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          S
tatisticians have celebrated a lot re-

cently. 2013 marked the 300th an-

niversary of Jacob Bernoulli’s Ars 

Conjectandi, which used probability 

theory to explore the properties of 

statistics as more observations were 

taken. It was also the 250th anniversary of 

Thomas Bayes’ essay on how humans can 

sequentially learn from experience, steadily 

updating their beliefs as more data become 

available ( 1). And it was the International 

Year of Statistics ( 2). Now that the bunting 

has been taken down, it is a good time to 

take stock of recent developments in statis-

tical science and examine its role in the age 

of Big Data.

Much enthusiasm for statistics hangs on 

the ever-increasing availability of large data 

sets, particularly when something has to be 

ranked or classified. These situations arise, 

for example, when deciding which book to 

recommend, working out where your arm 

is when practicing golf swings in front of 

a games console, or (if you’re a security 

agency) deciding whose private e-mail to 

read first. Purely data-based approaches, 

under the title of machine-learning, have 

been highly successful in speech recogni-

tion, real-time interpretation of moving im-

ages, and online translation.

Statistical science does produce some ex-

cellent machine-learning tools, but it is con-

cerned with more than just classification or 

ranking: It explicitly tries to deal with the un-

certainty about what can be concluded from 

data, be it a prediction or scientific inference. 

The revolutionary ideas of Bernoulli, Bayes, 

and others form the historical basis for such 

learning from large data sets ( 3).

To assess the uncertainty about unknown 

or future quantities, statisticians tend to 

build probability models of underlying pro-

cesses. For example, Microsoft’s TrueSKILL 

ranking system produces a probability dis-

tribution for the unknown skill of an online 

gamer. Similarly, trading models can assess 

both the expectation and volatility of future 

commodity prices. Detailed risk assessment 

is also vital to the insurance industry, requir-

ing complex statistical models. Sophisticated 

simulation-based statistical methods, such as 

particle filters, are increasingly used in areas 

such as signal processing, dynamic economic 

models, and systems biology ( 4).

Traditional statistical problems could be 

termed “large n, small p”: There were many 

observations (n), such as participants in a 

clinical trial, but few parameters were mea-

sured (p), and just a handful of hypotheses 

tested. More recently attention has turned 

to “small n, large p” problems, such as a few 

brain scans but with millions of voxels in 

each, or the expression of tens of thousands of 

genes in a limited number of tissue samples. 

To deal with these problems, statisticians 

developed models for complex interactions—

for example, when learning the structure of 

a network describing gene relationships ( 5), 

and handling observations that are not just 

single data points but may comprise shapes, 

functions, images, or phylogenetic trees ( 6).

Many such “small n, large p” problems 

require screening of vast numbers of hy-

potheses, for which the naïve use of sta-

tistical significance is inappropriate; the 

standard “P < 0.05” criterion means that 1 

in 20 nonexistent relationships will be de-

clared significant, so that if you do enough 

tests, some apparent discoveries will always 

pop up. Procedures have been developed to 

control the false discovery rate (FDR); that is, 

the proportion of apparent discoveries that 

turn out to be wrong ( 7). For example, the 

confidence required before announcing the 

discovery of the Higgs boson was couched in 

statistical terms as 5 sigma, and this assess-

ment included an adjustment for how many 

hypotheses were examined (the “look else-

where effect”).

As an example of the modern use of sta-

tistics, the June 2014 issue of Bioinformat-

ics features a huge range of statistical and 

machine-learning techniques, many using 

the Bioconductor suite of software packages. 

For example, Berry et al. use “scan” statistics 

to identify regions of the human genome 

targeted by retroviruses, assessed with FDRs 

that allow for the fact that the whole genome 

has been searched ( 8). We recently used 

similar methods to show that a cluster of six 

London cyclist deaths in a fortnight had only 

around a 1 in 40 chance of occurring in any 

fortnight over 8 years ( 9).

Statistical principles are also routinely ap-

plied in A/B experiments on Web sites, in 

which small tweaks in layout and design are 

tested by using alternative versions at ran-

dom and seeing whether the innovation has, 

for example, increased click-through rates. 

More sophisticated adaptive experimental 

designs are making drug testing more effi-

cient, because treatment regimes that show 

little promise can be rapidly dropped without 

compromising the overall chance of a false 

discovery ( 10).

As medical databases grow and large ran-

domized trials become more expensive and 

difficult to conduct, there is increasing de-

mand for trying to make causal inferences 

from observational data. This is a minefield: 

Even with masses of data, there is no auto-

matic technique for turning correlation into 

causation. But statistical science has devel-

oped frameworks for clarifying the careful 

analysis necessary, for example, when tak-

ing into account changing interventions 
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over time and indirect effects of therapy 

through mediating factors, such as viral 

load in HIV ( 11).

Big Data means that we can get more pre-

cise answers; this is what Bernoulli proved 

when he showed how the variability in an 

estimate goes down as the sample size in-

creases. But this apparent precision will 

delude us if issues such as selection bias, re-

gression to the mean, multiple testing, and 

overinterpretation of associations as causa-

tion are not properly taken into account. 

As data sets get larger, these problems get 

worse, because the complexity and number 

of potential false findings grow exponen-

tially. Serious statistical skill is required to 

avoid being misled.

As measurement becomes ever faster and 

cheaper, the trend will be toward “large n, 

really large p” problems as, for example, im-

ages, genomes, and electronic health records 

become linked together. Other challeng-

ing new areas for statistical science include 

those traditionally handled with determinis-

tic models, such as weather, climate, extreme 

natural hazards, and epidemics. In each of 

these, a stochastic element can be added, such 

as combining weather projections from ran-

domly perturbed starting points to provide 

an ensemble forecast, although the appropri-

ate role for stochastics in climate models is 

still contested ( 12). In these tricky areas, stat-

isticians can show that they are prepared to 

deal with messy data, but still think in terms 

of generalizable principles ( 13). They can en-

able others to produce knowledge from data 

by promoting their own particular skills and 

insights, particularly by understanding both 

the strengths and limitations of models.

The title of this article is deliberately am-

biguous: Not only is the future uncertain, but 

also it will be vital to understand and pro-

mote uncertainty through the appropriate 

use of statistical methods rooted in probabil-

ity theory. Careful application of statistical 

science will be essential.   ■
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   W
hen a eukaryotic cell divides, it 

must partition its duplicated ge-

nome into two daughter cells with 

a minimum of errors and DNA 

damage. This requires the order-

ing and coordination of various 

events during nuclear division (mitosis) 

and cytoplasmic division (cytokinesis). How 

these events are temporally coordinated 

remains poorly understood. On page 332 

of this issue, Afonso et al. ( 1) propose the 

exciting idea of a “chromosome separation 

checkpoint” that controls the near final step 

of mitosis—the anaphase to telophase tran-

sition (see the figure).

Once the duplicated chromosomes are 

bi-oriented on the mitotic spindle in meta-

phase, anaphase begins, in which the sister 

chromosomes start to separate. Chromo-

somes must then be well separated before 

the beginning of cytokinesis and telophase 

events, which include chromosome decon-

densation, nuclear envelope reformation 

(NER), and mitotic spindle disassembly. 

Elongation of the mitotic spindle facilitates 

this separation process. Anaphase onset be-

fore completion of metaphase gives rise to 

segregation errors, whereas the start of cy-

tokinesis before clearance of chromosomes 

from the cleavage plane gives rise to DNA 

damage ( 2,  3).

Afonso et al. found that treatments that 

impaired spindle elongation delayed the 

onset of chromosome decondensation 

and NER. This delay was dependent on a 

gradient of aurora B kinase–dependent 

phosphorylation that originated from the 

central spindle midzone ( 4). In addition, 

timely chromatin decondensation and NER 

required the activity of protein phospha-

tase 2A (PP2A) and protein phosphatase 1 

(PP1). The findings suggest that when the 

spindle elongates, the separating packs of 

sister chromosomes are gradually pulled 

out of the midzone “sphere of influence” of 

aurora B. This would progressively tip the 

kinase-phosphatase balance in the region 

surrounding the chromosomes in favor of 

the phosphatases. The subsequent dephos-

phorylation of substrates results in chro-

matin decondensation and NER. In case of 

impaired spindle elongation, the separating 

chromosomes remain within the aurora B 

activity gradient for a longer period, thus 

delaying the onset of telophase.

A possible explanation for how aurora 

B may prevent chromatin decondensation 

and NER is that it directly phosphorylates 

substrates involved in chromatin condensa-

tion and in nuclear envelope disassembly. 

The condensin I complex is an interesting 

candidate because it is a direct substrate 

of aurora B and promotes chromosome 

compaction, and its recruitment onto chro-

mosomes requires aurora B kinase activity 

( 5– 8). Indeed, Afonso et al. found that Bar-

ren—the homolog of condensin I in Dro-
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