Type Inference in Mixed Compiled / Scripting Environments

Andrew Weinrich
2007-12-21

Abstract

Programs written in statically-typed languages are com-
monly extended with scripting engines that manipulate
objects in the compiled layer. These scripting environ-
ments extend the capabilities of the program, at the cost
of additional errors that would be caught by compile-time
type checking. This paper describes a system for us-
ing type information from the compiled, statically-typed
layer to perform type inference and checking on scripting
code. A proof-of-concept of this system is shown in f1int,
a type-checking tool for the language F-Script.

1 Introduction

A recent trend in software development has been to ex-
tend programs written in a compiled language with a
scripting engine that can manipulate objects from the
compiled layer. The presence of JavaScript in web
browsers has created an entire industry of web applica-
tions. At the OS level, many GUI environments have
object-oriented scripting languages, such as AppleScript
on Mac OS [2], that can tie together functionality of var-
ious programs. Scripting languages are also used in the
development of commercial applications, such as Adobe’s
recent product Lightroom [5].

The benefits of such integrated compiled / scripting en-
vironments are obvious. The ability for end-users to cus-
tomize program behavior increases the lifespan of a prod-
uct and fosters the creation of an ecosystem of third-party
extensions. For internal development, moving some code
into a scripting layer helps speed the development pro-
cess by reducing compilation costs and turnaround time
for bug fixes.

However, the added flexibility of a scripting level brings
with it several new costs. In particular, most scripting
languages lack any sort of compile-time type checking.
This leads to simple but aggravating errors that would
be easily caught by a type-checking compiler, such as us-
ing an invalid method name on an object. In programs
where most of the scripting code is used in the user in-
terface, such as web applications or the aforementioned
Lightroom, it is difficult to write unit tests for such code,
and the presence of type-related bugs increases the time

required for testing and QA.

The lack of static typing in the scripting layer is partic-
ularly unfortunate, because most of the objects used in
such scripts are actually implemented in code written in
the compiled layer, but all type information is thrown
away when the bridge to the scripting level is crossed.
A tool that could carry this type information into the
flexible scripting code and detect type errors would be of
great use to programmers, not as a verifier of program
correctness, but as a detector of common programming
mistakes.

This paper describes a generic system for performing type
checking of scripting-language code that extends a base
of code written in a different, compiled, statically-typed
language. It demonstrates a proof-of-concept in flint,
a type-checking and static analysis tool for the language
F-Script.

2 Type Checking For Mixed Com-
piled / Scripting Code

One possible solution to the lack of compile-time type
checking in scripting languages is to add explicit type
declarations [4]. However, proposed typing systems based
on explicit declarations have encountered significant resis-
tance from developer communities, and making changes
to the core language parser is generally not feasible for a
standalone tool.

The obvious alternative is to perform type inference.
Type inference can be very effective, as demonstrated
by the language ML [6], and the algorithms for it are
well-known. A type inference system for the mixed en-
vironments considered in this paper has the benefit of
starting with a large base of code that already has static
type annotations; combined with knowledge of common
programming patterns, the type inference is much more
tractable than the general case.

This section describes a generic system for performing
type checking of a scripting language that extends com-
piled code. The terminology is drawn from Objective-C
[1], but is applicable to many combinations of statically-
typed and non-statically-typed languages. The procedure
is concerned with finding two kinds of type errors:

1. Is an inwvalid method being called on an object? For
every class, we will have complete information about
what method names the class supports. If the type
of a value can be determined to be a set of known
classes, all invalid method errors can be detected.

2. Are the types of parameters to methods correct? This
is a more difficult problem. For classes written in the
compiled layer, the exact types of parameters will be
known. For classes written in the scripting layer,
only a restricted view of the parameter type called
a Protocol can be determined. However, since the
majority of objects in integrated compiled / scripting
programs come from the compiled layer, this will not
be a great problem.

2.1 Drawing Type Information from
Compiled Code

Many static type inference systems for languages with
dynamic checking must operate on an entire program
written in that language. For the programming envi-
ronments treated in this paper, the dynamically checked
portion of code is typically in operational units that are
far smaller than the base of compiled code. For example,
the amount of JavaScript code in the world that runs on
web browsers dwarfs the size of the actual browser code-
bases, but any particular JavaScript program is much,
much smaller than the browser that supports it.

This disparity allows us to start not from scratch, but
with a rich library of type information from the com-
piled layer. This information, which must be used by the
compiler, is always written in header files or some other
machine-readable format. The first step in our analysis
will be to read these headers and compile a library of all
the classes and methods in the compiled layer. The use
of this library is described in Section 5, “f1lint Architec-
ture”.

2.2 Type Categories

The atomic types that make up a profile are called cate-
gories in this paper’s type system. The term “category” is
used because the actual number of types is unknown, due
to the possible creation of new classes in the script pro-
gram. Table 1 lists the compatibility rules for type cat-
egories. Required types (along the top) are known from
header file information or from inference based on param-
eter use in methods written in the scripting layer.

e Id - An Id is a generic object reference that carries
absolutely no information about the referent’s type.
It can be considered the “type” of all objects in a
language that does not have static typing. Id is not
an analog of the Java class Object, which does spec-

ify several methods that all objects have. If a type
lattice were to be made from this system, Id would
be the top element.

Class - A class type represents an instance of a par-
ticular class. This may be a class that exists in the
compiled layer, in which case the method informa-
tion is read from header files, or it may be created
programmatically in the scripting layer.

Metaclass - In many scripting or higher-level lan-
guages, classes themselves are treated as first-order
objects. This “class object” is called a metaclass to
avoid confusion. Each metaclass category is associ-
ated with exactly one class category, and vice versa.
Metaclass types function just like class types, except
that they do not inherit methods from parent classes.

Protocol - When trying to infer the types of argu-
ments to methods or functions written in a language
without explicit type declarations, we will only see
a limited view of their capabilities. In an object-
oriented language, this means that we will only be
able to positively state that a parameter to a method
must implement some set of methods, not that it
must be an instance of an explicit class. The name
for this set of methods that describes the parameter
type is a Protocol. Protocols are similar to inter-
faces in Java, except that they do not have specific
names. Any class that implements all the methods
of a Protocol will be acceptable where that protocol
is needed.

Nil - While performing type inference and check-
ing, it is convenient to track nil pointers at the same
time. Some methods have parameters that can op-
tionally be nil, or that may return nil under certain
conditions, such as looking up a missing key in a
dictionary. These methods can be manually tagged
as returning a profile that also contains type Nil,
which will allow the flow of null pointers to be tracked
through the program.

Void - In many scripting languages, every method
has a return type; if no return value is reasonable
(such as for property mutators), nil is typically re-
turned. This creates a problem when using objects
originally written in a C-derived language, such as
Java or Objective-C. The void pseudo-type used for
non-returning functions cannot be directly mapped
to a scripting-level value. Void is a special type that
solves this mapping problem, and is used as a marker
to indicate that the compiled-level method did not
have a return value. It is analogous to the value
unit in ML [6].

Error - When the core type category implementa-
tions detect a type mismatch, they return a profile
containing an instance of the Error category. This

H Id Class Metaclass Protocol
Nil Yes, with warn- | Yes, with warn- | No No
ing ing
Void No No No No
Error Yes Yes Yes Yes
Id Yes Yes, with warn- | Yes, with warning Yes, with warning
ing
Class Yes If provided class | No If all methods in required
is equal to or protocol are in provided
child of required class or parent of provided
class class
Metaclass || Yes No If provided metaclass is | If all methods of required
identical to required meta- | protocol are in provided
class metaclass
Protocol | Yes No No If all methods of required
protocol are in provided
protocol

Table 1: Compatibility chart for type categories. Required types are along the top, provided types are along the left.
Nil, void, and error are never required types, so they do not have their own columns.

error object has a brief description of its cause, such
as a type mismatch or invalid method name. When
a syntax node computes its type and finds that it
is an error, it adds a message to the global log and
returns a profile containing an Error type. Errors
propagate silently through a program after their ini-
tial creation, to avoid deluging the user in duplicate
reports. In practical terms, this means that an er-
ror type responds to all methods, accepts any types
of parameters, and always returns Error from every
method. In this way, it has behavior similar to Id.

2.3 Type Profiles

It is possible that a variable may take on values of dif-
ferent types during a program, as in Listing 1, where x
has been assigned two different kinds of views. The set
of all types that have been assigned to a variable is called
a type profile. Every value, variable, or expression in a
scripting-level analysis has a proper type profile; type cat-
egories only occur as members (possibly sole members) of
a set.

2.4 Limits of the Type System

The type system used in this paper is limited to languages
in which the capabilities of objects are completely de-
termined by the class, and individual instances do not
have any ability to add or remove methods and proper-
ties. Scripting languages whose object model is based on
the system of prototypes originally implemented in Self
[11], such as JavaScript or Ruby, will not be able to ex-
press that flexibility in the above system. This paper’s
approach can still be useful in those languages; modifi-

cations to individual objects are usually rare, and if it
is assumed that they will not occur, the type systems of
those languages map easily to the above system.

2.5 Types for Object Properties

flint’s type system does not consider the properties of
objects; they are all typed as Id. Because all property
access is through methods, the use of nonexistent prop-
erties can be caught. However, no attempt is made to
determine the types of these properties, or whether get
/ set method pairs are used consistently. The analysis
of object property types would be a useful addition to a
future version of flint.

2.6 Reporting Errors

A flint program representation maintains a single,
global list of encountered warnings and errors. When
a syntax node detects that an Error object is created, it
adds a message to this list; type inference rules and ac-
tion rules can also raise errors and warnings at arbitrary
parts of the program. When an error or warning mes-
sage is added to the list, the current syntax node must
also be supplied, so that the file location can be extracted.
This makes the type system simpler by removing the need
for type category objects to carry around references to
the nodes that originally generated them, and for poten-
tially complicated rules on how file locations should be
combined when two or more type profiles are unioned to-
gether.

At the end of this analysis, the f1int program reports all
errors and warnings to the user. Some warnings, such as

the potentially dangerous use of Id types, can be turned
on or off by setting configuration flags in the f1lint pro-
gram. Currently, this must be done by modifying the
flint.fs script, as there is no command-line argument
parsing.

2.7 Expanding the Type System

The type categories described above are implemented in
flint as Objective-C classes in the analyzer core. It may
occasionally be desirable for inference rules to create new
type categories. Categories can be created in F-Script by
subclassing the root FSTypeCategory class and overrid-
ing the following methods:

1. respondsToMethod: (String)name - returns a
boolean indicating whether the type responds to a
method with the given name.

2. acceptsMethod: (String)methodName
withTypes: (Array)types - It is possible for
an object to respond to a message, but not be able
to perform the action because the provided argu-
ment types are invalid. This method is an extended
version of respondsToMethod: (String)name that
checks argument types as well as the method name.

3. returnTypeForMethod: (String)name - returns a
type profile representing the default return type for
a method name.

4. signatureForMethod: (String)name - returns a
complete method signature, including return type
and argument types.

5. isCompatibleForType: (FSTypeProfile)type - re-
turns a boolean indicating whether this type cate-
gory can be used where type is expected.

The root FSTypeCategory class also has predicate meth-
ods such as isVoid, isId, isClass: (String)className,
etc, which allow inference rules to safely test the type
of an expression. When creating a new type category,
FSTypeCategory can be extended with an additional
method like isArray that returns false; the new type cat-
egory class can override the same method with an imple-
mentation that returns true. This sort of extension to a
compiled class is due to the flexibility of the Objective-C
runtime system, and would be very difficult to simulate
in languages like Java or C++. Ruby’s “mix-ins” archi-
tecture implements similar functionality [?].

view := nil.

(showBrowser) ifTrue:[

view := NSBrowser alloc init.
]
ifFalse: [

view := NSTableView alloc init.
1.

view setNeedsDisplay:true.

Figure 1: In this example, the variable view will be
judged to have a type profile that contains two Class
types, NSBrowser and NSTableView.

3 Leveraging Coding Conven-
tions

Many proposed type checking systems for scripting or
other non-statically-typed languages, such as Smalltalk
[3], JavaScript [9], and Python [?], attempt to make guar-
antees of type safety for some portion of analyzed pro-
grams. These projects are driven as much by a desire
for as performance as for correctness; type guarantees are
necessary if the compiler is to inline method calls or make
other optimizations.

The scripting language code we consider in this paper
is not a target for optimization, and our type checking
is a tool for programmers that alerts them to possible
problems. Our analysis can forgo guarantees of sound-
ness, and instead concentrate on finding problems that
are most likely to occur in actual code.

This is especially valuable for programs written in a lan-
guage like F-Script, which has very few syntactic con-
straints on the organization of code. Classes in F-Script
are created programmatically, so theoretically it is not
decidable how many classes will be in a given program or
what their capabilities are. This makes it extremely diffi-
cult to prove type correctness; the systems cited above go
to great lengths to be certain they have not missed any
changes to the type environment.

However, in practice, most classes in scripting languages
are written in a fairly standard way. For example, in Perl
[12], each class is defined in one file that has the same
name as the class. F-Script has a similar convention.
If we assume that the programmer will be following this
convention, our type inference algorithm can be simplified
significantly.

In short, we take for granted that the programmer is being
“reasonable” and is writing “reasonable” code that hews
to common coding standards, even if the language does
not strictly enforce them. These assumptions will cause
flint to miss some errors in very sophisticated or flexible
code, or to report errors where none actually exist. These
cases we leave to the judgement of the programmer, just

as the C compiler assumes that, when casting to voidx,
the programmer knows what is going on.

4 Rule-Based Program Analy-
sis

flint’s analysis is based on “rules”: heuristics that per-
form type inference and model program state. All rules
in flint are based on standard programming practices,
and work by recognizing syntactic and type patterns.
Rule-based analysis and inference allows flint to con-
centrate on finding the most common errors, without us-
ing an overly complicated algorithm that is completely
sound.

flint uses rules for two purposes: custom type inference,
and changes to the model of the program being analyzed.
Both are triggered by recognition of syntactic patterns,
based on coding conventions. Both kinds of rules are ap-
plied directly to syntax nodes, with the current program
state available as a global variable. Model rules are ap-
plied once to every syntax node in the program; type
rules will be executed only on demand, when a syntax
node needs to compute its type.

A flint rule is composed of two pieces: a matching con-
dition and an action. The matching condition is an array
of anonymous functions, each of which takes the current
syntax node as an argument. Each function must return
true for the rule to match; the evaluator will short-circuit
on the first function that returns false. With this be-
havior, the matching condition could be interpreted as a
series of predicates in conjunctive normal form.

The CNF model has two benefits. First, short-circuiting
allows unnecessary parts of the condition to be skipped,
speeding evaluation time. This is especially important
for model rules, all of which will be applied to every node
in the program. For improved efficiency, flint attaches
both kinds of rules to specific kinds of nodes; a rule that
is only relevant to message nodes will never be attached
to identifiers.

The second benefit is that short-circuiting acts as a guard
against conditions that may raise exceptions. Consider
the following rule that evaluates node n:

(n is a message) AND (the receiver of n
is a String) AND (the message name is
toUpperCase)

If n is not a message node, the second condition will throw
an exception, because other kinds of nodes do not have a
“receiver” property. In a language like F-Script that does
not have static typing, there is no way to protect against
these errors besides using guard conditions.

4.1 Type Inference Rules

Every syntax node has a default behavior for computing
its type. Literals return the literal object type, identi-
fiers look up the currently computed type for the vari-
able, Blocks return the type of their last expression, and
so on. These behaviors are overridden when a type in-
ference rules matches that node. flint will match type
inference rules against nodes only when it is strictly nec-
essary; that is, only when some other piece of the pro-
gram, such a model rule, has requested the type of the
node.

The matching condition for type inference rules can be
dependent on other type information, such as the types
of a node’s children. Since the program representation is
a tree, and since each node will only determine its type
once, the type inference process is guaranteed to termi-
nate, and the final type model for the program will always
be decidable.

4.2 Program Model Rules

Program model rules build up £1int’s model of the pro-
gram state, including the symbol table, types of variables,
names and capabilities of classes, and lists of errors and
warnings. Unlike type rules, every model rule is matched
against every relevant node; i.e., if £1int has 6 rules that
apply to method calls, every one of those rules’ match
conditions will be applied to every single method call in
the entire program. Also unlike type rules, more than one
model rule can match a node, and a single node can thus
make multiple changes to the program state.

There are four types of syntax nodes that £1int considers
(other node types, such as Program and File, are used
only for organization):

1. Identifier - Identifiers are the names of either vari-
ables, which are lexically scoped to either a closure
or the entire program; or built-ins, such as sys, true,
false, and the names of classes.

2. Assignment - Assignment to a variable, in the format
var := expression. One rule for assignments com-
putes the type of the rvalue and sets it as the type
for the identifier on the left-hand side. Another rule
checks to see if the assignment is in a more deeply
nested scope than that at which the variable was
declared; this indicates that the assignment may be
inside a conditional or loop, and is not guaranteed to
be executed. In this case, the rvalue type is added
to the type profile for the identifier, rather than re-
placing it. The latter rule will raise a warning that
the flint.fs script will report to the user.

3. Literal - Literal objects in F-Script include arrays,

strings, booleans, numbers, and selectors (analogous
to atoms or symbols in other languages).

4. Message - A “message”, in Smalltalk terminology, is
the invocation of a method on an object. A message
node has a receiver (which may be an identifier or an-
other expression), a name (also called the “selector”
of the message), and a variable number of argument
expressions.

5 flint Architecture

The flint tool is composed of two pieces: a compiled
module that hooks into the F-Script interpreter to build a
syntax tree, and a program written in F-Script, flint.fs,
that loads custom type and action rules and drives the
analyzer.

5.1 Syntax Analyzer

flint uses the F-Script interpreter framework to parse
script files, but it does not directly use the generated
syntax tree. The F-Script internal representation of a
program is designed for immediate evaluation, not static
analysis, and has a number of nodes that are either not
supported by flint (such as advanced messaging pat-
terns) or that can be trivially reduced to other kinds of
nodes. The F-Script interpreter also does not keep accu-
rate enough file locations to be useful for error reporting.
For these reasons, the flint core builds a separate, but
similar, parse tree based on that used by the F-Script
interpreter, with a simplified syntax and better location

tagging.

The other half of the flint core is the type inference
system and classes for the built-in type categories. These
classes implement the default type inference rules, which
are overridden by custom rules in the flint.fs script.
Each syntax node computes its type at most once. When
anode’s type is requested with the type method, it checks
to see if it has cached a type profile from the last time
type was called. If not, it runs through all the currently
registered custom rules for its kind of node, and executes
the first that matches. If no rule matches, it executes its
defaultType method.

The flint analyzer is currently implemented as a cus-
tomized version of the F-Script framework. To be publicly
released, the f1lint code will have to be fully extracted,
as requiring users to replace their F-Script installation is
not reasonable. Luckily, there are only two firm points at
which £lint directly ties into the F-Script code: in the
implementations for closures and symbol tables.

Otherwise, the f1int only uses the existing methods of

the F-Script interpreter classes. These methods are un-
published and partly undocumented, but can be accessed
from outside code if the interface is known. There are
workarounds for the few alterations mentioned above; al-
though not officially sanctioned, they will permit f1int to
be extracted into a completely separate framework with
minimal effort.

5.2 flint.fs Script

The user-interface of the tool is flint.fs, an F-Script
program that is invoked by passing it the name of an F-
Script file. flint.fs will load the flint framework, have
it parse the file, and then perform the program analy-
sis.

While the analyzer core is responsible for the application
of type inference rules, flint.fs drives the application of
program model rules. The tool walks through the syntax
tree returned by the analyzer core in depth-first order,
trying every relevant rule against each node. Any rule
that matches will have its action executed. A global state
of the program model, in the form of symbol tables and
class information that is maintained by the analyzer core,
is altered by these actions as more information about the
program becomes available.

As the program is analyzed, certain rules will trigger ac-
tions that load and parse more code, such as sys import:
statements. These rules recursively invoke the tree walker
on the new code. The top-level FSProgram syntac-
tic object keeps track of which module files have been
loaded, preventing circular references or multiple inclu-
sion.

When the program has been completely processed,
flint.fs prints out any errors and warnings that were
raised, along with files and line numbers / positions on
which they occurred.

All of the custom type inference and program model rules
are contained within flint.fs. To add additional rules,
the tool’s code must be modified; these modifications only
require adding additional rules to the end of arrays in
appropriate places.

6 Type Inference Example

Figure 2 lists a snippet of F-Script code that will demon-
strate £lint’s type-inference process. In F-Script, as in
its parent language Smalltalk, there is no explicit lan-
guage construct for conditionals. Instead, a Boolean ob-
ject is sent a special message, ifTrue:ifFalse:, with two
closures as arguments. It picks the correct one, evaluates
it, and returns the value returned by that closure. In this

sense, it is closer to the boolean conditional of simple
lambda calculus than the special form of LISP.

The Boolean class is implemented in Objective-C, so
we can read the headers to find that it accepts the
ifTrue:ifFalse: message. Unfortunately, because the
compiled layer has no way of knowing the contents of the
Blocks, the message has only the return type Id. This
is undesirable, because it obliterates any possibility of
recognizing type errors involving the return value of the
if/else or anything that uses it downstream.

However, we can use our pattern-matching inference rules
to recognize conditionals and properly compute their
type. The following conjunctive list of predicates will
recognize an if-else structure in F-Script:

1. Is the node a message?

2. Does the type profile of the receiver contain the Class
Boolean?

3. Is the message name ifTrue:ifFalse:?
4. Are both the arguments literal Blocks?

If all of these conditions are satisfied, the action taken will
be to return a type profile that is the union of the two type
profiles of the Block arguments. This will involve asking
the Blocks to compute their types, which may involve
recursive computation of types inside the Block, if there
are other nested conditionals. Since nodes always cache
type information and only compute it once, the cost of
this process is at most linear in the number of nodes under
the ifTrue:ifFalse: message node.

For the example in Figure 2, the type computed for vari-
able a will be a profile containing the Class type categories
NSString and NSNumber. When attempting to discover
the type for the assignment to b, £1lint will look in the
header-derived information for the two classes in a’s pro-
file. Both implement an intValue method: for NSString,
it parses an integer from the string; for NSNumber, it
truncates the floating-point value to an integer. Both
return a type profile containing the lone category Class
NSNumber. The union of these two identical profiles will
result in the type profile for b containing a single Class
NSNumber category.

If (x < y) is not a valid operation (i.e., if x is a String
and y is a Number), then the type of that receiver will
be Error, and the error will be silently propagated to
a, b, and other downstream variables. Similar rules can
be used to recognize loops, class creation, and method
addition, none of which have language-defined syntactic
forms.

a := (x <y) ifTrue:[
out println:’blah’.

)67
]
ifFalse: [
5.5
1.
b := a intValue.

Figure 2: Example of inferring types based on syntax
patterns.

7 Conclusions and Further

Work

flint serves as a proof-of-concept for performing type
checking in mixed programing environments. The sys-
tem it implements is promising, but more work is needed
before it can be used on production code.

7.1 Public Release

To release flint to the F-Script community, three tasks
must be completed, in increasing order of time re-
quired:

1. Extract flint code from the modified F-Script core
and repackage it as a separate module.

2. Clean up the flint.fs script and improve the user
interface.

3. Port flint and associated tools to Mac OS X 10.5;
this includes building 64-bit versions for both x86
and PowerPC.

The last step will take the longest, probably one or two
weeks; the tools flint uses are heavily involved in the
Objective-C runtime, which was completely rewritten by
Apple for Mac OS X 10.5. Once the supporting tools
are ported, building flint for release will be relatively
easy.

7.2 Additional Testing

So far, flint has only been tested on small cases con-
structed specifically for development. It has not been
tested on a large body of production code. There are
several commercial and academic programs that use F-
Script (listed on www.fscript.org), which could provide
more information on flint’s real-world utility. The F-
Script developer community is small, but enthusiastic; it
is likely that the public release of f1int would generate
enough feedback to determine whether the approach in

this paper is useful.

7.3 Typing for Collections

One weakness of flint is that it does not have any sup-
port for collections. The compiled layer does not provide
any help, as Objective-C arrays are heterogeneous, like
unparameterized Java collection classes. It would be very
useful for developers to have better collection typing, so
that arrays could keep track of the types of objects they
contain.

Beyond catching errors on simple insertion/access, sup-
port for F-Script’s special array handling is also desir-
able. F-Script extends APL’s array processing semantics
to collections of objects; this extension is called “object-
oriented array programing” [7]. For example, the follow-
ing is legal F-Script code. It will produce a new array that
contains the values in arril, incremented by 10:

{5, 6,7, 87%.
arrl + 10.

arrl :=
arr2 :

flint’s current type inference system would flag arr2
as containing an error, because the + operator is not
supported by the NSArray class. Array handling could
be implemented with inference rules that create custom
types whenever arrays are encountered, either by literal
notation or using allocation methods of NSArray and NS-
MutableArray. A custom type category, written in F-
Script, could handle the special style of method applica-
tion, providing more information than is strictly available
in the Objective-C headers.

7.4 Object Properties

As previously mentioned, f1int does not attempt to de-
termine the types of object properties for classes written
in F-Script. This leads to a great loss of precision when
analyzing code that implements methods for these classes.
Being able to infer the types of properties and detect the
consistency of their use would be very valuable to pro-
grammers. This would be a considerable effort, and de-
signing an algorithm to accurately infer these types would
probably take more time than any other future step in this
section.

References

[1] Apple Inc, “The Objective-C Programming Lan-
guage”, 2006.

[2] William R. Cook, “The Development of Apple-
Script”, Proceedings of the Third Conference on His-
tory of Programming Languages, 2007.

[3] Craig Chambers and David Ungar, “Iterative Type
Analysis and Extended Message Splitting: Optimiz-
ing Dynamically-Typed Object-Oriented Programs”,
SIGPLAN 1990 Conference Proceedings, 1990.

[4] Gilad Bracha and David Griswold, “Strongtalk:
Typechecking Smalltalk in a Production Environ-
ment”, Proceedings of the ACM SIG-PLAN confer-
ence on OOPSLA, 1993.

[6] Mark Hamburg, “Its All Glue: Building a desktop
application with Lua”, presented at the Lua Work-
shop, 2005.

[6] Robin Milner, Mads Tofte, and Robert Harper, “The
Definition of Standard ML”, MIT Press, 1990.

[7] Phillipe Mougin and Stephane Ducasse, “OOPAL:
Integrating Array Programming in Object-Oriented
Programming”, OOPSLA 2003 Conference Proceed-
wngs, 2003.

[8] Nathanael Schaerli, Stephane Ducasse, and Oscar
Nierstrasz, “Classes = Traits + States + Glue”, Pro-
ceedings of The Inheritance Workshop at ECOOP,
2002.

[9] Peter Thiemann, “Towards a Type System for Ana-
lyzing JavaScript Programs”; FEuropean Symposium
On Programming, 2005.

Mike Salib, “Starkiller: a type inference system for
Python”, presented at PyCon, 2004.

David Ungar and Randall B. Smith, “Self: The
Power of Simplicity”, OOPSLA 1987 Conference
Proceedings, 1987.

Larry Wall, Tom Christiansen, and Jon Orwant,
“Programming Perl 3rd Edition”, O’Reilly Media,
2000.

