
DataSplash *

Chris Olston, Allison Woodruff, Alexander Aiken, Michael Chu, Vuk Ercegovac,
Mark Lin, Mybrid Spalding, Michael Stonebraker

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

ABSTRACT
Database visualization is an area of growing importance as
database systems become larger and more accessible. DataSplash
is an easy-to-use, integrated environment for navigating, creating,
and querying visual representations of data. We will demonstrate
the three main components which make up the DataSplash
environment: a navigation system, a direct-manipulation
interface for creating and modifying visualizations, and a direct-
manipulation visual query system.

1. OVERVIEW
Database system performance as measured by either processing
speed or the quantity of data that can be managed has grown by
an order of magnitude in recent years, making increasingly
sophisticated applications feasible on ever-larger datasets.
However, database query languages have changed relatively little
and are difficult for non-experts to use. The vast majority of
database users are unable to customize applications to their needs,
let alone develop their own custom applications. Thus, at present
the expanding capabilities of database systems can be exploited
fully only by expert programmers. Making databases easier to
use and program, and thereby more accessible, is an important
issue today and will become more important as database
technology becomes faster, cheaper, and more powerful [6].

We will demonstrate DataSplash, a database visualization
environment developed by the Tioga project. DataSplash is an
integrated environment for creating, navigating, and querying
multiple visual representations of data. Most actions can be
performed incrementally via direct-manipulation mouse gestures.
Users receive immediate feedback of the effects of incremental
modifications. With incremental visual programming,
DataSplash makes it much easier for database users to develop
database applications.

Other systems support some of these features, but only
DataSplash provides an integrated direct-manipulation
environment for navigation, visualization, and query
manipulation. Pad [4] provides an easy-to-use navigation model,

but requires expert users to program the visual representations of
the data. Sagebrush [5] has a direct-manipulation interface for
creating visualizations, but does not support multiple
representations of data or navigation. Magic Lenses [1] supports
multiple representations of data but does not provide an
interactive way to create new representations. Also, Magic
Lenses does not provide an extensive navigation system or a way
to visually specify joins. Finally, DEVise [2] supports some
direct-manipulation operations on data, but does not integrate
direct-manipulation querying and visualization and does not have
a sophisticated navigation system.

DataSplash integrates three main components: a navigation
system, a paint program interface for creating visualizations, and
a direct-manipulation visual query system.

1.1. Navigation Model
DataSplash incorporates a sophisticated navigation model. Users
can pan, zoom, teleport, and link to other canvases. Objects
change representation as users zoom closer to them. DataSplash
provides a unique mechanism, a layer manager, which allows
end users to visually program the way objects behave during
zooming.

DataSplash provides visual hyperlinks called portals. Portals are
sub-areas of the canvas that display other canvases. Users can
click on a portal to be transported to the canvas inside. A history
of portal navigation is maintained by the system to allow users to
return to previous canvases. DataSplash users can automatically
generate a portal for every tuple in a database table. Suppose the
user has a canvas with a map of the United States. The user can
easily specify that each city in the United States map should have
a portal that goes to a map of that city. Section 1.3 describes how
such portals can be used for visual querying.

1.2. Paint Program Interface
As in a conventional paint program, the DataSplash user is
presented with a palette of displayable objects (point, line, etc.).
To draw an object, the user selects the corresponding paint
primitive from the paint palette and places it in a two-dimensional
canvas.

Unlike a standard paint program, DataSplash contains a window
that shows tuples from a database table to be visualized. The user
can draw an object that will serve as a graphical representation of
the data. This object is displayed on the canvas once for every
tuple in the table. Each copy of the object has properties that are

* Sponsored by NSF under grants IRI-9400773 and IRI-9411334.

derived from its corresponding tuple via a user-defined function.
These properties include the x,y location on the canvas for each
copy and visual attributes such as height, width, color, and
rotation. For example, a table of United States cities with
latitude, longitude, and population columns could be represented
as filled circles. X and y could be assigned to the longitude and
latitude values of each city, and the radius of the circle could be a
function of the population.

1.3. Visual Querying
VIQING (Visual Interactive QueryING) [3] is a component of
DataSplash that provides users with an interactive visual interface
for query specification. VIQING differs from previous graphical
query tools in that it supports a "direct-manipulation" approach to
querying: users construct queries by manipulating visual
representations of entire datasets, as opposed to representations of
schemas or example records. The combination of VIQING with
the DataSplash architecture results in a seamless, intuitive system
in which querying and data browsing are unified into a single
metaphor: the direct manipulation of data visualizations.

The VIQING/DataSplash environment supports the three base
relational operators: project, select, and join. For brevity, we
will only discuss joins. VIQING join queries are specified by a
simple drag-and-drop interface. By dragging one DataSplash
canvas onto another, the user specifies a VIQING join. Figure 2
shows a DataSplash canvas that visualizes a table of U.S. states.
The states are colored according to which political party they

have voted for most often in presidential elections
between 1952 and 1992 (dark colored for
Republican, light colored for Democrat). Figure 3
shows a DataSplash canvas that visualizes a table of
presidential candidates. The election year is
mapped to the X-axis. The Y-axis represents the
result of the election the winner of each election is
on top. The VIQING join in Figure 4 was created
by dragging the states canvas (Figure 2) onto the
candidates canvas (Figure 3). The four portals in
Figure 4 collectively represent the VIQING join
query result. For each candidate, a portal
containing a subset of the states is displayed. States
that voted for a particular candidate appear in that
candidate s portal. VIQING queries allow users to
visually identify patterns that would otherwise not
be obvious. In Figure 4, we can see that every state
that has traditionally voted Democrat voted for
Clinton in 1992.

Joins of more than two canvases can be specified by
dragging the result of a two-level VIQING join onto
a third canvas, and so on. Figure 5 illustrates a
three-level VIQING join that was created by
dragging the two-level join in Figure 4 onto a
canvas of political parties (not shown). The result
is a three-level VIQING join of parties, candidates,
and states (note that the candidates canvas has been
panned to the left to show different candidates).
This join gives us the party affiliation of the
candidates. From this, we can see each party s
trends over several election years. Recall that the
candidate who won a particular election is on top.

VIQING queries are easier to formulate than SQL for several
reasons. First, users don t have to know exactly what they want
in advance because VIQING lets them incrementally build and
refine queries. At each step, the user gets useful feedback that
guides the next query manipulation. In this way, complex queries
can be built by combining simpler query pieces. Second,
VIQING integrates querying with visualization. Query
manipulations are performed on graphical representations of data
that are generally easier to understand than text representations.
Finally, VIQING eliminates the need to learn any SQL for most
query formulation by providing a simple direct-manipulation
interface. The VIQING drag and drop join operation requires no
understanding of SQL or the database schema to formulate most
queries.

2. DEMONSTRATION
First, we will demonstrate the navigation model using the
commute time data set in Figure 1. Then, starting from a blank
canvas, we will paint a new visualization to convey the ease of
use allowed by the paint program interface. Finally, we will
demonstrate VIQING by using the drag-and-drop interface to
execute the VIQING queries represented in Figures 2 through 5.

3. REFERENCES
[1] Fishkin, K., and Stone, M., Enhanced Dynamic

Queries via Movable Filters, SIGCHI 1994, Denver,
Colorado, May 1995, pp. 415-20.

Figure 1. Navigation

DataSplash allows users to navigate by panning, zooming, teleporting, and
going through portals to other canvases. The large canvas window shows a
close-up view of Maryland, Delaware, and New Jersey. Major cities have
portals that go to detailed graphs about the cities. The layer manager (top
right) allows users to program the behavior of objects during zooming. The
window in the lower right shows tuples from the table being visualized.

[2] Livny, M., Ramakrishnan, R., Beyer,
K., Chen, G., Donjerkovic, D.,
Lawande, S., Myllymaki, J. and
Wenger, K., DEVise: Integrated
Querying and Visual Exploration of
Large Datasets, SIGMOD 1997,
Tucson, Arizona, May 1997, pp. 301-
12.

[3] Olston, C., Stonebraker, M., Aiken, A.,
VIQING: Visual Interactive
QueryING, submitted for publication,
1998.

[4] Perlin, K., and Fox, D., Pad: An
alternative approach to the computer
interface, SIGGRAPH 1993,
Anaheim, CA, August 1993, pp. 57-
64.

[5] Roth, S.F., Kolojejchick, J., Mattis, J.,
Goldstein, J., Interactive Graphics
Design Using Automatic Presentation
Knowledge, SIGCHI 1994, Boston,
Massachusetts, April 1994, pp. 112-
17.

[6] Stonebraker, M., Agrawal, R., Dayal,
U., Neuhold, E., Reuter, A., DBMS
Research Crossroads: The Vienna
Update, VLDB 1993, Dublin, Ireland,
August 1993, pp. 688-692.

Figure 3. Presidential candidates

This canvas visualizes a table of
presidential candidates. More
recent election years are shown to
the right. (By panning to the left,
earlier election years can be
seen.) The candidate who won
each election is on top.

Figure 5. A three-level VIQING join.

This VIQING query is the result of dragging the canvas in Figure 4 onto a
canvas of political parties (not shown). The result is a three-level VIQING
join of parties, candidates, and states. Note that the candidates canvas has
been panned to show candidates who ran for office in the 1960 s. As in
Figure 4, states are colored according to which party they have voted for
most often in presidential elections between 1952 and 1992 (dark colored for
Republican, light colored for Democrat).

Figure 2. States

This canvas visualizes a table of U.S. states.
The states are colored according to the
political party they have favored in
presidential elections from 1952 to 1992.
Dark colored states favor Republicans; light
colored states favor Democrats. Figure 4. A VIQING join query.

This VIQING query was created by dragging
the states canvas in Figure 2 onto the candidates
canvas in Figure 3. For each candidate, a portal
containing a subset of the states is displayed.
States that voted for a particular candidate
appear in that candidate s portal. States are
colored according to their traditionally favored
party (dark colored for Republican, light colored
for Democrat). The winner of each election is on
top.

