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Abstract

For applications that involve rapidly changing textual data and also require traditional DBMS

capabilities, current systems are unsatisfactory. In this paper, we describe a hybrid IR-DB system

that serves as the basis for the QUIQConnect product, a collaborative customer support application.

We present the novel query paradigm and system architecture, along with performance results.

1 Introduction

Internet-based customer support has grown ubiquitous in recent years because it costs less than tra-

ditional channels such as phone support. Typically, customers go to a support website and search for

information by browsing or querying a support knowledgebase. The major challenge in this approach is

to keep the knowledgebase current, especially for frequently updated products, and for questions that

involve best practices or interoperability with other vendors’ products. The QUIQConnect application

addresses this problem by enabling users to post a question if they cannot find a satisfactory answer in

the knowledgebase. Others can post answers; questions and related answers are automatically combined

into searchable knowledge units. The benefits of this approach are two-fold: (1) Gaps in the knowledge

base are continuously identified and filled. (2) A wide network of people, not just paid support personnel,

are leveraged in knowledge creation and maintenance.

QUIQConnect content is a combination of structured and unstructured data. We require a query

paradigm that adequately bridges the exact answers of relational database (DB) systems and the ranked

answers of information retrieval (IR) systems. Further, updates must be applied immediately in order

to meet the application requirements (which include a discussion-board like immediacy in seeing posted

content, as well as timeliness in guaranteeing incident resolution, as per various support contracts). All

data is stored in a relational DBMS. However, the query and update performance was not adequate

(in either speed or quality of results), and we developed the QUIQ Query Engine (QQE) to address

this problem. The problem arises in other text-database applications as well, and we believe that our

solution has broad applicability.

In this paper, we describe QQE, its query paradigm, its architecture and implementation, and its

performance. environment. The main contributions are:

1. A novel data model and query paradigm that combine ideas from DB and IR approaches.

2. Fast updates and queries through the use of a self-organizing differential index structure to avoid

in-place updates.

3. An integration architecture that leverages the DBMS for concurrency and recovery.
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We note that QUIQConnect required the development of another substantial technical component,

an alert engine, which is outside the scope of this paper. The alert engine essentially allows a broad

class of queries to be “saved,” and instantly (or at user-specified intervals) notifies users when new data

that satisfies the query arrives. It has been used to handle millions of concurrent saved searches, and,

like the query subsystem, has been in production use since early 2000. Together with QQE, it allows

users to search for content, current or future, in a uniform and powerful way.

This paper is organized as follows. In Section 2, we present a data model for text with metadata. in

Section 3, we describe the query paradigm supported by QQE, and motivate it using the requirements

of QUIQConnect. We then introduce our implementation approach in Section 4, and in Section 5, we

describe QQE architecture. We describe the QQE server in detail in Section 6, cover query processing

in Section 7, and address concurrency control and recovery in 8. Performance is summarized in Section

9, followed by a discussion of related work in Section 10.

2 The Tagged Text Data Model

Historically, IR systems have modelled data as a single collection of documents, where each document

is a stream of text. Modern search engines use essentially the same model, but recognize some simple

structure in the text (e.g., titles, bold font text). Database systems, on the other hand, have modelled

data as multiple collections, also called relations or tables. Within each table, the data units (tuples)

have a fixed structure described by the schema for the table.

In our model, each data object has an oid and is described by a set of 〈tag −name, tag− type, tag−

value〉 triples (which we often refer to as tags). In contrast to the relational model, we do not require

a fixed set of tags within a collection; different objects in a collection can have different sets of tags.

Objects and collections are our analogues to tuples and relations in a conventional RDBMS, and we

often refer to objects as tuples and oids as tuple-ids or TIDs.

In contrast to XML systems, we concentrate on a simpler structural model that allows us to focus on

text vs. non-text attributes and relevance-ranked retrieval; the complexities introduced by nested tags

are orthogonal to these issues. We observe, however, that we do not preclude nested data values. For

example, the QUIQConnect application uses a category data type extensively; each value of this type is

a node in a hiearchy that directs browsing (as in, e.g., a Yahoo! page).

In contrast to database systems, we focus on queries over a single collection, and the output of query

is a subset of the tuples in this collection, ranked in terms of how well they match the query. Single-

table queries are the overwhelming majority of queries that require hybrid text-database style retrieval

in QUIQConnect, and, we suspect, many other text-database applications as well.

As an example, the database for each instance of QUIQConnect has about 50 collections; one collec-

tion holds data about all the questions posted to the system, another holds data with answers posted,

a third holds information about users, and so on. A typical collection has about 80 to 100 tags. Of

these, about 15 tags are textual, while the rest represent non-text data. Some of the textual tags can

actually reference external documents that are uploaded into the system. Thus, individual tags can

contain value-lists that are quite large. However, the bulk of the data in the system consists of questions

and answers typed by users, and hence the average size of tuples is about 3000 bytes.
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3 A Hybrid DB-IR Query Paradigm

We consider a generalization of relational selection queries. A relevance query is a combination of two

kinds of constraints, exact and approximate. Approximate constraints are motivated by IR queries, and

exact constraints by database queries, and our framework combines both in a uniform manner.

3.1 Motivation: Match–Filter–Quality Queries

We begin by considering why it is important to have a general relevance query facility, rather than a

hard-wired magic formula that determines relevance, when building complex text-database applications.

A broad class of useful queries (used extensively in QUIQConnect) can be defined in terms of three sets

of constraints—match, filter, and quality constraints. The result of the query is essentially the result

of all the match and filter constraints ANDed together. The quality constraints are used to adjust the

relevance of those results by using a ModifyRelevance operator.

Intuitively, Match constraints are approximate constraints that specify what the user is looking for.

A tuple can appear in the result of a query only if it satisfies at least one match constraint. The relevance

of a tuple is mainly determined by how many match constraints it matches, and how well.

Filter constraints are exact constraints, and act like a WHERE clause in a SQL query; only tuples that

satisfy all filter constraints are in the query result. On the other hand, tuples that satisfy the filter

constraints but do not match any match constraints are not in in the query result.

The motivation for quality constraints is that they represent the intrinsic value of a tuple. Tuples of

high quality that are present in the results should get higher precedence than tuples of lower quality.

As an example, consider the following query:

MATCH: Header ⊃approx
weight=1.0 fantasy football AND

Body ⊃approx
weight=0.5 fantasy football

FILTER: Category ⊃exact football AND

NOT Body ⊃exact soccer AND

NOT IsExpired ⊃exact true

QUALITY: ExpertAnswer ⊃approx TRUE

This query searches for documents relevant to “fantasy football.” Note that keyword matches in the

Body attribute are given lower weightage than keyword matches in the Header attribute. The result is

further constrained to the football category (a hierarchy type), but excludes questions regarding soccer

(a subtype of football), and requires that results must not have expired. Finally, results posted by an

expert are given a higher quality value; the exact value is determined by applying the TF/IDF formula

and reflects how rarely experts post.

The important point illustrated by this example is not that the particular match, filter, and quality

constraints shown are especially effective. Rather, it illustrates the specificity of the criteria that govern

when a piece of content matches a query, and how we determine the quality of the content (independent of

the query under consideration). (A query similar to the above example is actually part of QUIQConnect;

it has 6 match constraints, 8 filter constraints, and 6 quality constraints. The filter and quality constraints

typically contain a single token. Each of the 6 match constraints consist of an average of 5 tokens

extracted from the search text typed by an user.)

In the rest of this section, we define the semantics of approximate and exact constraints rigorously.

Match–filter–quality queries can be readily expressed in terms of our general relevance query paradigm.
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3.2 Approximate Constraints

An approximate constraint is represented as:

attr1 ⊃approx value1 value2 value3 . . .

Intuitively, this constraint is designed to retrieve all tuples for which attr1 is a defined tag that

contains some or all of the values that appear in the list of values. Retrieved tuples are ranked by

relevance; we formally define the result to be a list of 〈tuple − id, relevance − value〉 pairs, sorted by

relevance value.

The obvious question now is how we associate a relevance value with each tuple in the result list. Our

approach is not tied to any specific formula for computing relevance, and research in the IR community,

and more recently the Web search literature, suggests several appropriate metrics of relevance. For

concreteness, we use the well-known TF-IDF formula in our discussion.1 Using this approach, the

relevance of a document with respect to the approximate constraint can be calculated by first calculating

its relevance with respect to each value in the list, and then summing these relevance values. The

relevance of a tuple (or document) i with respect to a term (or value, in our terminology) j is denoted

by Relevanceij , and computed as follows:

Relevanceij = TermFrequencyij × InverseDocumentFrequencyj

TermFrequencyij is the number of times value j appears in tuple i (in the tag named attr1).

InverseDocumentFrequencyj (IDF) of a value j is a measure of how rare it is, and is the log of the

ratio of total number of tuples to the number that contain the given value (in the given tag, attr1).

Additionally, we allow an optional relevance multiplier value to be associated with an approximate

constraint:

attr1 ⊃approx
RelevanceMultiplier=0.5 value1 value2 value3 . . .

This indicates that the relevance value for this constraint should be computed by multiplying

the relevance value automatically computed by the system using the TF-IDF formula by 0.5. A

RelevanceMultiplier value less than 1 reduces the contribution of this constraint to the overall rel-

evance of a tuple. A value greater than one increases the contribution of this constraint to the overall

relevance of a tuple. This can be used to tune the relevance value computation, which is, after all,

empirical in nature.

3.3 Exact Constraints

An exact constraint is like a constraint in a typical SQL WHERE-clause, can be represented as follows:

attr1 ⊃exact value1

This constraint is satisfied by tuples that have a tag with name attr1, and the tag-value contains

value1. For uniformity with approximate constraints, we define the result of applying this constraint to

a collection to be a list of 〈tuple− id, relevance− value〉 pairs, with all relevance values set to 0.

Additionally, we allow an optional absolute relevance value to be associated with an exact constraint:

attr1 ⊃exact
AbsoluteRelevance=11 value1

This indicates that the given AbsoluteRelevance value should be used, instead of the value 0.
1The framework allows us to use other formulas and various refinements, e.g., document length normalization [12]. The

formula used in QUIQConnect uses TF-IDF combined with measures of quality derived from user activity.
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3.4 Combining Exact and Approximate Constraints

We allow constraints to be composed using the boolean operators AND and OR.

The result of evaluating a constraint is always a list of 〈tuple − id, relevance − value〉 pairs sorted

by relevance-value. For any single constraint, we also know whether it is approximate or exact, and this

is important when combining the results of multiple constraints.

We therefore modify our definition of the result of a single constraint to also include exactly one of

the two properties exact or approximate. For composite query terms (i.e., terms containing ANDs and

ORs) we define the result recursively as follows, in terms of the results of the component constraints,

Constraint1 and Constraint2:

CombinedConstraint ::= Constraint1 AND Constraint2

If the result of either Constraint1 or Constraint2 is marked exact then the result of CombinedConstraint

is defined as follows:

If (a pair containing) a tuple-id appears in the results of both Constraint1 and Constraint2,

then it is in the result of CombinedConstraint, with its relevance equal to the sum of the

relevances of that tuple in Constraint1 and Constraint2. Otherwise, this tuple-id is not in

the result. The result of CombinedConstraint is marked exact if both input constraints are

exact, and approximate if one of them is approximate.

If the results of Constraint1 and Constraint2 are both marked approximate, then the result of

CombinedConstraint is also marked approximate, and is defined as follows:

If a tuple-id appears in the result of either Constraint1 and Constraint2, then it is in the

result of CombinedConstraint. Its relevance is equal to the sum of its relevances in the

results of Constraint1 and Constraint2.

Next, we turn to the OR connective.

CombinedConstraint ::= Constraint1 OR Constraint2

If a tuple-id appears in the results of either Constraint1 or Constraint2, it is in the result of

CombinedConstraint. Its relevance is equal to the sum of its relevances in the results of Constraint1

and Constraint2. The result of CombinedConstraint is marked exact if both input constraints are

exact, and approximate otherwise.

We found it useful to introduce an operator called ModifyRelevance:

CombinedConstraint ::= Constraint1 ModifyRelevanceRelevanceMultiplier=1.2 Constraint2

Here, Constraint1 must be an approximate constraint, and Constraint2 can be either approximate

or exact. The result is identical to the result of Constraint1, with the modification that if a tuple

also appears in the result of Constraint2, its relevance is multiplied by the RelevanceMultiplier value.2

This operator is used to reorder the result of Constraint1 based on the result of Constraint2, without

actually removing or adding any new tuples.

We conclude our presentation of relevance queries with the following observation:

2Actually, we allow more sophisticated formulae for computing the relevance of the tuples in CombinedConstraint.

Of special interest are those formulae in which the increase or decrease in relevance of a tuple actually depends upon the

relevance of that tuple in Constraint2. However, an in-depth discussion of this topic is beyond the scope of this paper.
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Theorem 3.1 AND and OR are commutative and associative operators.

As a special case, consider a query that can be specified as “query1 AND query2,” where query1

consists of only approximate constraints and query2 consists of only exact constraints. This corresponds

to the traditional approach to mixing text-retrieval and exact-match queries. The first part is used for

relevance retrieval and the second part is used as a filter. Our framework allows such a query to be

re-ordered for efficient execution using the associativity and commutativity properties of the boolean

connectives without changing the semantics of the query. This increases the optimization opportunities

available to us.

3.5 A New Class of Approximate Queries

While the query framework is motivated by a desire to synthesize capabilities from databases and text-

retrieval, it also offers a powerful new class of approximate queries that go beyond either existing query

paradigm. Relevance-ranking, while most commonly seen in similarity queries over text, is not limited

to text.

For example, suppose that we are searching for “inexpensive cars that are fairly new.” There are two

constraints, on cost and on age. Both constraints are approximate; one suggests returning cars in order

of increasing cost, and the other suggests returning cars in order of increasing age. Given a collection

of cars of varying ages and prices, how do we rank them in response to this query? Intuitively, do we

give more importance to a car being less expensive or to a car being newer? If we take into account the

number of cars that are more expensive than a given car, or that are older than a given car, and use

these numbers to associate relevance with the two (approximate) constraints in this query, we have an

elegant solution to the problem.

The approach that we propose thus generalizes the relevance-ranking principles used in IR systems to

such scenarios in a natural way; statistical properties of cost and age distributions are used to determine

how much importance to give to these two criteria.

Further, we can freely intermix conventional database-style (exact) constraints with approximate

criteria. For example, suppose that we are searching for “inexpensive cars under 5 years old”. The

second constraint, interpreted as an exact constraint, eliminates cars under 5 years of age, and we expect

to see qualifying cars in order of increasing cost. This is precisely what our relevance framework achieves.

Handling such queries, however, requires us to examine the semantics of ordered domains (e.g., the

domains of values for age and cost) in a particular manner. This leads to implementation challenges

that go beyond the scope of this paper.

4 Implementation of a Unified Retrieval System

Arguably, the biggest differences between DBMSs and IR systems stem from their workload. A DBMS

must provide transactional support for update workloads, and has concurrency control and recovery

mechanisms. An IR system can consider query-only workloads, with periodic index rebuilds, and can

build highly optimized index structures without regard to dynamic maintenance. In our hybrid system,

text plays a dominant role and must be indexed as in an IR system, but updates are frequent, and

periodic offline refreshes are unsatisfactory.

Typically, applications that need to incorporate both text data with other data in their searches end

up indexing the text portion of the data using an Information Retrieval search engine, and the other

data using a completely independent database engine. Input queries are broken up into two parts: a
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text-search portion, and an exact-match portion. These queries are sent to the two independent search

engines and the results are merged together. This approach has limitations in terms of performance

because selective constraints that go to one of the two component engines cannot be used to effectively

prune the computation in the other engine. It also does not support the range of queries that we aim to

support. For example, we cannot express the example “inexpensive car under 5 years” query.

In our hybrid approach, text and non-text data can be combined in a single index. This allows

us to have a very sophisticated algorithm for computing relevance of a tuple to a given query, in turn

enabling us to support queries such as the example car query. It also allows relevance computation to

be controlled extensively by means of query constraints, and allows optimizations in query processing

that are not easy to achieve otherwise.

The design and performance objectives that we seek to achieve are:

• The system must support (near) real-time indexing.

• It must be recoverable. That is, in case of crashes due to software or hardware problems, when

the server is restarted it recovers from the crash and puts the index in a state consistent with the

production database without losing any data.

• It must be efficiently recoverable. That is, recovery after a crash must be very fast; a complete

index re-build is unacceptable.

• It must be self-reorganizing. The system should automatically re-organizes the index structures

periodically for maximum efficiency without incurring any downtime for re-organization.

• Concurrency with consistency. The system must allow concurrent access for reading as well as

inserting/updating data without leading to loss or corruption of data.

4.1 Non-Text Data Types

Traditional databases contain values of traditional data-types like integer, floating point number, date,

or string, or its value can be a text document. We now describe how these different data-types can be

indexed using the scheme we have described so far.

The basic idea is to map non-text data to pseudo-keywords in our system. Specifically, we set aside

a fixed number N (for example N might be 100,000) pseudo-keywords for this purpose. We give them

values that cannot be confused with actual keywords of text data. Then, we associate a distinct integer

value between 1 to N with each pseudo-keyword. Now, each distinct value that a non-text attribute in

the database might take is mapped to one or more of the pseudo keywords. The mapping scheme can

differ based on the datatype of the attribute. For any data-type whose domain has less than N distinct

values, we map each distinct value of that domain to a value from 1 to N, and use the corresponding

pseudo-keyword as the “keyword value” of that value. For data-types whose domain does have more

than N distinct values, we use some hashing scheme to map each distinct value in the domain to some

integer from 1 to N. Multiple values in the domain can map to the same integer value. However, with

the choice of a good hash function, such “collisions” can be minimized. Some post-processing is needed

to remove the false positives from the results; we omit the details.

This mapping scheme allows us to regard every attribute in every tuple in the database as a collection

of keywords or pseudo-keywords. Thus, all queries over this data can be expressed as keyword queries.
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5 System Architecture

The architecture of QQE consists of a DBMS that holds all the base data and an external index server

that maintains the unified index. Inserts/Updates are made directly to the base data in the DBMS.

Whenever such an update is made, a log record is written to the JOBS table in the DBMS as a part of

the same transaction. This record gives logical details of the change that was made to the base data. All

records in the JOBS table are stamped with the time when the record was inserted. A reader process

periodically polls the JOBS table and fetches the latest records and submits them to one or more index

server processes. The index server processes apply the modifications to the dynamic index in the order

they jobs are received.

The JOBS table serves as a redo log and is used for crash-recovery. It also simplifies the index server

update processing by serializing all the transactions.

5.1 Overview of Our Approach to Deferring Updates

Our basic idea is to defer applying update operations to the persistent store. Updates are handled in

three steps: (1) Changes to the database are reflected in a special table. (2) The changes are continually

polled and incorporated into a differential index structure. (3) The main index is periodically refreshed

to absorb the differential index. These details must be transparent to data retrieval operations, and

therefore retrieval operations have an additional step of checking results against the differential index to

adjust for changes that have not yet made it to the main index.

This approach allows us to disregard random updates and optimize persistent index structures as

if they were static, since they are refreshed offline and accessed sequentially. Since query processing

time is dominated by processing constraints to identify the top results, these index optimizations can

dramatically improve performance. Periodic refreshes can also be combined with analysis/mining of

query and update traces to make the system self-tuning at the storage level, extending the current state

of the art (in which automatic tuning has largely been limited to the choice of indexes).

5.2 Data Structures

The primary data structure in QQE is an inverted index, or reverse mapping, that maps each token

appearing in an attribute to a TIDLIST. Each entry of the TIDLIST is a TID and a count that represents

the number of times the token appears in the given attribute of the TID’s tuple. Entries are sorted in

descending TID order, i.e., youngest tuples first, and an entry does not appear for counts of zero token

occurrences. Other important data structures are the concept table and log. Since many of the tokens

come from attributes that are often unstructured and contain the expected ambiguities associated with

natural language, the concept table maps a concept to a set of tokens, and provides a mechanism to

alleviate such ambiguities; we will not discuss it further in this paper. In order for the inverted index

and the concept table to be recoverable, modifications to either are first written to a log before being

applied to either data structure.

There are many options for how to manage the inverted index. The design is based on the assumption

that the number of changes will be small relative to the number of queries. Furthermore, it is critical that

query response times be fast. As a result, the inverted index is maintained both on disk and in memory.

The disk version, referred to as the static index, is partitioned into N read-only partitions. A token is

hashed into one of N partitions which stores a linear probe hashtable whose associated TIDLISTs are

tightly packed in order to maximaze I/O bandwidth. Since an insert operation may require an entry

to be inserted into the middle of a TIDLIST, modifications are deferred into the in-memory version, or
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dynamic index. Periodically, the two versions are synchronized, or merged on a partition-by-partition

basis. Corresponding partitions from the static and dynamic indexes are merged and the result is written

out to a new location on disk. Partitioning the index reduces the contention for resources during merging

and avoiding in-place writes greatly simplifies concurrency control and decreases query response times.

Cycling through all partitions effectively rewrites the entire static index.

Within each partition, we have a two-level index. First, there is a hash-table or a tree structure that

maps a value to a value-hashtable. Given any (tokenized) value, this table allows us to find the value-

hashtable. The value-hashtable is a second-level hashtable that contains all the entries corresponding to

the occurrence of this value in all the tables/attributes in the database. The value-hashtable is keyed

off the composite key Collection+Tagname and stores a TIDLIST.

We also break each Partition into two parts. One part consists of old data that resides exclusively on

the disk, and another part consists of new data that resides exclusively in the main memory of the index

server process. Specifically, all updates, inserts, and deletes that happened after some point in time T

are considered new and are stored in the in-memory portion of the Partition. All data older than T are

considered old and are stored on the disk portion of Partition.

All new updates to this Partition are done only to the in-memory portion. The on-disk portion of

the Partition is not updated at all. Queries over this partition are evaluated by merging the results from

the on-disk index and the in-memory index. Periodically (for example, once per day), the on-disk and

in-memory portions are merged and a brand new merged index is written out to the disk. Now in an

atomic operation, the old on-disk index for this Partition is deleted and replaced by the new merged

index AND the in-memory index is deleted and replaced by and empty in-memory index.

5.3 Process Structure

A reader process submits modifications to a pool of server processes. The job of the reader process

is to ensure that all servers receive all the modifications from the JOBS table in the correct order (by

timestamp) and in a timely fashion.

Whenever a server re-starts after a crash, it reads all the disk-files that hold the index partitions.

Each partition i has an associated timestamp Ti indicating the most recent job reflected in the on-disk

portion of this index partition. At start-up, or during crash-recovery, the server sends the the timestamp

of the oldest partition (that is, the min(Ti)) to the reader and requests it to send all jobs with a newer

timestamp. After this point, the reader keeps feeding the servers with the appropriate jobs from the

jobs table. For each server it keeps track of the timestamp of the most recent job that has been sent

successfully to that server. Periodically, it scans the JOBS table to check if there are any jobs in the

JOBS table with a timestamp newer than the timestamp of any of the servers, and sends those jobs to

the appropriate servers. Note that due to this protocol there is a delay beween inserting a tuple into

QUIQConnect and being able to query it using QQE. Currently the delay is 30 seconds. Recovery, which

is discussed in Section 8 follows directly from this protocol between reader and server processes.

We discuss servers in more detail next.

6 The Server

The server process maintains the inverted index in order to answer queries. Each modification request is

first applied to the dynamic index. The dynamic index in a partition is merged with the corresponding

static index periodically in a staggered fashion. Currently, the system cycles through all partitions within

a day. In addition, when a large number of modifications needs to be applied to the index, the server
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can be operated in a bulkload mode. The following subsections describe in greater detail how the data

structures are used for the primary operations of updating, querying, merging, and bulkloading.

6.1 Handling Changes

The changes to the index that are handled by the server are inserting a tuple, updating a tuple’s attribute

value, and deleting a tuple. We also support an append operation wherein new text is appended to the

existing value of a given attribute of a tuple. The modifications to the concept table are not covered as

they follow from the operation described on the inverted index.

An insert modification request is represented as <TID, Collection{( attr1,tokens), attr2,tokens),

...(attrN,tokens)} >. The server translates the request into the following TIDLIST look-ups in the

dynamic index:

1. <Collection,attr1, token1-1>

2. <Collection,attr1, token1-2>

3. <Collection,attr2, token2-1>

4. <Collection,attr2, token2-2>

5. <Collection,attrN, tokenN-1>

6. <Collection,attrN, tokenN-2>

If no TIDLIST is found a new TIDLIST is created. If the TID exists in the TIDLIST, its count is

incremented, otherwise, a new entry for the TID with a count of 1 is inserted.

As far as the index structure is concerned, an append operation is identical to an insert operation.

The delete operation is handled by maintaining a bitvector that records if a tuple is deleted or not.

Queries use the bitvector to mask out those tuples that satisfy the query but have been deleted. The

bitvector is also used during the merge process to skip writing out entries of TIDLISTs whose tuples

have been deleted.

The update operation is the least straightforward of the operations. If the given tuple has not been

updated recently, there will be no information about this tuple in the dynamic index. Here, the update

is treated as an insert. The new tokens associated with this tuple are simply inserted into the dynamic

index. In addition, an ignore-disk bitmap is maintained which indicates that all the information in the

static index relating to this TID should be ignored during query processing.

This scheme runs into problems if the tuple has been updated recently and hence there are entries

associated with this TID in the dynamic index. In that case just inserting the new value of this tuple

into the dynamic index is not good enough because that will result in current values in the dynamic

index being merged with the new values. In order to process such an update, the old attribute value

is compared against the new value. Tokens added are processed as an insert into the dynamic index

and removed tokens require the TIDLIST entry for the tuple to be decremented3. It is very difficult to

retrieve the old value of a tuple in an inverted list index structure. That would require a full scan of the

entire index. Since this is expensive, a data structure is maintained in memory called a forward map

that stores the current values of those tuples which are currently present in the dynamic index.

Even though the forward map only holds information about tuples that are present in the dynamic

index (i.e., tuples that have been updated/inserted recently), it is still an inefficient use of main memory.

3Only the TIDLIST entry in the dynamic index needs to be decremented. We don’t have to make any changes to the

static index. That is still handled using the ignore-disk bitmap.
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It essentially doubles our memory requirement. Such a forward map can be avoided if the application

can include the old value of a tuple with each update request that is sent to QQE server.

6.2 Answering Queries

The types of queries handled by the server are described in Section 2. While Section 7 describes the

algorithms used for query processing, this section focuses on how the index data structures are used to

evaluate a query. For this purpose, it is sufficient to treat a query as a set of contains constraints of

the form: {attr0 CONTAINS token0, ..., attrM CONTAINS tokenN }. For each CONTAINS constraint,

the inverted index is probed to retrieve the corresponding TIDLIST. In order to get the most up-to-

date data, the contents of the dynamic and static indexes are merged. This merge operation is a little

complicated since it has to take into account the ignore-disk bitmap described in the previous section.

Essentially, a merge uses the following formula:

result-tidlist = merge3 (static-tidlist, dynamic-tidlist, ignore-disk)

Here, the merge3 operation is implemented as follows:

result-tidlist[TID] = dynamic-tidlist[TID] if ignore-disk[ TID] is TRUE

= static-tidlist[TID] + dynamic-tidlist[TID] if ignore-disk[TID] is FALSE

In other words, use only the values from the dynamic index if ignore-disk is true, otherwise add the

values together. Finally, all deleted tuples are masked out from the combined TIDLIST using the delete

vector.

result-tidlist = result-tidlist - deleted-tids

6.3 Merging Dynamic and Static Indexes

Periodically, QQE refreshes the static index by merging it with the dynamic index and writing a new

static index. Merging is done one partition at a time and each partition can be merged independently

of other partitions. Using this organization, the entire static index is merged over the period of a day

by staggering the partition merges. When a partition is merged, changes are disallowed to the dynamic

partition while it is being merged with the static partition. In order to handle change requests, a new

dynamic partition is constructed and change requests that arrive during the merge are applied to this

new partition. As a result, answering queries is slightly complicated by now having to consider three

structure: the new dynamic partition, the frozen dynamic partition, and the static partition. Figure 1

illustrates all of the data structures during the merging of a partition. Section 8 covers in greater detail

the steps taken to insure that the refresh procedure allows a high rate of concurrent readers and writers.

Some beneficial properties arise from being self-organizing as a result of continually rewriting the

index. First, queries are fast since the organization of the index on disk does not have to account for

free-space often required of systems that apply changes in-place. A further speed-up is due to reduced

locking contention. However there is a tradeoff: system resources are spent writing all of the index

whereas some parts of the index are rarely modified.

A further benefit is that related data such as statistics are regularly refreshed as a side-effect. For

example, the number of entries in a token’s TIDLIST represents the number of times a token appears in

an attribute and is used in query evaluation as discussed in Section 7. Because of deletes, the TIDLIST

length is not accurate and is expensive to correct for every token. However, since the index is continually

refreshed and given that the rate of change is uniform and low in volume, the error in the statistic is

expected not to deviate significantly from the true value and is used without correction.
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Figure 2: The Plan for the Example Query

A final benefit of a self-organizing index is in evolution flexibility. For example, format changes may

be incorporated by simply restarting the server process with the new version of the executable to read

and write the new format.

6.4 Bulkload

The mode of the server that is optimized for loading large amounts of data is referred to as bulkload. The

motivation for bulkload is to efficiently handle large sets of scheduled change requests, such as during

an initial seeding from a migration or during a recovery from media failure. The server procedures for

handling changes are inefficient for large volumes of data. First, the forward-map must be maintained;

and second, when memory is fully consumed, the only way to make progress is to merge the dynamic

index with the static index. Such a merge requires all partitions to be written and is very expensive. A

large number of inserts/updates might require the entire index be merged multiple times, resulting in

very poor results. The bulkloading algorithm attacks this issue through a partitioned approach.

The Partitioned Bulkload algorithm proceeds in two phases. The first phase is the partitioning phase.

A change request may span multiple partitions, and so all change requests for tuples are partitioned

according to which static partition they affect. How to partition a single tuple modification is determined

using the same hash function as used at query time. Each partition’s changes are written out to separate

files. The second phase is the update phase. Each partition’s set of changes is read in and applied to

a single partition using the same procedure as a normal update. After the updates of a given partition

are processed, the corresponding partition index is refreshed (i.e., the dynamic index and static index

of that partition are merged and written out to disk, creating a new static index). This frees up all the

main memory that was used by this partition. The algorithm saves an order of magnitude in processing

time as compared to using the standard update algorithms. Note that while the server is bulkloading

the index, it can still process queries over the old data.

7 Query Processing

A plan for the example match–filter–quality query from Section 3 is shown in Figure 2. Note that

the same tokenization is applied to a query as is applied to the data. In the example, stopwords and

punctuation are removed, and, although it is not apparent in the example, stemming is typically applied

as well. The constraints are partitioned into positive or negative. The order of constraints in the plan
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determines the evaluation order. Positive constraints with match are evaluated first, then filter and

quality constraints, and finally the negative constraints. The match constraints are approximate, and

therefore expand the result set. The filter constraint can only reduce the result set whereas the quality

constraint can reorder the result set. The negative constraints can only reduce the size of the result set.

If an OR of such queries is received, evaluation proceeds independently on each side of the OR and the

result sets are unioned.

During query evaluation, the constraints may be re-ordered to reduce the amount of computation.

For example, a filter constraint that is very selective can be evaluated before the other constraints thus

setting an upper limit on the size of the results. This would in keeping the computation costs low for the

rest of the query evaluation. The query semantics are such that all quality constraints must always be

applied after the filter and match constraints. However, filter and match constraints that are connected

by AND operators can be freely re-ordered without changing the meaning of the query.

7.1 Optimization

Since query evaluation can be resource intensive, certain optimizations are included in the plan. Par-

ticularly, query evaluation becomes more expensive as the total size of the TIDLISTs increases which

is influenced by the number of tokens and the individual TIDLIST sizes of the tokens in the query. As

a result, the optimizations only apply to the evaluation of the match constraints. One class of opti-

mizations focuses on dropping tokens. The tokens dropped are the ones that have the least IDF value

associated with them. In other words, these are tokens which are likely to contribute the least to the

relevance value of a result tuple. An added bonus is the fact that the least relevant tokens also tend to

have the longest TIDLISTs associated with them. Another optimization limits how much of a TIDLIST

to read in. Since TIDLISTs are stored in descending TID order, this optimization gives lower priority

is to older tuples. Finally, the size of the result set can be optimized against. Given a target result

set size, TIDLISTs are evaluated until the limit is reached after which point, the remaining tokens only

update the relevance values in the current result-set as opposed to adding new tuples to the result set.

All of the optimizations can be combined and the selection of an optimization is statically chosen by an

administrator.

8 Concurrency and Recovery

Concurrency during normal processing, i.e., in the absence of merging, requires only short term latches

since the disk structures are never written. During merge, the situation is more complicated. In order

to allow modifications to be applied during a merge, the dynamic index is frozen and a new dynamic

index is created. While the frozen dynamic index partition is merged with the static index partition and

written to a new file, change requests can applied to the new dynamic partition. In addition, queries

now have to consider three structures from which to merge results: new dynamic, frozen dynamic, and

static index. When the new parition is written to disk, a file pointer is swapped and the frozen dynamic

partition is deleted. The exact steps are enumerated in Figure 3.

High concurrency for queries is achieved due to minimizing the time that a partition is exclusively

locked. Note that steps 2, 3, 9 and 10 in figure 3 go very fast since they don’t involve any complex data

processing. Hence, the amount of time for which an exclusive lock is held is very small.

Furthermore, a merge operation is applied one partition at a time so the whole index is never is never

locked at a given time. Since the file system of the operating system is directly used, it is assumed that
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1. Exclusively lock partition i, disable updates

2. Mark dynamic partition Di as frozen and create a new dynamic partition for i, D′

i

3. Record the timestamp of the last modification applied to Di

4. Release the lock on i

5. Merge Di with static partition i, Si

6. Write the merged data structure to a new static partition S ′

i

7. Record in S′

i the timestamp from step 3

8. Exclusively lock partition i

9. Delete Si

10. Rename S′

i to Si

11. Release the lock on partition i, enable updates

12. Delete Di

Figure 3: Steps Required to Merge a Partition

a reader thread can continue reading the orginally openned file while a merger thread renames the newly

written partition to the existing partition.

Recovery proceeds by using the minimum of all of the partition timestamps written in step 7. The

minimum timestamp is given to the reader process that processes the log, as described in Section 5.3.

Except for the brief period when the partition is exclusively locked, queries, inserts and deletes can

proceed concurrently with the partition merge process. Unfortunately, this is not true of updates. Due to

the semantics of the ignore-disk bitmap, an update cannot be run concurrently with the merge process.

If different portions of a single update transaction touch the ignore-disk bitmap of a partition before

and after the partition is merged, this will result in a loss of data. Due to this all updates that touch a

given partition have to be blocked while a partition merge process is in progress.

Currently, inserts, updates and deletes are all handled by a single thread in a server, and are processed

in the order they are received. When an update blocks because a partition merge is in progress, the

entire thread blocks, resulting in a blockage of any inserts/deletes that follow. This thread remains

blocked until the partition merge finishes. Since insert-tuple and delete-tuple cannot really interfere

with update-tuple jobs, it is possible to let insert-tuple and delete-tuple jobs to proceed even though an

update is blocked. However, this optimization has not currently been implemented in our system. As a

consequence, inserts and deletes in the system can proceed concurrently with a partition merge, but all

changes will stop at the first update that touches that partition.

Several properties hold with respect to our concurrency and recovery protocols. Let us call the system

quiescent if no inserts/updates/deletes are in progress, no partition is currently being merged, and no

queries are currently being processed; and active otherwise.

Theorem 8.1 1. In a quiescent system, the logical state of the index is identical to what it would

have been if all the jobs in the JOBS table had been applied to the index sequentially, in the absence

of queries and merge activity.
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2. A query run on a quiescent system will always see all the data from all the update/insert/delete

jobs that have completed.

3. A query run on an active system will see all the change made by update/insert/delete jobs that are

complete at that instant. In addition (unfortunately), it might see partial data from the job that is

in progress at that instant.

4. Merge activity (whether in progress or completed) does not alter the logical state of the index. In

the absence of concurrent insert/delete/update jobs, a query that is run before, during or after

one or more partitions are merged will produce exactly the same results. Any sequence of in-

sert/delete/update jobs that run during a merge process results in the same logical state of the

index as obtained if those jobs ran in the absence of merge activity.

Theorem 8.2 1. Each partition i has an associated timestamp Ti. This indicates that the on-disk

portion of partition i reflects all the jobs in the JOBS table with timestamp ≤ Ti. During recovery

from a crash, a job is applied to a partition i if and only if its timestamp is greater than Ti.

2. After recovery is complete, the logical state of the index is the same as it would have been if all the

jobs had been applied sequentially to the index in the absence of any crashes, partition merging,

and queries.

3. If we ensure that the in-memory portion of all partitions are merged with the respective on-disk

index at least once per day, then it is never necessary to fetch jobs older than one day during the

recovery process (except in the case of media failure).

To recover from media failure, we simply restore the disk files from a backup, and restart the server.

The crash-recovery process will take care of the recovery after this point. The system automatically

figures out the smallest Ti associated with the oldest partition from the backups and fetches jobs newer

than that. The rest of recovery is exactly as described before.

9 Performance

In this section, we present results from a performance study of QQE. Specifically, we measure how

effectively the system can handle workloads composed of only queries, only inserts, only updates, as well

as a mix of queries and changes. In addition, we study bulkloading algorithms as well as the effect of

merging static and dynamic indexes on queries. As a part of the study, we implement the functionality

of QQE using an alternative system to which we apply the same workload. All experiments are run on

Pentium III dual processor machines with 1GB of memory, disks with a SCSI disk interface, and the

Linux operating system kernel version 2.4.18.

9.1 Studying QQE Standalone Performance

9.1.1 Queries

In this section we study the performance of queries in the system. The database consists of about 240,000

tuples, with an average size of about 3200 bytes per tuple. Specifically, there is a Header field in each

tuple that has average size of 160 bytes, and an Body field that has an average size of 1320 bytes. The

important parameters that affect query performance are the number of tokens (keywords) in the query,

the frequency of the tokens in the database, and the average size of the attribute being queried.
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Figure 5: Effect of Optimizations

Figure 4 shows the results of time taken to run the query workload as the number of tokens in the

query was increased upto 20. We note that the time taken shows a slightly super-linear increase as the

number of tokens is increased. This is to be expected, since the amount of work done for evaluating a

query is directly proportional to the number of tidlists that have to be fetched and processed. The super-

linear behavior is because of the fact that as the number of tokens increases, the size of the resultant

tidlists begins to grow, and the cost of merging the tidlists increases.

For this experiment, we chose a set of tokens each of which appears in more than 2% of all the

tuples in the system. These are the high frequency tokens. We chose another set of tokens each of

which appears in less than 0.2% of the tuples. These are the low frequency tokens. For each experiment,

queries were constructed by choosing N random tokens from the appropriate token set (high frequency

or low frequency) looking up the appropriate field (Header or Body). N was varied from 1 to 20. For

each value of N , 10 different clients each executed 100 such random queries. Evaluation of each query

consists of three steps. First, the entire query results were evaluated in the index server. Then the top

ten TIDs were fetched from the index server. Finally, these 10 tuples were fetched from the RDBMS.

We note that in all these experiments, the last two steps represent a fixed cost. The only thing that

usually varies from experiment to experiment is the cost of evaluating the query in the index server.

As the number of tokens in a query increases, the time taken increases rapidly. The increase is in

fact super-linear. This is because in addition to the cost of retreiving the TIDLISTs associated with

each token, the query has to merge the TIDLISTs. Since the merge is essentially an OR operation, the

sizes of the TIDLISTs to be merged increase with each extra token. Increasing the number of tokens

not only increases the number of fetch-TIDLIST and merge-TIDLIST operations, but also increases the

size of each merge-TIDLIST operation. Hence the performance deteriorates rapidly. Figure 5 shows the

effect of the optimizations for large queries discussed in Section 7.1. The optimizations considered were

DropTokens (in which only the top 20 most relevant tokens were retained in the query, and the others

were dropped), and LimitResults (in which the maximum result set size was set to 10000, and after this

point).

One problem we noticed with the DropTokens optimization was that before the optimization could

be applied, we have to figure out the IDF values of all the tokens in the query. Normally, this requires a

disk access per token (because we need to find the length of the TIDLIST associated with that token).

To reduce this expense, we maintain a cache of IDF values of the tokens in the system. The cache size if
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limited to 2 MB, and an LRU replacement is used. The result of this experiment (DropTokensWithCache)

is also shown in the figure.
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Figure 6 shows the effect of increasing the total number of tuples in the system. The same query set

was run against a system that was loaded with a varying number of tuples from 100,000 to 700,000. The

number of tokens in the query was kept fixed at 10. The performance characteristics are rather similar

to that of the previous experiment. The increase is slightly super-linear. In this experiment, the increase

can be attributed to the fact that the average lengths of the tidlists in the system increase linearly as

the number of tuples in the system is increased.

Figure 7 shows the effect of increasing the size of each tuple in the system. The number of tuples

was kept constant at 500,000. However the size of the Body field was increased from an average of 1000

bytes, to 10000 bytes. The same query set containing 10 tokens in each query was run. We note that

the graph in this case is sub-linear. As the size of tuples in the system increased, part of this contributes

to increasing the lengths of tidlists in the system and part of it simply results in increasing the counts

associated with existing entries in the tidlists. A higher count in a tidlist does not actually increase the

cost of evaluating a query. This explains why the graph is sub-linear.

9.2 Changes

We also studied the throughput of inserts and updates in the system. We plotted the time taken to

process a batch of inserts or updates against the number of jobs. Each insert job added a new tuple

with an average size of 3200 bytes per tuple. The TIDs for the insert jobs where assigned sequentially.

Each update job updated 1 to 5 attributes of a random tuple. The size of the update job was 200 bytes

on an average.

Figure 8 shows the results of the experiment. The number of jobs was varied from 10000 to 50000.

Larger data sizes are covered in the section on bulkload. The Insert workload consisted of just a stream

of inserts and the Update workload consisted of just a stream of updates. The Mixed workload consisted

of a mixed stream of jobs containing 80% inserts and 20% updates.

We note that the pure-Insert workload shows an almost linear graph. This is because the inserts are

always at the end of the the TIDLISTs (since the TIDs are assigned sequentially). Updates show an
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Database Size Multiple-Insert (hours:minutes) Bulkload (hours:minutes)

50Mb 0:07 0:11

100Mb 0:24 0:23

500Mb 9:37 4:07

1.5Gb 37:33 8:22

Figure 10: Comparing Bulkload with Multiple-Inserts

almost quadratic behavior. This is because updates happen to random TIDs and will often involve an

insert into the middle of a TIDLIST in the dynamic index. In general, this is acceptable because we

expect the number of updates in our system to normally be low, and also because the TIDLISTs in the

dynamic index tend to be small. As expected, the mixed workload shows intermediate behavior.

Figure 9 shows the effect of increasing the size of each tuple upon the performance of inserts and

updates. The number of jobs was kept fixed at 50000. The size of the Body field was increased from

1000 bytes to 10000 bytes, resulting in an increase of tuple-size from 3000 bytes to 12000 bytes.

9.2.1 Bulkload

To find the efficacy of the bulkload algorithm, we compared bulkloading varying database sizes against

loading the same data using multiple-inserts. Table 10 summarizes the results. The times are reported

in hours and minutes. The time for multiple-inserts includes the time taken for a full merge of the

dynamic index with the static index and writing it out to disk.

We note that for database sizes less than 50MB the bulkload is actually slower than multiple-inserts.

This is because the entire dataset fits in memory and hence the multiple-inserts algorithm can complete

without having to merge the dynamic index into the static index (except at the end). The bulkload

suffers in comparison because of the overhead of partitioning the data and reading it in again.

As the database size grows, all of it can no longer fit in memory. Hence the multiple-insert algorithm

has to stop processing everytime the memory fills up and merge the dynamic index into the static index.

For the 1.5GB database, it has to do this 14 times and by the end of the run, each merge takes almost

2 hours. This results in very bad times for the multiple-inserts. By contrast the bulkload has to merge
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the dynamic index of each partition with the corresponding static index only once. This results in the

savings seen for larger database sizes.

A couple of explanatory notes about the performance are in order. The main-memory data structures

used in the dynamic index are optimized for speed rather than for size. Hence, they end up expanding

the data size by a factor of about 4 to 5. This results in a 100MB database filling up all main memory

on a machine with 512Mb of memory.

Also, the second phase bulkload algorithm uses the same main-memory data-structures as are used

by the regular dynamic index. These data-structures are optimized for speed of querying and not for

speed of inserts/updates. This results in the second phase of the bulkload being slower than it needs to

be. If the bulkload is re-implemented with specialized data-structures for the second phase, we expect

bulkload to go much faster. This will not affect query performance because these specialized bulkload

data structures will no longer be used once the bulkload is done and has written the data to the static

index. However, we did not have time to implement this optimization.

9.2.2 Effect of Partition Merge on System Performance
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Experiments in this section show how query and insert and update performance degrades as we

increase the rate at which the dynamic index is merged with the static index. The merge process has

an adverse effect on the performance on two counts. First, updates are blocked if a partition merge.

Thus update performance suffers increasingly as the system spends a larger fraction of its time with a

partition locked against updates. Second, the partition merge process is very CPU intensive. Since the

system is CPU bound, overall system performance degrades while a merge is in progress.

By default the system completes one full merge (i.e., cycling through all the partitions once) in one

day. We call this the merge period. Setting the merge period is a trade-off between system performance

and memory usage. A shorter merge period means lower system performance because the system spends

more and more resources merging the (huge) static index with a small amount of recent changes found

in the dynamic index. A longer merge period results in better system performance, but also consumes

more main memory, because the dynamic index of a given partition has to hold all the data about

inserts/updates/deletes since the last merge of that partition.

Figure 11 shows the effect of decreasing the merge period on the performance of queries, inserts and

updates. This experiment was run with a 1.5GB database and the system had 157 partitions. The
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merge process took an average of 47 seconds per partition. To set a baseline for the the performance,

we measured the time taken for each workload in the absence of any merge activity. These times were

compared against the times taken for the same operations in the presence of merge activity. For each

kind of operation, the graph plots the ratio of the time time for that operation when the system is

merging partition with the indicated period against the baseline. Thus, a value of 1.07 for the query

graph in the figure indicates that when the system merge period is set to 24 hours, the query workload

takes an average 7% longer. This does not mean that all queries take 10% longer all the time. Rather, it

means that queries perform at the baseline when a merge is not in progress, but slow down significantly

when a merge is in progress, resulting in an average slowdown of 7%.

We note that when the workload consists purely of inserts, the slowdown ranges from an average

of 12% for the 24-hour case to about 40% for the 4-hour case. However, performance is significantly

worse for the update workload. This is because the first update that touches the partition currently

being merged blocks the entire thread until the merge finishes. A mixed insert+update workload shows

similar behavior for the same reason.

9.3 A Comparative Study of QQE

Alternatives to QQE include directly managing the index structures in a relational database using tables,

using one of the available search engines, or using the text extensions commonly provided by database

vendors. An initial performance study at QUIQ using a B-tree for an inverted index yielded poor query

response times. The same conclusion was reached by [14]. Available search engines at the time QQE was

designed only supported static document collections so did not provide the appropriate functionality.

Though a publicly available search framework designed for a dynamic corpus currently exists (Lucene), a

database text extension was chosen for the comparison, given our need to manage the data in a database.

Examples of database text extensions include Oracle Text, DB2 TextExtender, and SQL Server Full-Text

Search.

The extension chosen is referred to as TE. First, the modifications applied to QUIQConnect in order

to utilize TE are described along with a characterization of the dataset. Next, the experimental setup

is described for each workload followed by results obtained.

9.4 TE Setup

In order to compare QQE and TE, several modifications are required in QUIQConnect. First, the

schemas require modifications in order to be indexable by TE. Second, the architecture for answering

queries and applying changes needs to be altered.

9.4.1 Schema, Indexing, and Dataset

QUIQConnect stores all application data in a collection of base tables. We considered one such base table,

B, consisting of F fields. A subset of fields in F , FQ is indexed by QQE in order to efficiently implement

the described query paradigm. The datatypes in FQ include text along with integers, timestamps, etc.

whereas the datatypes handled by TE only consist of text. Therefore, the set of fields that TE indexes is

a subset of FQ, referred to as FT . In order to allow the database using TE to efficiently evaluate queries

against both text and relational fields, indexes are created on the fields in FQ − FT . A further slight

complication arises as a result of the storage implementation for large text fields in B. Two options

exist: store the field value inline as a varchar or store a pointer to a file stored outside of the database, in

the filesystem. In order to allow TE to index both options, file pointers are converted into CLOBs and
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stored in extra fields that are added to B. A summary of the necessary modifications are summarized in

Figure 12. The schema, indexes, and file system usage is entirely consolidated into the database for TE.

Specifically, B contains 16,859 records and has a total of 16 fields in FT . Of those fields that are text

indexed, only 6 contain at least some data. Of the 6 fields that contain some data for indexing, only

2 fields contain a significant majority of the total data indexed. Since one field has consistently larger

values than the other, the fields are referred to as large and small fields.

Each field for both TE and QQE incurs a storage cost. For example, TE indexes text on a per field

basis and for each field requires several tables. The primary table is the inverted index which maps a

token to a set of document ids, or posting list. Given a document id, TE must be able to locate the

containing record which is identified internally through a rowid. Thus, TE maintains two mappings, one

from document id to rowid, and one from rowid to document id. A further table used records those

records that have been deleted. Table 1 summarizes the storage costs associated with TE. The difference

between the storage costs presented and the total storage cost is due to the excessive overhead that TE

consumes for empty and sparsely populated fields.

Number

of Unique

Tokens

TE Size be-

fore Indexing

TE Size of In-

verted Index

TE Storage

Cost

large 38,808 7,325,141 3,306,240 10,362,880

small 11,318 869,467 483,736 3,629,056

Totals 8,209,530 3,798,974 21,946,368

Table 1: Statistics per Field Indexed (Sizes in Bytes)

9.4.2 Query and Change Architecture

In order for TE to implement the query paradigm, each QQE query must be translated to an equivalent

TE query. A TE query is a SQL query with two additional operators that are relevant for the TE:

contains and score. A CONTAINS condition is specified in the SQL WHERE clause. It specifies a field,

a keyword expression, and a label. The keyword expression is evaluated over the contents of the given

field and a score is computed. The numeric value can be retrieved for a specific contains clause given

the clause’s label. Here is an example of a TE query over several text and relational fields, where the

scores from the text fields may be weighted arbitrarily:

SELECT * FROM base table WHERE

CONTAINS(field4, ‘‘token1 or token2’’, 0) OR

CONTAINS(field5, ‘‘token1 or token2’’, 1) AND relational1 = 2

ORDER BY 0.75*SCORE(0) + 1.0*SCORE(1);

Processing a change to text indexed field in TE has analogous steps within QQE. Both systems place

a change in a pending state where the changes are not visible to queries. At some point, the changes are

made visible through either a polling mechanism (in QQE) or an explicit user-command (in TE). The

event that causes a change to be made visible is referred to as a sync. In QQE, the changes are buffered

in an in-memory structure that is merged with its persistent index. In TE, the changes are appended

to the inverted list, potentially causing fragmentation, since the same token may now reside in multiple

records. Finally, to deal with the inefficiencies introduced through sync, the index may be optimized (by

merging differential structures in QQE, or compacting the index in TE).
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Workload TE QQE

1-Token-Low-Frequency-Header-Field 85 53

1-Token-Low-Frequency-Body-Field 92 57

1-Token-High-Frequency-Header-Field 314 72

1-Token-High-Frequency-Body-Field 614 79

2-Token-Low-Frequency-Header-Field 192 56

2-Token-Low-Frequency-Body-Field 195 59

2-Token-High-Frequency-Header-Field 672 76

2-Token-High-Frequency-Body-Field 1172 92

3-Token-Low-Frequency-Header-Field 302 66

3-Token-Low-Frequency-Body-Field 330 74

3-Token-High-Frequency-Header-Field 1225 101

3-Token-High-Frequency-Body-Field 2100 112

Figure 13: Comparing Query Performance

System Bulkload Insert Update Mixed Optimize

TE 142 4295 297 3425 82

QQE 179 59 83 67 107

Figure 14: Comparing Load and Update times (seconds)

9.5 Queries

The purpose of the query experiments is to compare the QQE and TE servers on several query workloads.

The query workload is as described in Section 9.1.1. For review, the fields queried against are either the

header or the body fields, the frequency of the tokens are partitioned into low and high frequency token

sets, and for these experiments, N , the number of tokens varies from 1 to 3.

For both QQE and TE, in order to obtain a baseline for query performance, the optimal index state

is used. In the course of applying changes, index data structures are often fragmented and resources are

consumed. An optimal index state is therefore defined as one that has minimal fragmentation and is

not concurrently processing changes. The starting time for a query is when it is submitted to the server

and the end time is when the minimum of all results or 10 results are retrieved from the base table. For

QQE, this requires joining the retrieved TIDs with the base table whereas the TE directly retrieves the

base table results.

In each workload, we ran 10 different clients simultaneously, each running 100 similar queries. The

total time taken for the entire workload is reported in Table 13.

The table shows that QQE clearly out-performs TE in queries. We did not run queries with larger

number of tokens as the TE took too long to execute to completion.

9.6 Changes and Bulkload

We studied the times taken to load and update the data. Specifically, we compare workloads consisting

purely of inserts, purely of updates, a mix of inserts and updates. In addition, we compare bulkload

times as well as the cost of optimize for both QQE and TE. Table 14 shows the comparitive results.

The first column shows the time taken to load the entire data set into an empty database. The
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second column lists the time taken to insert 10000 new tuples into the existing 10MB database. The

third column shows the time taken to run 10000 update jobs. Each job updates a random tuple from the

database. In each update job, theres a 50% chance of updating the header field with a brand new value,

and the probability that any of the other fields get updated is a 20% each. The fourth column shows

the time taken to run a mixed workload of updates and inserts with 80% of the jobs being insert jobs.

For the Insert, Update and Mixed workloads, the time reported includes the time to sync the data. In

case of the TE, this includes running the sync command manually after the workload is processed. In

case of QQE, the time taken is reported after the data has been retrieved by the reader and sent to the

server process.

The last column shows the time taken to Optimize the index immediately after running Mixed

workload. In the case of the TE, the optimize operation involves running the optimize operation

manually. In case of QQE this involves running the merge process on all the partitions.

10 Related Work

Commercial RDBMSs have been extended to allow keyword searches over textual attributes of the tuples

in the database. They do not, however, have a very sophisticated notion of relevance, and simply apply

an external text-search engine on a per-field basis. Some text indexing engines allow some non-text

attributes to be associated with them. However, these attributes can only be used for simple filtering

of results after the regular “relevance” query has been evaluated. For example, these engines would not

support the example “inexpensive car under 5 years” query.

Dynamic inverted index have been extensively studied. Such indexes are developed in two contexts:

for stand-alone text retrieval or database text retrieval such as Oracle’s Oracle Text feature. We consider

two points of comparison in order to organize our discussion of related work. First, all systems must

incorporate changes into the persistent index. All systems defer applying changes to the persistent

store but may differ in how and when changes are applied. Changes are applied either by writing the

persistent store in-place or by rewriting the entire store. They are applied according to an event which is

either based on time, i.e., periodically applying changes, or is based on a resource such as used memory

exceeding a threshold. Second, functionality that arises in the QQE from the query paradigm that spans

text and relational queries is compared to the functionality provided by similar systems.

QQE represents change in the dynamic index as a difference with respect to the static index. An

alternative is to bring the entire TIDLIST into memory, apply the changes to the TIDLIST directly, and

write the entire TIDLIST to disk lazily. This approach is taken in [3]. While applying the changes to

the persistent store uses rewrite, when to apply an update can be either periodic or based on how much

memory is consumed. The publicly available search engine framework Lucene, [6, 5] similarly applies

changes based on a memory threshold and uses rewrite. Finally, the text retrieval system presented in

[4] uses rewrite to apply changes to the persistent store periodically. The primary difference with QQE

is the extra functionality required from the query paradigm. First, update operations are implemented

using a delete followed by an insert whereas QQE must implement a true update. This is due to QQE

sharing the identifier space between the inverted index and database, whereas the systems mentioned

assume a transient document identifier. Second, except for Lucene, the other systems assume a single

field record, i.e., a document, whereas QQE allows for many attributes per record.

The system described in [2] is a dynamic inverted index but changes are applied to the persistent

store using in-place writes. Similarly, the study in [13] considers various alternatives for applying changes

to the persistent store including a rewrite alternative. The results show that the throughput of applying
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changes is higher using in-place writes at the cost of degrading query response time. Similarly, query

response time is lower when using rewrite since the inverted index is least fragmented whereas applying

changes degrades. In both systems, document or record identifiers are assumed to be transient so a true

update operation is not supported. In addition, multiple fields are not considered.

In terms of the query paradigm and maintanance issues arising from the integration with a relational

database, text extensions such as Oracle Text are appropriate for comparison with QQE. While QQE

maintains a single identifier space that spans the database and inverted index, Oracle Text maintains

disjoint identifier spaces that it translates between using two binary tables. Therefore, true updates are

supported in a manner comparable with QQE. Seperate identifier spaces offer flexibility and independence

for Oracle Text at the expense of requireing an identifier remapping during query processing. Another

difference is that changes to the persistent store are applied using in-place writes using a user invoked

function.

As an aside, similar techniques for deferring the application of change have arisen in database research.

The work in [11] argues for leaving a small area on disk for deferring changes so that the larger, existing

dataset can be better organized on disk. A technique for answering queries over the union of the

structures is also proposed. Data warehouses also need to accomodate changes to a structure that is

highly optimized for queries. The work in [8] proposes that the changes are similarly deferred and

merged into the main stcuture using a multi-level merge algorithm that depends on either hashing or

sorting. The Spider system [10, 9] uses an architecture similar to ours for supporting queries over

text data in a DBMS, but differs in its query paradigm and in many aspects of the implementation

approach. In particular, it applies updates in-place, as opposed to the defer and rewrite model that we

use. Also, the todo list is not accessed during query processing, resulting in a delay before data becomes

available for querying. [7] describes an implementation of the MOA object algebra which allows DBMS

and IR functionalities to be combined. This is implemented on top of the Monet [1] database system,

which implements a binary relation model. It is unclear how the performance characteristics of their

implemention would compare to the QQE.

11 Conclusion

In conclusion, QQE system is designed for applications that require the flexibility and intuitiveness of

text search combined with the structure present in a relational database. Furthermore, the system is

architected for environments that are dynamic but receive a significantly greater number of queries than

change requests. Furthermore, the anticipated applications requre query response time to be fasr.

The query paradigm that combines exact queries with approximate text queries is described. An

index into which text values are mapped to tokens and non-text values are mapped into pseudo-tokens

is described along with the processes and architecture required to efficiently query and maintain the

index. It is the combined management of these datatypes that allows QQE to efficiently implement the

combined query paradigm. Furthermore, the index allows concurrent querying and updates as a result

of a split index structure that defers the application of changes. The periodic, batched application of

changes is done by rewriting the index which greatly simplifies concurrency control and buys QQE the

benefits and flexibility of being self-organizing.

While multiple servers can be used to distribute query load, the requirement for full replication of the

index is wasteful. A parellization scheme that considers distributing chagnes is a significant candidate

for future work. Further work will also focus on the heuristics used for combining quality and match

and making the results more transparent to the user.
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