
Graffiti: A System for Predicting Tags of Web Documents

Andrew Weinrich

May 15, 2007

Abstract

Social bookmarking or tagging sites provide an easy way for users to annotate documents, but the lack of structure in simple
tags hinders efforts to analyze that metadata. This paper proposes a model for using the words and phrases contained in web
documents to predict the tags that users will attach to the document, a description of a system that implements this model,
and a metric for evaluating the performance of such a system.

1. Introduction

Of all the new online services developed in the recent Cam-
brian explosion of “Web 2.0”, one of the most popular cat-
egories is tagging sites, sometimes called social bookmark-
ing or social linking. On these sites, users create profiles
under which to store their Web bookmarks. Bookmarking
was of the first information management tools provided by
web browsers, but social bookmarking sites provide several
additional features, notably the ability to “tag” bookmarks
with a short word or phrase describing the page’s content.
A user could, for example, annotate all of their bookmarks
relating to the Ruby programming language with the tag
ruby , thus imparting some information that makes a se-
mantic judgement about the “meanings” of those pages; a
search for the tagruby would then return all those pages
without requiring extra organization.

The abundance of tagged documents suggests that there
may be some way of analyzing the content of these docu-
ments to discover structure that leads users to choose a par-
ticular tag for a document over another. A system that could
learn from existing tagged documents could then use the
patterns it finds to predict the tags of future documents. Tag-
ging, as commonly used on the internet, has several proper-
ties that aid such prediction efforts:

• Tagging is an all-or-nothing activity: for every possi-
ble tag, and article either has the tag or does not. This
allows the prediction function to be more flexible, by

associating a probability or “confidence level” to its
predictions. Although an article either will or will not
have the tag “python”, for example, our function may
give the article a prediction of “There is a 75% chance
that this article will be tagged with python”.

• Each tag is a single entity, unrelated to other tags. At
the time of this writing, efforts to categorize or clas-
sify tags (e.g. into hierarchies) are not widespread.
Each tag may thus be considered in isolation, without
worrying how the presence or absence of other tags
either in the prediction or in real lifewill affect it.

• Both document locations and tags are typically avail-
able from bookmarking sites by RSS, a format de-
signed for ease of interpretation by automated agents.
This eliminates the requirement to perform “screen-
scraping” of HTML to find tagging structure. Individ-
ual documents must be parsed for keywords, but this
is a considerably easier task, and the same general
algorithm may be used on virtually all documents.

• Tags are completely devoid of semantic meaning.
They may be proper names of people, names of com-
panies, actions, abstract concepts, judgements, or
made-up words, and thus may all be treated the same
way.

• Theoretically sound machine learning algorithms can
be rendered useless by small or unrepresentative
training samples. If a project’s goal is to simulate

1

human intelligence and judgement, some amount of
that intelligence must be provided up front. The ex-
plosion of tagging sites in the last few years, however,
has shown that there are many thousands of users who
are willing, and even eager, to read, analyze, and tag
documents, and then freely share their results.

Graffiti is a system that uses the tagging efforts of a book-
marking site’s user community to make predictions about
future documents, based on the presence or absence of spe-
cific terms in the document text. It is a learning system that
continually refines its predictions based on new document
data and its performance against the known tags of those
documents.

2. Data Model

Graffiti’s data model consists of four entities:

1. Tag: a simple string used to annotate a document,
with no guarantees as to its meaning or use

2. Term: a word or short phrase that occurs in a docu-
ment

3. Document: an object that comprises a unique iden-
tifier (in our system, a URL), a set of terms with
weights, and a (possibly empty) set of tags

4. Keyword-tag relationship: a tuple that represents how
often a keyword is found in documents that are deter-
mined by the user population to have a certain tag

The association of both keywords and tags to documents are
stored using the standard inverted-list model of information
retrieval. The keyword-tag relationship is a simple ratio of
the number of times a keyword occurs in document with a
given tag to the total number of documents with that tag.
For example, if the term “iPod” appears in half the docu-
ments that have the tag “apple”, then the relationship tuple
would be(ipod, apple, 0.5).

By weighting and summing the predictions of the individual
terms in a document, Graffiti generates a prediction about
the presence of tags on that document. Due to the complete
lack of structure or meaning in tags, no other judgement
is made besides a prediction that, given the occurence of a
term, there is a certain probability that the document will
have a particular tag.

2.1. Keyword Restriction

In addition to restricting the size of the tag set, Graffiti must
also restrict the keyword set. Information retrieval systems
that are based on user-defined keyword searches put this
onus on the user; if a search for “go” or “lack” returns mean-
ingless results, the user will have to refine the query. How-
ever, for tagging prediction, we will be looking at all possi-
ble keywords, including those that are “noise”, beyond even
traditional stop-words such as “the” and “and”. It is possi-
ble that a term like “new” will have roughly equal predictive
values for every possible tag; such a term that predicts ev-
erything effectively predicts nothing.

As attempting to compose an exhaustive list of noise terms
in advance is futile, Graffiti instead uses the common Term
Frequency - Inverse Document Frequency weighting sys-
tem to identify and discount noise terms. Many variants of
this formula have been developed over previous decades;
our version is stated in the Prediction Model section. When
calculating the contribution of each term to a tag prediction,
the term’s weight comes from this TF-IDF formula. Thus,
terms that have a high predictive value because they are ex-
tremely common will hopefully have a lowereffect relative
to other terms that also have a high correlation but do not
occur as frequently.

The above TF-IDF formula is the only one that Graffiti uses
to discount the weight of noise terms. There is considerable
room for experimentation and refinement in this area, how-
ever, and it is possible the use of a better weighting formula
will produce more accurate predictions.

2.2. Multi-word Terms

When building the index of document terms, we will likely
want to include multi-word phrases. For example, the full
phrase “Steve Jobs” is likely to be an excellent predictor of
the tags “apple” or “ipod”; the individual words “steve” and
“jobs” are probably useless. However, most standard search
engines do not store phrases, but only individual terms.
They rely on position data attached to the terms to imple-
ment exact-phrase searches; thus, the search engine does
not “know about” phrases in the document until it specifi-
cally goes to look for them.

This is a problem for Grafitti, which should be able to
use multi-word phrases for predictions without knowing the
phrases ahead of time. There are two approaches to solving
this problem: one is to ignore it completely, and depend
upon only single terms; the other is to use some strategy,
beyond that of a conventional IR indexing engine, to find

2

meaningful multi-word phrases in the document, at which
point they are treated as regular terms in our model.

One strategy might be to use techniques from the Natural
Language Processing field to parse documents. An NLP
processor could use its understanding of the document’s
language both to identify legitimate multi-word phrases and
to cull out terms that are unlikely to be useful, beyond the
primitive list of traditional stop-words. Graffiti forgoes such
subtlety in favor of brute force, by treating every two-word
span as a possible term. This doubles the size of our term
set and introduces a good deal of “garbage” terms. Graffiti
compensates by ignoring terms (of any length) that have not
appeared in a certain number of documents (the threshold is
initially set at 10). This prevents our prediction system from
being cluttered with meaningless multi-word terms, but al-
lows potentially important phrases like “Web 2.0” to come
through.

2.3. Prediction Model

To compute its predictions for document tags, Graffiti uses
a model similar to the Vector Space form commonly used
for keyword matching. However, instead of the vector space
having a dimension for each term, and the individual vectors
being documents, Graffiti’s space has dimensions that cor-
respond to tags, and vectors that represent terms. The com-
ponents of the vector are the pre-computed correspondences
between the term and its occurence in documents.

First, we define the three fundamental objects that we will
be using: a set of terms,T ; a set of tags,A; and a set of
documents,D ≡ {(t, a) : t ⊂ T, a ⊂ A}, each document
being a subset of terms and tags.

We use the notationd[a] andd[t] to indicate that a docu-
mentd contains a particular tag or term, andd[a] andd[t] to
indicate the opposite (terms that have not met the required
frequency threshold are omitted).|d[t]| denotes the number
of occurrences of a term in a document.

Given a set of tagsA, we define the “prediction vector
space”SA of dimension|A|, such that each component vec-
tor of the absolute basis of the space is associated with a tag
a ∈ A.

For each termt we construct a vectorVt in this space. The
components of this vector are restricted to the range[0, 1].
Each componentVta represents the probability that, given
that the term the vector represents is present in a document
d, that document will be annotated by the community with
the corresponding taga:

Vta = P (d[a] | d[t])

This probability is determined by a simple calculation of
how many documents containa, divided by the total num-
ber of documents, restricted to the subset of documentsDt

that contain termt:

Dt = {d ∈ D : d[t]}

Vta =
|{d ∈ Dt : d[a]}|

|Dt|

To calculate the tag predictions for a documentd, we first
collect every vectorVt for whichd containst (we define this
subset of terms asTd):

Td = t ∈ T : d[t]

Then, for each vector we calculate the weighting function
W (v), which in our implementation is a standard TF-IDF
function (the first factor is the Term Frequency, and the sec-
ond is Inverse Document Frequency):

W (d, t) =

(
|d[t]|∑

tk∈T |d[tk]|

)(
log

|D|
|{d ∈ D : d[t]}|

)

The final prediction that a test documentd will be marked
with a taga is:

P (d, a) =
∑

t∈T VtaW (d, t)
|Td|

Given these definitions, we can provide an intuitive descrip-
tion of Graffiti’s model: each term in a document represents
a point mass in ann-dimensional unit hypercube. Each axis
of the hypercube corresponds to a tag, and the coordinate of
a term along that axis is the likelihood that, given the pres-
ence of that term in a document, the document is marked
with that axis’ tag. The mass of each point is its TF-IDF
score.

The final prediction, then, is at the center of mass of all these
points. Once the location of that center is determined, we
take the coordinates of the centroid along each tag-axis as
the probability that the document in question will be marked
with that tag.

3

This model has the advantage that calculating the predic-
tions for a document is very simple. After parsing the doc-
ument into terms, we retrieve the term prediction vectors
from the database, along with the IDF portion of each term’s
score. For each tag, we simply average the TF-IDF weight
of each term times its prediction.

2.4. Prediction Performance

Graffiti has a performance metric that transforms the
model’s confidence interval into a simple yes-or-no predic-
tion: the system administrator sets a deviation-from-mean
threshold, and any prediction above that threshold becomes
a “yes”, while anything below becomes a “no”, and any-
thing in the middle is “no comment”. With the default de-
viation of 15%, this means that any prediction of 65% or
above is “yes”, 35% or below is “no”, and the metric dis-
cards any predictions that fall in the middle.

The performance metric then gives Graffiti one point of ev-
ery correct positive prediction it makes; negative predic-
tions – i.e. Graffiti says that a document will not have a
tag and it doesn’t – are not counted, because most docu-
ments will only have a handful of tags out of the 140 pos-
sible. Graffiti loses a point every time it errors: if it says
a document will have a tag and it doesn’t, or says that the
document won’t have a tag and it does.

The final score is the number of points Graffiti accumulates
divided by the number of predictions it makes. Under this
metric, each tag is treated individually, to acknowledge that
broad, vague tags like “software” or “development” may not
be as easily predicted as more specific tags like “python”
and “perl”.

3. Implementation

3.1. Project Restrictions

Although the general outline of tagging prediction is quite
general, Graffiti restricts its implementation in the follow-
ing ways:

• The website del.icio.us is used as the sole source of
tags and articles. Del.icio.us was one of the first
social bookmarking sites, and has over two million
registered users (fewer active), making it the largest
source of documents and tags that fits our needs.

• The learning portion of Graffiti uses only documents
currently available from del.icio.us’s feed, without

going back into the site’s archives.

• For performance reasons, we could not use a single
relational database to store all of the project data. In-
stead, Graffiti uses a custom tiered caching architec-
ture that reduces the amount of central coordination
required.

• Only the most popular tags on del.icio.us are consid-
ered. Due to the nature of del.icio.us’s user popula-
tion, this list of 139 tags skews heavily towards tech-
nology, particularly programming and the Web. If a
site with a different focus, such as DailyKos (politics)
or Fark (humor), were used, it would change not only
the set of tags but also the system’s predictive abili-
ties.

• Non-English websites (those not in the top levelcom,
net , org , or edu , info , biz , au , or uk do-
mains) were not considered, nor were documents
whose HTTP headers indicated that they were not in
English.

3.2. Implementation Details

Graffiti is implemented in Java, and is composed of three
parts that share a common database:

1. The document aggregator retrieves as many
document-tag pairs as it can from the document
source, downloads the documents from the Web,
parses them into terms, then stores the term-
document associations in the database. This step need
only be performed once, when it generates the initial

2. After a sufficient number of documents have been
stored, theprediction collator calculates the term
IDF and tag-prediction values.

3. The final step is theperformance analyzer, which
is an extension of the aggregator. As well as storing
the documents, it also predicts the tags that it think
the documents will have, and records these predic-
tion. The performance metric can be computed for
each tag after the performance analyzer has examined
a sufficient number of documents.

After each run of the performance analyzer, the system pa-
rameters may be tweaked. The prediction collator is then
re-run over the new documents added during the analysis
phase. Graffiti requires a very large number of documents
for each phase; in general, the more documents it processes,
the more accurate its predictions will be. This leads to sev-

4

Local Cluster

Terms Documents

Worker

Doc-Term Doc-Tag

Doc-Tag Predictions

Worker

Doc-Term Doc-Tag

Doc-Tag Predictions

Worker

Doc-Term Doc-Tag

Doc-Tag Predictions

Worker

Doc-Term Doc-Tag

Doc-Tag Predictions

Local Cluster

Terms Documents

Master Server

User Interface Server

Terms

Terms
Server

Documents

Document
Server

Figure 1: Graffiti architecture diagram. Because the set of tags is small and static, it is not shown in the databases here.

eral interesting design problems, described below.

3.3. Architecture

There are two main bottlenecks in the document aggrega-
tor:

1. All of the documents come from remote locations,
requiring tens of thousands of individual HTTP re-
quests to unique servers

2. All document and term data must be centrally coordi-
nated, so that all parts of the system will use the same

ID numbers for documents and terms

The first bottleneck is the most immediately obvious; an
early, single-threaded version of the document aggregator
required over two days to process fewer than 4,000 docu-
ments. This suggests that multiple clients should be used,
perhaps with each having responsibility for one tag. How-
ever, using one client for each tag would expose the second
bottleneck, as each client tried to simultaneously connect to
the database and make updates to the same tables. Graffiti
solves this problem by assigning the clients to local cache
clusters, which then communicate with the main database
on need.

3.4. Database Structure

As shown in Figure 1, Graffiti uses a three-level tiered ar-
chitecture to alleviate both bottlenecks. A single worker is
created for each tag, and has sole responsibility for querying
the document source (i.e.del.icio.us) and processing
that tag’s documents. Each worker is assigned to a clus-
ter, which it uses to take load off the main database. For
efficiency, each database is stored as a SQLite file.

At the core of the system is a set of central servers. Two ded-
icated processes manage the master lists of terms and doc-

uments. A user interface server communicates commands
(start or stop workers, show current status, run prediction
collation, shutdown system, etc) from the user to the the
Grafitti master server, which manages all other elements of
the system. Currently, the interface system takes commands
from a command line, although it is possible to substitute
other interfaces, such as a GUI or web application.

All communication between the components is by message
passing. All distinct entities (workers, cluster nodes, mas-
ter, interface, central DBs) have unique numeric identifiers
used to denote the source and destination of a message,

5

which may be sent synchronously or asynchronously. When
a node needs the ID number for a new term, it sends a mes-
sage to the central term server and waits for the response.
Certain messages, such as “Stop Execution”, have priority
over other messages.

All communication is through an abstract MessageCenter
object, which handles the details of inter-thread, -process,
and -host communications. This communication system al-
lows for fine-grained distribution of tasks among processes
and hosts. In the current Grafitti system, each cluster is a
single process, with the workers running in separate threads.
There is a single master. However, the system may be con-
figured to separate each worker into a separate process, and
to similarly separate the master servers. The central config-
uration file also describes how the cluster nodes and work-
ers are to be distributed among available hosts.

3.5. Document Processing Procedure

When a worker finds a term in a document it is processing,
it performs the following actions:

1. The worker checks the local cluster database to find
the ID of the term.

2. If the term is not present in the local cluster, it asks
the master database for the term’s ID.

3. If the central term database has already registered that
term, it returns the ID number. Otherwise, it creates a
new term entry with a new unique ID and returns that
ID.

4. The worker records the term in the cluster database.

5. Finally, the worker records the document-term asso-
ciation in its personal database.

A similar procedure is followed with new documents, with
the exception that the main document database also tells the
workers whether or not the document has been processed;
if it has, the worker skips that document but still records its
presence in the cluster database. In this way, the contents of
the central document and term databases are replicated “on

need” to each of the cluster copies.

The document aggregator and performance analyzer share
this general structure; the performance analyzer also
records predictions in the worker databases. The predic-
tion collator is a separate program, which pulls in data from
each of the worker databases to calculate each term’s pre-
diction.

3.6. Multi-Word Terms

As described earlier, phrases that consist of multiple words
may be very valuable for predictive use, but are usually not
stored in a usable form by most search engine databases.
Our implementation uses a brute-force approach: we treat
every two- and three-word substring of a document as a
term, and record them all in the term database. This dras-
tically increases the number of possible terms that we must
store (during an early run of the learning phase, fewer than
1000 documents produced over 1.3 million terms).

This approach has clear deficiencies, not least our term cat-
alog is now polluted with a great deal of single-occurrence
phrases. Compounding that problem is the fact that we an-
alyze the document after the parsing engine has stripped
all punctuation and stop-words, creating illegitimate multi-
word terms that span sentence and phrase boundaries. Our
hope was that the prediction model would be able to wash
out this noise and only make use of the truly valuable multi-
word phrases.

To eliminate some of the extraneous phrases, the prediction
collator ignores any term that occurs in fewer than 10 docu-
ments. These occurrences are not deleted from the database,
in case they occur in future documents. The occurence
threshold is configurable

4. Results

Forthcoming.

References

6

