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ABSTRACT 
We propose an approach to support massively multiplayer online 
games on a peer-to-peer system. Our approach is based on the fact 
that players are more interested in their region of visibility and 
influence than in the other regions. We use a computational 
geometry technique – Voronoi Diagram – to partition the game 
space into regions. The Voronoi partitioning gives some good 
closeness and locality properties. The players in a region 
communicate with other players through the coordinator of the 
region. The resulting system scales up with the number of players 
and is able to distribute region updates in a scalable manner. We 
also propose techniques for fault tolerance in the wake of node 
failures.  We have implemented a simple game to study the 
feasibility of this approach. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed Applications 

General Terms 
Design, Performance. 

Keywords 
Peer-to-Peer, Multiplayer Game, Voronoi Diagram, Net Games.  

1 INTRODUCTION 
We propose the use of a computational geometry technique – 
Voronoi Diagram [6] – to partition the game space into regions 
based on some locality properties and support it on a peer-to-peer 
structure. The players participating in the game form an overlay 
structure based on their location in the game space. Thus all the 
players contribute memory, CPU cycles to manage the shared 
game state. 

The game space in a massively multiplayer online game (MMOG) 
is shared and inhabited by thousands of players. Some popular 
games like Ultima Online and Quake have recorded 200,000 
simultaneous users. Apart from the exciting story line and 

graphics, MMOGs are a shared distributed application with some 
private state maintained locally, and the shared state 
communicated to other players.  

Traditionally the MMOGs were supported by a client – server 
architecture. Since the single server solution did not scale well, 
mirror server architectures were proposed. But the mirror servers 
constrain the number of simultaneous players in a geographic 
location. Cluster of server architecture was proposed to share the 
load by dividing the game space into regions. But even this 
solution does not scale with the number of simultaneous players 
in a given region of the game space. 

Massively Multiplayer Games are natural application for peer-to-
peer systems. Game players have incentive to provide resources 
for managing the shared state because the participation in 
resource sharing is limited to the duration of the game play. A 
recent proposal [7] to support MMOGs on a peer-to-peer system 
divides the game space into a fixed number of regions. Although 
this architecture scales with the number of players, it does not 
fully exploit the locality property.  The coordinator of a region 
may not be playing in the region but still has to handle the burden 
of state management and communication in the region.  

Games are different from the existing peer-to-peer applications 
that mostly harness only the storage and bandwidth of the peers. 
Games utilize memory and CPU cycles to manage the shared 
game state. Hence some of the problems that have to be addressed 
are: 

• Performance - games have frequent updates that must 
be quickly propagated to other players. Further the 
propagation of updates must scale with the number of 
players. 

• Scalable State Management – the state maintained by 
the peers must be based on their current location. Also  
each peer must manage state only for the region of 
game space that is closest to it. 

• Fault Tolerance - replicating game state to improve 
availability has some problems. With high frequency of 
updates maintaining a large number of synchronous 
replicas in the system become a performance 
bottleneck. 

• Security – with the state being maintained on the peers, 
instead of the central game server, player get increased 
opportunity to cheat. 

This paper discusses the first two problems in detail. We propose 
a technique to partition the game space and assign coordinators 

 

 



for regions based on some closeness and locality properties. As 
we shall see in the later sections, this technique addresses the first 
two problems well. We also address the problem of fault tolerance 
with an initial proposal. 

The main contribution of this work is architectural and evaluative. 
We present an architecture marrying MMOGs, peer-to-peer 
systems and Voronoi Partitioning technique and we also provide 
an initial evaluation of the technique to demonstrate its feasibility.  

The key to a feasible peer-to-peer architecture is the locality of 
interest and influence [10]. Typically players in a MMOG are 
interested in a small area of the game space at any point in time, 
typically correlating to the sensory capability of the game 
character being modeled. Also each node maintains game state for 
region that is closer to it than to any other node. This intuitive 
natural approach is achieved using Voronoi partitioning.  

The rest of the paper is organized as follows: Section 2 discusses 
the background and related work in detail, Section 3 describes 
some of the terms used and our design, Section 4 discusses some 
of our proposals, which forms future work, Section 5 gives some 
initial evaluation. We conclude in Section 6. The appendix 
provides the details needed to install and run our implementation. 

2 RELATED WORK 
Traditionally MMOGs have been supported using a client – server 
architecture, where the server keeps player account information 
and handles all shared state and communication between players. 
This architecture clearly does not scale up with the players. To 
achieve scalability the servers have to be over-provisioned for the 
worst case scenario. Further this architecture suffers from a single 
failure point and has little fault tolerance. 
Mirror Server architecture was proposed to isolate players based 
on their geographic locations. Players typically join the closest 
geographic mirror. Hence the number of simultaneous players in a 
geographic region is constrained. Further the mirrors have to be 
synchronized and this synchronization is normally done on a high 
speed backbone.   
Later, Server clusters were used instead of a single server to 
achieve scalability. But even this scheme limits the number of 
simultaneous players in a region.  All the client-server 
architectures lack flexibility and have to be over-provisioned for 
peak loads. Further the client-server model limits the deployment 
of user designed game extensions, which is an important trend in 
game development and design. Since a centralized game server is 
required to host the core game, the development is slowed down 
considerably. 
Recently there have been proposals for peer-to-peer gaming 
systems with application layer multicast. One such system is 
SimMud [7], which is built on top of Pastry [12] and uses Scribe 
[3] application layer multicast for communication. The game 
space is divided into a fixed number of regions and each region is 
managed by a node assigned to be the coordinator for that region. 
Players in a region of the game space form a multicast group and 
communicate using Scribe multicast system. Players, on 
switching between regions, leave the multicast group in the old 
region and join the multicast group in the new region.  
Even though the above described system takes into account the 
locality of interest in a MMOG, it does not fully exploit it. A 
player may be a coordinator for a region, but may be playing in 
another region of the game space. But still the player has to 

maintain state and handle communication for that region. Hence 
in this system players maintain state for regions of game space 
this is no longer close to them. As the players move in the virtual 
space, their region of influence and interest continuously change, 
but this system does not take this into consideration.  
We target Massively Multiplayer Online Games, which currently 
use the client-server architecture or a peer-to-peer architecture  
described above. Although the peer-to-peer architecture lowers 
the deployment cost with all nodes providing CPU and memory, it 
incurs a security risk because the game state is distributed to 
peers. Hence some techniques like Run Time Verification [5] for 
Anomaly Detection proposed by Honghui Lu et al., may be 
applied to our system. 
Replication is an integral part in any peer-to-peer file sharing 
system [4], [8], [13] for both improved availability and 
performance. However these systems are read only system, 
whereas a gaming system has frequent updates. As a result our 
system must maintain data consistency while tolerating network 
and node failures. Our approach is to maintain the replicas at the 
neighbors. The intuition in maintaining the replicas at the 
neighbors is that when a node leaves or fails, the Voronoi region 
has to be refined and the refined mesh has the neighbors taking 
over the region of the failed node. However consistency 
requirements require us to design a consistency mechanism with a 
small window of vulnerability.  
Fault tolerant consistent data services can be built with quorum 
systems [9]. In these systems, updates cannot proceed if the 
number of nodes in a region is not large enough to form a 
quorum.  
Group communication and interest management is used in some 
distributed game implementations including AMaze [1] and 
Mercury [2]. The SimMud system as discussed before makes use 
of Pastry and Scribe. Since our system partitions the game space 
into regions using Voronoi Diagram, it is closer to CAN [11] than 
to any other DHT like Chord [14] or Pastry.  
CAN is a scalable, robust and self organizing DHT that considers 
a d-dimensional Cartesian coordinate space. The coordinate space 
is completely logical and bears no resemblance to any physical 
coordinate system. At any point in time, the entire coordinate 
space is partitioned among all the nodes in the system such that 
every node owns its individual distinct zone within the overall 
space. The node that owns a particular zone stores all keys that 
map to any point within the zone. Hence the lookup for an object 
may be routed through the CAN infrastructure until it reaches the 
node whose zone the point P, onto which the object maps, lies. 
Routing in CAN works by following the straight line path through 
the Cartesian Space from the source to the destination 
coordinates. A CAN node maintains a coordinate routing table 
that holds the IP address and the virtual coordinate zone of each 
of its immediate neighbors in the coordinate space. This neighbor 
information is sufficient to route between any two arbitrary 
locations in the space. Using its neighbor coordinate set a node 
routes a message towards it destination by simple greedy 
forwarding to the neighbor with coordinates closest to the 
destination coordinates. 
For our purpose we need to consider a 2-d CAN like system to 
perform the message routing. Since the Voronoi Partitioning 
divides the 2-d game space into regions similar to zones in CAN, 
we can use CAN type routing to communicate with players in 
other regions. Further in our system each node knows the address 



of its neighbors. Message routing to nodes that are far off in the 
game space is needed for team player strategy games like War 
Craft. In these games, it becomes essential to have 
communication between team mates, who may be at different 
regions of the game space at a given time. 

3 PROPOSED SOLUTION  
This section proposes a mechanism to support massively 
multiplayer games, based on voronoi partitioning approach. The 
contents of this section so organized to act as a step by step guide 
leading us to development of the proposed solution. Analyzing 
the problem and challenges involved in the support of massively 
multiplayer games on peer to peer system, we explain what 
motivates the design of proposed solution. Following that is a 
detailed explanation of voronoi partitioning, its application to 
support massively multiplayer games, a communication 
mechanism amongst peers involved in the game.  
 
3.1 Multiplayer Games on Peer-to-Peer System 
In multiplayer games, actions and state of a player need to be 
communicated to other players. For example, during a fight 
between two players if one player shoots at other; the other player 
must be communicated that it has been shot at. (Typically, a 
player is controlled by a peer and hence the terms peer and player 
are used interchangeably in the further paper.) Considering this, 
one obvious approach to support such games on peer-to-peer 
system is to have every player communicate with every other 
player in the network. But it is clearly not scalable to massively 
multiplayer game as a peer may not be capable of handling 
communication with tens of thousands of other peers involved, at 
the same time. It may lead to explosion in the number of 
messages leading to network congestion, packet drops and 
increased latencies. To make the system scalable, a peer must be 
required to communicate with only a subset of other peers 
involved in the game. A challenge here is to find such a subset of 
nodes so as to enable communication within the latency 
constraints imposed by the game design and to minimize 
messages within the network. 
 
3.2 Region of Influence (RoI) 

 
Fig 1 .Region of Influnce 

Consider a game field as shown in Figure 1 with players A-G. The 
region of influence (RoI) of a player is defined as region in which 
the player’s actions may can be seen or perceived by other 
players. This region is dependent upon game terrain design. 
Above figure shows region of influence of A. Actions of player A 
will be perceived by only those players who are within this 
region. Thus, only Players B and C can perceive A’s actions. In 
other words, B and C form subset of nodes A should 
communicate to. In addition to this, A may be required to send 
some status updates to other players not in this region. For 
example, if A and E are team-mates then A will be required to 
send its status updates to E. A may also be required to send status 
updates to F, like number of kills in a First Person Shooter game 
like Quake. F may not be interested in the actions taken by A but 
only in the state of A resulting from these actions. Although the 
subset of peers, a node should communicate to, is completely 
dependent on game design, it will always be required to 
communicate with the players within its RoI. This is because if, 
say, A decides to move forward, then the movement will be seen 
by B and C on their display. But G will not be interested in this 
update because A is not displayed on its screen.  
Although RoI is indicative of which players a node should 
communicate with, challenge lies in finding the nodes within RoI. 
For the reasons of scalability, a node may not be aware of all 
other peers currently playing. Position of players is seldom fixed 
in a game. So, problem lies in finding which nodes are currently 
within RoI and their addresses for communication. This problem 
can be overcome by partitioning the game space into regions and 
assigning a node to coordinate all communication within this 
region. The node, called a coordinator, acts like a server for the 
particular region. As in client server model, all players in a region 
communicate their status to the region’s coordinator who, in turn, 
informs them about the status of other players. 
To make this strategy work, a player should be able to find the 
coordinator of the region it is in at any given moment. In most of 
the games, players move around in the game arena. In other 
words, players tend to change their region with time. Hence, after 
switching region it must be able to locate coordinator of region it 
is in, currently. The key design issues for this approach based on 
partitioning of game space into regions are: 

• What is a good partition? 
• How to determine current region?  
• How to determine coordinator of current region? 
• How to handle node join and leave? 
• How to handle fault tolerance? 

As an answer to first question as to what a good partition is, this 
project proposes voronoi partitioning based approach. The 
following section explains voronoi partitioning in detail. 

3.3 Voronoi Partitioning 
Voronoi Partitioning is a general concept applicable to n-
dimensional space. This section, however, explains and defines it 
only for 2-dimensional space to maintain simplicity and relevance 
to this project.  
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Fig 2. Sample Voronoi Partition 
 
Above figure is a screenshot of applet VoroGlide [15] 
demonstrating voronoi partitioning. Consider a set of input 
vertices, represented as dots, in a 2-dimensional plane. The figure 
shows the partitioning of the plane into polygonal regions. The 
partitioning is done such that any point within a polygon is closest 
to input vertex enclosed within that polygon than to any other 
input vertex. It is restated, for the ease of understanding, that the 
input vertices are the points represented as dots in above figure. 
Formal definition of voronoi partitioning is as follows: 
 

Definition: Give a set of points in a 2-dimensional 
plane, voronoi partitioning of the plane is sub-division 
of plane into polygonal regions where each region is a 
set of points that are closer to some input vertex than to 
any other input vertex. 

 
To apply voronoi partitioning to divide the plane of the game 
area, consider that the input vertices represent positions of the 
players at any particular instant. The voronoi partitioning thus 
divides game area into polygonal regions, such that, any point in a 
polygon is closest to some player than to any other player. This 
player, which is closest to all points within a polygon than any 
other player, is assigned as coordinator for the region. 
The advantages of partitioning the region this way are: 
 

• “Closeness”: Consider that there are more players in 
the game than those assigned the task of coordination. 
The details of this will be clear in subsequent sun 

sections. For all such players, their communication is 
handled by coordinator which is closest to it in game 
space. Ignoring the effect of game terrain on RoI, we 
claim that the coordinator chosen using voronoi 
partitioning (as described above) is likely to be within 
RoI of a player than any other coordinator. This implies 
that only the nodes which are “close” communicate.  

• “Relevance”:  Since the coordinator is part of the 
region, all the communication it handles is of relevance 
to it as well. Contrast this with an approach, in which a 
player may be coordinator of the region it is not part of. 
In that case, it has an overhead of handling messages 
not relevant to it. 

Voronoi partitioning can lead to formation of very small regions, 
in case of clustering of nodes. Figure 2 shows such a clustering 
and breakup of the plane into small regions. This can lead to 
formation of regions which are smaller than RoI of a player. Such 
a small fragmentation is unnecessary and as will be clear later 
when communication mechanism is explained, it may lead to 
additional communication overhead. To avoid this, adjacent 
regions can be merged together to form a larger region. One 
answer to decide which regions to merge could be to merge the 
regions with smallest area. This however incurs additional 
overhead of determining such regions. Alternative approach is to 
merge any two regions. This can then be implemented recursively 
to merge multiple regions. Since the regions are small, merging of 
any two adjacent regions may serve the purpose equally well. 
Both the techniques have various issues and trade-offs but those 
are neither discussed nor addressed as the problem is outside the 
scope of this project. This results in some players without 
coordination responsibilities. 
One major disadvantage of voronoi partitioning is the time 
complexity associated with it. Fortune’s algorithm [6] has the best 
known time complexity of O(n log n). This is for the static points. 
For nodes moving at variable speed, which is typical of any game, 
the upper bound is predicted to be cubic. Hence, there is need for 
an efficient distributed implementation of algorithm to make it 
scalable. No such algorithm exists to the authors’ knowledge. 
However, not all games have players moving continuously. While 
First Person Shooter (FPS) games like Quake have players 
continuously changing their position, their activity is largely 
limited to a particular region in case of strategy games like Age of 
Empires. Voronoi partitioning can be efficiently implemented for 
such games. Another way to overcome this problem is to consider 
only a fraction of nodes as input vertices for partitioning. This 
also results in nodes without any coordination responsibilities at a 
particular instance. 

3.4 Communication 
Explained first are the terms used frequently in the subsequent 
report. 

• Player:  Any node which is alive and participating in 
the game. 

• Coordinator: A process running on player node with 
responsibilities similar to server of client-server model, 
within specific region. 

• Neighbor: Coordinator of adjoining region with respect 
to the node under consideration. 

Consider the state of the game after it has been divided into 
voronoi partitions and coordinators assigned for the regions. Each 
coordinator is informed of its neighbors. 

 



A player sends its status update to the coordinator of the region it 
is in, currently. For the moment, assume that player knows the 
coordinator. This status message is multicast to other nodes in the 
region as well as to neighbors. Figure 3 explains the message 
flow. 

 
Fi g3. Message Flow in the System  

 
As a player moves around, it may move across a region at some 
point. At this point, it should be informed of the new coordinator 
it should contact to. This is done by the coordinator of the region 
it was in, previously. This is explained with the  following figure. 
 

 
Fig 4. Movement across regions 

 
Consider player B moving from A’s region to D’s region. 
Suppose A and D happen to be coordinators. B sends its status 
update coordinator A notifying its position and direction of 
motion. From this information A infers that B is moving into D’s 
region and hence, sends a join request to D on behalf of B. D then 
sends the join approval message to B. However, this coordinator 
switch is performed after time δ, as the player may cross the 
region and return immediately. 
If the coordinator of a region leaves the region, the particular area 
may be repartitioned to reflect the current state of the game. We 
advocate periodic refining of the partitioning to appropriately 
reflect the current state of the game and thereby maintaining the 
properties of closeness and relevance.  
Obviously, there is additional overhead and latency involved 
when a player tries to switch region. Hence, if voronoi regions are 
very small then players will switch regions more frequently. This 
increases communication overhead. 
 
3.5 Node Join and Leave 
The system has a bootstrap node whose address is known to other 
nodes. This can be thought of as a web server hosting the game. 
Any node can join the game by sending a JoinRequest message to 
this node. The player can select its position or it may be randomly 
assigned some position by the coordinator. Alternatively, a player 

can join by sending a JoinRequest message directly to the 
coordinator of the region it wishes to join provided it knows the 
coordinator. A player may leave the game by sending leave 
message to coordinator. A coordinator can leave by informing the 
bootstrap node. The bootstrap node, in turn, can take action to 
select new coordinator of the region. It can be a node which was 
closest to the coordinator before the coordinator left or the 
bootstrap node may choose to repartition the space. 
 
3.6 Fault Tolerance 
A node failure can be detected by other nodes, in communication 
with it at the time of failure, if they do not hear from it for some 
time period. A coordinator may detect a player failure if it does 
not receive any updates from the node within a specific time 
period. Similarly, a player or neighbors may detect coordinator 
failure if they do not hear from the node for long enough.  These 
nodes may choose to send “Are you alive?” messages to confirm 
the failure of nodes. The state at every coordinator is replicated at 
neighboring nodes periodically, when the updates of player are 
multicast to neighbors. This mirrored state can be used by the 
bootstrap node to restore state when the coordinator fails. 
Bootstrap may also be required to inform other players about the 
failure. For example, node failure implying exit of the player from 
the game needs to be communicated to other players. 
The main focus of this project is to evaluate the performance of 
voronoi partitioning approach. As a first step, we focused on 
testing the performance of it and hence, fault tolerance 
mechanism is not implemented. It is presented here to show that 
our proposed solution is fault-tolerant. 

4 RESULTS 
We present the experimental results obtained with a prototype 
implementation of our system in this section. We have used a 
LAN environment to perform the initial evaluation of our 
prototype. We concentrate on the networking aspect of results, 
mainly the latencies experienced by the players, and the messages 
sent and received by the coordinators.  
All experiments were performed on nodes with 1.2 GHz Pentium 
III CPUs and 512 MB of main memory. The machines run Linux 
2.4.17 and Sun JDK 1.4. Our prototype system is written fully in 
Java and each node runs in a separate Java Virtual Machine. We 
run two processes in each node – one to act as a coordinator for 
the region and another to act as a player in the region. Each of 
these processes runs in a separate Java Virtual Machine. 
We analyze the effect of total population on the latencies 
experienced by the players and the messages sent and received by 
the players. We also compare our results with SimMud, run on a 
UDP communication system.  In every instance, our initial results 
collaborate with our hypothesis that Voronoi Partitioning 
technique provides good closeness and locality property. 
Since we have not implemented the dynamic distributed 
partitioning scheme, we study the effect of static partitioning by 
modeling the game to make sure the players stay within their 
respective regions. In our model simulated players eat and fight 
every 10 seconds and always stay within their region. We are 
restricting the players to their regions to perform an initial study 
of our scheme.  
Similarly in our game three or four position updates would be 
sufficient, but we send updates every 100 milliseconds to stress 
our system to see how our scheme can be applied to other gaming 
environments that need more frequent updates. 
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Each region of the game space is described using an MxN array 
depending upon the area spanned. Associated with each node is a 
map of the entire game space, consisting of immutable landscape 
information. In our implementation, object updates are sent in 200 
bytes serialized Java records. The object arrays, which contain the 
mutable object information, are inherently sparse, and in packed 
format the messages to transfer objects are around 20 KB. In our 
simulations, we randomize the actions performed by the players 
and average the results over 10 runs. We measure 300 seconds of 
simulated game play.  

4.1 Join Latency 
Join Latency is the time between sending a JoinRequet message 
to join the game and receiving a JoinApproval message from the 
coordinator. JoinRequest messages are sent both at the time of 
joining the game and while switching between regions. But since 
we do not allow our players to switch regions, it is the initial 
delay in joining the game.  

We measure the Join Latency as the number of players in the 
system increase. We compare our latencies with that of SimMud, 
where we assume one region and vary the number of players. Our 
implementation has  as many regions as there are players. Figure 
5 presents latencies experienced as a function of players in the 
region.  
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               Fig5. Join Latency as a function of Number of Players 

As seen from the graph, the Join Latency in the Voronoi 
Partitioning Scheme remains more or less constant. This can 
attributed to partitioning the game space into regions based on 
closeness. In our implementation, say with 6 nodes, the entire 
space is managed by all of the nodes, as against the original 
scheme, where in one coordinator manages multiple players. The 
small fluctuations in the curve is attributed to network dynamics. 

4.2 Attack Latency 
Attack Latency is the time between sending and SendAttack 
message and receiving a AttackReply message. We measure the 
Round Trip Time (RTT) of attack and the one way latency can be 
approximated as half the RTT. Players attack one another when 
within a certain region of visibility γ. We present the latencies 
experienced in Figure 6. 
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            Fig. 6 Attack Latency as a function of Number of Players 

The Attack Latency also remains more or less a constant. As 
discussed before, this is due to the intuitive closeness property 
provided by the Voronoi Partitioning. Attack Latency is critical in 
most First Player Shooter games like Quake, and hence it is 
important to have little or no fluctuations in it. 

4.3 Eat Latency 
Eat Latency is the time between sending a FoodRequest message 
and receiving a FoodReply message from the coordinator. A 
FoodRequest message is sent to the coordinator on sensing food 
in a region δ around. Only the food in the region of visibility γ 
can be consumed at any point. The latencies are presented in 
Figure 7. 
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             Fig7. Eat Latency as a function of Number of Players 
The Eat Latency experienced by the players remains a constant in 
our scheme.  Players maintain state for region of game space that 
is closest to them, and hence there is no load on a single 
“coordinator”. Voronoi Partitioning distributes state among 
players based on locality and closeness. So each node maintains 
only that state, which is of interest to it.  As players move they no 
longer have to handle communication and maintain state for the 
old region. 



 4.4 State Transfer Latency 
As players move in the game space, the state maintained at each 
node changes. State Transfer Latency measures the time required 
to obtain new state as there is movement in the game space. 
Figure 8 illustrates the time taken to perform state transfer. 

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5  6

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

# of Nodes

State Transfer Latency

’Original Scheme’
’Voronoi Scheme’

 
   Fig.8 State Transfer Latency as a function of Number of Players 
Again, as seen from the graph, our implementation gives near 
constant performance. No single node has to handle the transfer 
between players. Each player maintains and exchanges almost 
constant amount of state. 

4.5 Messages Sent and Received  
We measure the total number of messages sent and received by 
each node as a function of the number of players. Even though the 
node is responsible for the region of game space closest to it, we 
run a separate coordinator and player process on each node. 
Hence the messages sent and received in our implementation is 
the IPC between two processes running on the same system.  
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Fig 9. Number of Messages Sent and Received as a function of 
Number of Players 
As evident from the graph, the messages sent and received remain 
a constant for a particular duration of game play. The number of 
messages exchanged is independent of the number of 
simultaneous players.  In the single coordinator scheme, the 
message, as expected, grow linearly with the number of 
simultaneous players. Further in our implementation, most of the 

messages do not appear on the network as they are exchanged 
between processes running on the same node. 
We have provided some preliminary results, which show that the 
intuition behind Voronoi Partitioning – closeness and locality 
property – can be further exploited to provide an efficient peer-to-
peer structure for MMOGs.  

5 FUTURE WORK 
One major challenge to the proposed solution is an efficient 
implementation of voronoi partitioning. There is need to enable 
nodes to determine their voronoi regions in a distributed manner. 
Also, current work does not address the problem of fragmentation 
due to clustering of nodes in a particular area. There is need to 
develop an efficient solution to overcome the problem of 
clustering. 
Current work does not implement fault tolerance. In future, we 
plan to implement and test fault-tolerance mechanism proposed 
earlier.  
The communication based on voronoi partitioning is similar to 
Content Addressable Network (CAN) [11]. Hence, it can 
implement application layer multicast on the lines similar to 
CAN. Such a mechanism will help to communicate status updates 
to distant regions. For example, updates to team members which 
are in other corner of the playing area. 
Peer-to-peer systems are highly susceptible to cheating. 
Empowering nodes to control game state can lead to the node 
manipulating the state to suit it goal. For example, a player may 
move through a wall, gain infinite health or drop other players’ 
packets. Cheat prevention is one of the major challenges in 
supporting multiplayer games on peer-to-peer system. This work 
has not focused on the problem of cheat prevention. Future work 
aims to provide a robust cheat prevention mechanism 

6 CONCLUSION 
This work presents the implementation and evaluation of a 
computational geometry technique – Voronoi Diagram- to 
partition the game space and support it on a peer-to-peer system. 
We exploit the locality of interest and closeness property, and 
design a scalable mechanism to maintain game state and quickly 
propagate updates to the players.  

Our initial results are promising and closeness property provided 
by the Voronoi Diagram can be used to efficiently support 
gaming systems on a peer-to-peer structure. Measurements show 
that latencies experienced by the players remain more or less 
constant. Further message exchanged is also independent of the 
number of simultaneous players. 

In conclusion, we have demonstrated a new technique to 
efficiently support gaming systems on a peer-to-peer overlay. But 
much work needs to be done to perform the Voronoi Partitioning 
in a scalable, distributed, and dynamic manner to achieve the full 
benefits of the partitioning.  In our present implementation, each 
node knows only the neighbors. We have not implemented any 
routing mechanism to achieve communication between players in 
arbitrary regions of game space.  Routing can be performed as in 
CAN to achieve communication between any two arbitrary 
regions.  Further replication  must be done in an efficient manner 
to achieve fault tolerance, in the wake of node failures. Security is 
one another important aspect, that needs attention in a peer-to-
peer gaming system. 



We have performed an initial evaluation with limited number of 
nodes and by considering static partitions.  The results show that 
our approach holds promise, but further evaluation needs to be 
done before strong claims can be made. We have to experiment 
with a larger number of nodes with a dynamically refining mesh. 
Further a LAN environment assumes near uniform latencies. So  
experiments need to be performed on a Wide Area test bed.  A 
completely distributed dynamically refining mesh is needed to 
completely validate our system. 
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