
Java Array Facts
1. An array is a way to collect multiple

values by using only one variable.
Remember the difference between a variable and a
value: a variable is just a name, a value is a number
or pointer attached to it. Arrays let us deal with
multiple values by using only one variable.
An array is a special kind of object that collects
several values into a fixed order. For example, if we
have several variables of the same type:

double number1 = 5.5;
double number2;
double number3 = -24.2;
double number4 = 6.0;

We can use an array to store these four values with
only one variable:

double numbers[] = new double[4];
numbers[0] = 5.5;
numbers[1] = -24.2;
numbers[3] = 6.0;

Hereʼs what the memory diagram of this code looks
like:

numbers

6.0

0.0

-24.2

5.5

double[]

The array adds an extra level of indirection between
the variable and the values.

2. Arrays are objects
Arrays are actual objects, and are created on the
heap, not the stack. We can tell that they are objects
because we create them with the new keyword.
When creating an array, we must specify the type of
the array and the number of elements it will contain:

type[] arrVariable = new type[size];

3. An array has a certain number of
elements in a fixed order.
The separate values stored in an array are called
elements. Each of these elements is identified by its
numeric index.

4. Elements of arrays are accessed with
the special notation arr[x].
To access an element of an array, we use a
combination of the array variable name and the
index of a specific value. This tells the virtual
machine to follow the pointer stored in the variable
to the array object, and return the value at the given
index. Borrowing a term from mathematics, the
index is sometimes called the subscript.

5. Arrays indices start at 0.
The valid indices of an array are 0 through size-1,
where size is the number of elements in the array.
So if the size of an array is 10, the index of the last
element is 9.

6. Accessing an invalid array index
causes an exception
Whenever we try to access an element of an array,
the Virtual Machine makes sure that the index is
valid. If it is not, the VM raises an error that will
crash the program.

7. Arrays elements have default values
When an array is created with the new keyword, the
elements will be given the same default values as
member variables. For primitive types, this is 0 or
0.0; for objects, it is the null pointer.

8. The size of arrays can be decided at
run time
If we had to use constant sizes when creating
arrays, they would only serve as a convenience. But
we can use integer variables for the size when
creating an array:

int arraySize = ...;
double[] arr = new double[arraySize];

9. Arrays have a length field
We can always find out the length of an array by
accessing the special length property. See the
next fact for an example of how to use this property.

For CS302 by Andrew Weinrich 2007 pages.cs.wisc.edu/~weinrich

10. Arrays and for loops are made for
each other
A very common task is to iterate over all the
elements in an array and perform some operation,
such as printing or totaling. This is a perfect place to
use a for loop:

int[] arr =
for (int i = 0; i < arr.length; i++) {
 S.o.p(arr[i]);
}

We use an index variable that ranges over all the
valid indices of the array, starting at 0 and going up
to length-1.

11. Arrays can be created with literal
syntax
If we know what elements we want to put into an
array, we can use a special syntax to create a literal
array. This is like creating a literal String or
number. To create a literal array, use a pair of curly
braces, with the values of the array elements inside,
separated by commas:

String[] strings = { “AA”, “BB”, “CC” };
int[] numbers = { 1, 2, 7, 8, 123, 0 };

12. Array elements can be used directly
We do not have to pull an element out of an array
into an individual variable before we use it:

String[] strings = new String[10];
// fill in elements of the string array
for (int i = 0; i < strings.length; i++)
 S.o.p(strings[i].toUpperCase();
int[] numbers = { };
int sum = numbers[2] + numbers[3];

However, this code will not compile:
// tying to call a method on an array
S.o.p(strings.toUpperCase());
// trying to use an array as a number
int average = numbers / numbers.length;

13. All elements in an array must be of
the same type
When we create an array, we have to specify the
type of value it contains. This can be either a
primitive type or an object reference type.
Assignment of a different type will not work:

int[] numbers = new int[10];
numbers[5] = 5.6; // will not compile

14. Arrays can be nested
We can create multidimensional arrays by using two
pairs of brackets.

int[][] matrix = new int[3][3];
matrix[0][0] = 7;
int x = matrix[1][2];
int[] rowB = matrix[1];
matrix[2] = { 3, 4, 5, 6 };

This does not actually create a two dimensional
matrix; instead, it creates an array of array
references. Arrays can be nested to any depth, but
more than 2 dimensions is rare. The memory
diagram for this code looks like this:

matrix

int[][]

int[]

0

0

0

int[]

0

7

0

6

int[]

5

3

4

Note that while multi-dimensional arrays are created
to be “square”, the VM does not enforce equal row
lengths after creation. A multi-dimensional array with
uneven row lengths is called a jagged array.

15. Arrays can be partially filled
If we have an array of objects, it is possible for the
array to be partially filled, meaning that not every
slot in the array points to an actual object. When
using partially filled arrays, we have to be careful
that we do not try to use an element in the array that
is null:

// all elements initialized to null
String[] words = new String[4];
words[1] = “yes”;
words[3] = “no”;
// this line will crash
S.o.p(words[2].toUpperCase());

Here is the memory diagram produced by this code:

String[]

 "yes"

String

"no"

String

words

Arrays of primitive values cannot be partially filled.

