 runs. We measure 300 seconds of
simulated game play.

4.1 Join Latency
Join Latency is the time between sending a JoinRequet message
to join the game and receiving a JoinApproval message from the
coordinator. JoinRequest messages are sent both at the time of
joining the game and while switching between regions. But since
we do not allow our players to switch regions, it is the initial
delay in joining the game.

We measure the Join Latency as the number of players in the
system increase. We compare our latencies with that of SimMud,
where we assume one region and vary the number of players. Our
implementation has as many regions as there are players. Figure
5 presents latencies experienced as a function of players in the
region.

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

of nodes

Join Latency

’Original Scheme’
’Voronoi Scheme’

 Fig5. Join Latency as a function of Number of Players

As seen from the graph, the Join Latency in the Voronoi
Partitioning Scheme remains more or less constant. This can
attributed to partitioning the game space into regions based on
closeness. In our implementation, say with 6 nodes, the entire
space is managed by all of the nodes, as against the original
scheme, where in one coordinator manages multiple players. The
small fluctuations in the curve is attributed to network dynamics.

4.2 Attack Latency
Attack Latency is the time between sending and SendAttack
message and receiving a AttackReply message. We measure the
Round Trip Time (RTT) of attack and the one way latency can be
approximated as half the RTT. Players attack one another when
within a certain region of visibility γ. We present the latencies
experienced in Figure 6.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

of nodes

Attack Latency

’Original Scheme’
’Voronoi Scheme’

 Fig. 6 Attack Latency as a function of Number of Players

The Attack Latency also remains more or less a constant. As
discussed before, this is due to the intuitive closeness property
provided by the Voronoi Partitioning. Attack Latency is critical in
most First Player Shooter games like Quake, and hence it is
important to have little or no fluctuations in it.

4.3 Eat Latency
Eat Latency is the time between sending a FoodRequest message
and receiving a FoodReply message from the coordinator. A
FoodRequest message is sent to the coordinator on sensing food
in a region δ around. Only the food in the region of visibility γ
can be consumed at any point. The latencies are presented in
Figure 7.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

of nodes

Eat Latency

’Original Scheme’
’Voronoi Scheme’

 Fig7. Eat Latency as a function of Number of Players
The Eat Latency experienced by the players remains a constant in
our scheme. Players maintain state for region of game space that
is closest to them, and hence there is no load on a single
“coordinator”. Voronoi Partitioning distributes state among
players based on locality and closeness. So each node maintains
only that state, which is of interest to it. As players move they no
longer have to handle communication and maintain state for the
old region.

 4.4 State Transfer Latency
As players move in the game space, the state maintained at each
node changes. State Transfer Latency measures the time required
to obtain new state as there is movement in the game space.
Figure 8 illustrates the time taken to perform state transfer.

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

of Nodes

State Transfer Latency

’Original Scheme’
’Voronoi Scheme’

 Fig.8 State Transfer Latency as a function of Number of Players
Again, as seen from the graph, our implementation gives near
constant performance. No single node has to handle the transfer
between players. Each player maintains and exchanges almost
constant amount of state.

4.5 Messages Sent and Received
We measure the total number of messages sent and received by
each node as a function of the number of players. Even though the
node is responsible for the region of game space closest to it, we
run a separate coordinator and player process on each node.
Hence the messages sent and received in our implementation is
the IPC between two processes running on the same system.

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6

#
 o

f
M

e
s
s
a

g
e

s

of Nodes

’Original Scheme’
’Voronoi Scheme’

Fig 9. Number of Messages Sent and Received as a function of
Number of Players
As evident from the graph, the messages sent and received remain
a constant for a particular duration of game play. The number of
messages exchanged is independent of the number of
simultaneous players. In the single coordinator scheme, the
message, as expected, grow linearly with the number of
simultaneous players. Further in our implementation, most of the

messages do not appear on the network as they are exchanged
between processes running on the same node.
We have provided some preliminary results, which show that the
intuition behind Voronoi Partitioning – closeness and locality
property – can be further exploited to provide an efficient peer-to-
peer structure for MMOGs.

5 FUTURE WORK
One major challenge to the proposed solution is an efficient
implementation of voronoi partitioning. There is need to enable
nodes to determine their voronoi regions in a distributed manner.
Also, current work does not address the problem of fragmentation
due to clustering of nodes in a particular area. There is need to
develop an efficient solution to overcome the problem of
clustering.
Current work does not implement fault tolerance. In future, we
plan to implement and test fault-tolerance mechanism proposed
earlier.
The communication based on voronoi partitioning is similar to
Content Addressable Network (CAN) [11]. Hence, it can
implement application layer multicast on the lines similar to
CAN. Such a mechanism will help to communicate status updates
to distant regions. For example, updates to team members which
are in other corner of the playing area.
Peer-to-peer systems are highly susceptible to cheating.
Empowering nodes to control game state can lead to the node
manipulating the state to suit it goal. For example, a player may
move through a wall, gain infinite health or drop other players’
packets. Cheat prevention is one of the major challenges in
supporting multiplayer games on peer-to-peer system. This work
has not focused on the problem of cheat prevention. Future work
aims to provide a robust cheat prevention mechanism

6 CONCLUSION
This work presents the implementation and evaluation of a
computational geometry technique – Voronoi Diagram- to
partition the game space and support it on a peer-to-peer system.
We exploit the locality of interest and closeness property, and
design a scalable mechanism to maintain game state and quickly
propagate updates to the players.

Our initial results are promising and closeness property provided
by the Voronoi Diagram can be used to efficiently support
gaming systems on a peer-to-peer structure. Measurements show
that latencies experienced by the players remain more or less
constant. Further message exchanged is also independent of the
number of simultaneous players.

In conclusion, we have demonstrated a new technique to
efficiently support gaming systems on a peer-to-peer overlay. But
much work needs to be done to perform the Voronoi Partitioning
in a scalable, distributed, and dynamic manner to achieve the full
benefits of the partitioning. In our present implementation, each
node knows only the neighbors. We have not implemented any
routing mechanism to achieve communication between players in
arbitrary regions of game space. Routing can be performed as in
CAN to achieve communication between any two arbitrary
regions. Further replication must be done in an efficient manner
to achieve fault tolerance, in the wake of node failures. Security is
one another important aspect, that needs attention in a peer-to-
peer gaming system.

We have performed an initial evaluation with limited number of
nodes and by considering static partitions. The results show that
our approach holds promise, but further evaluation needs to be
done before strong claims can be made. We have to experiment
with a larger number of nodes with a dynamically refining mesh.
Further a LAN environment assumes near uniform latencies. So
experiments need to be performed on a Wide Area test bed. A
completely distributed dynamically refining mesh is needed to
completely validate our system.

7 ACKNOWLEDGEMENTS
We thank Prof. Suman Banerjee for fruitful discussions and
insightful suggestions. We further thank Honghui Lu for SidMud
source code.

8 REFERENCES
[1] E. J. Berglund and D. R. Cheriton. Amaze: A multiplayer

computer game. IEEE Software, 2(1), 1985.
[2] Ashwin R. Bharambe, Sanjay Rao, and Srinivasan Seshan.

Mercury: a scalable publish-subscribe system for internet
games. In Proceedings of the first workshop on Network and
system support for games, pages 3–9. ACM Press, 2002.

[3] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec,
Antony Rowstron, Marvin Theimer, Helen Wang, and Alec
Wolman. An evaluation of scalable application-level
multicast built using peer-to-peer overlays. In Infocom’03,
April 2003.

[4] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage with
CFS. In Proceedings of SOSP’01, October 2001.

[5] Margaret DeLap, Björn Knutsson, Honghui Lu, Oleg
Sokolsky, Usa Sammapun, Insup Lee and Christos
Tsarouchis. Is Runtime Verification Applicable to Cheat
Detection?. In the proceedings of Netgames '04, ACM
SIGCOMM 2004 Workshops, pp.134-138, August 2004,
Portland, Oregon.

[6] Steven Fortune. A Sweepline Algorithm for Voronoi
Diagrams. In the proceedings of Symposium on
Computational Geometry, Yorktown Heights, NY, 1986.

[7] Bjorn Knutsson, Honghui Lu, Wei Xu and Bryan Hopkins
.Peer-to-Peer Support for Massively Multiplayer Games.
INFOCOM 2004, March 2004, Hong Kong, China.

[8] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westly Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale persistent
storage. In Proceedings of ASPLOS. ACM, November 2000.

[9] Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic
data access in content addressable networks. In Proceedings
of the 1st International Workshop on Peer-to-Peer, March
2002.

[10] Katherine L. Morse. Interest management in large-scale
distributed simulations. Technical Report ICS-TR-96-27,
University of California, Irvine, 1996.

[11] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. A scalable content-addressable
network. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 161–172. ACM Press,
2001.

[12] Antony Rowstron and Peter Druschel. Pastry: scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), November 2001.

[13] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, A large-scale, persistent peer-to-peer
storage utility. In Greg Ganger, editor, Proceedings of SOSP-
01, volume 35, 5 of ACM SIGOPS Operating Systems
Review, pages 188–201, New York, October 21–24 2001.
ACM Press.

[14] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Roch Guerin,
editor, Proceedings of SIGCOMM-01, volume 31, 4 of
Computer Communication Review, pages 149–160, New
York, August 27–31 2001. ACM Press.

[15] http://www.pi6.fernuni-hagen.de/GeomLab
/VoroGlide/index.html.en

