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Abstract

According to some recent study from the American Hospital
Association, more than 71 million individuals in the United
States are admitted to hospitals each year. However, a consid-
erable number of hospital admissions turn out to be unnec-
essary, and studies have shown that much money (e.g., over
$30 billion in 2006) has been wasted on such unnecessary
admissions.
In this paper, we study the problem of predicting how many
days a patient will spend in a hospital in the next year.
Such prediction is valuable, since once known, health care
providers can develop new care plans and strategies to reach
patients before emergencies occur, thereby reducing the num-
ber of unnecessary hospitalizations.
We focus on leveraging machine learning algorithms in this
study. Specifically, we model the predictive problem in two
different ways, either as a multi-class classification task, or as
a regression task. We discuss the details of the algorithms we
employ for each aspect, and present results from an extensive
experimental evaluation.

1 Introduction
Today, more than 71 million individuals in the United States
are admitted to hospitals each year, according to the latest
survey from the American Hospital Association. However,
a considerable number of hospital admissions turn out to be
unnecessary, which causes huge wastes of money. For ex-
ample, studies have pointed out that in 2006, over $30 bil-
lion was spent on unnecessary hospital admissions (HPN
2011). As a result, understanding how long a patient will
spend in a hospital each year can be beneficial. Based on
such knowledge, health care providers can develop new care
plans and strategies to reach patients before emergencies oc-
cur, thereby reducing the number of unnecessary hospital-
ization.

Recently, the Heritage Provider Network (HPN) organizes
an online competition (HPN 2011) for this predictive prob-
lem. Although the competition is still ongoing, the best re-
sult from the top teams on the leaderboard is around 45%
Root Mean Squared Logarithmic Error (RMSLE, see Sec-
tion 2), which is not very promising. As we will discuss in
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this paper, the problem turns out to be challenging in prac-
tice, for reasons from both the data we have and the problem
itself. In short,

• Unlike most of the machine learning problems for which
training data is scarce, the dataset (see Section 2) used
in this problem consists plenty of records. However, the
set of features used to characterize each record is limited,
much less than the number of records we have. On the
other hand, due to the highly skewed distribution of the
target attribute (i.e., the number of days a patient will stay
in a hospital) values (see Section 4.1), it is difficult to find
indicative features that are highly correlated with the tar-
get attribute, even after applying some feature selection
algorithms.

• Instead of predicting whether a patient will be in hospital
next year, the problem requires to predict the exact num-
ber of days he/she will stay. Basically, this is a regres-
sion problem since we need to predict some continuous
attribute. It is generally believed in machine learning re-
search community that regression problems are more dif-
ficult than classification problems, for which we are only
supposed to answer yes or no. In practice, fewer number
of existing machine learning models can be applied to re-
gression problems than classification problems.

In this paper, we leverage machine learning algorithms
in developing predictive models for this problem. Our goal,
however, is not to beat the existing results by getting some
higher precision. Instead, we are interested in the perfor-
mance of each individual machine learning algorithm, and
try to understand why some approaches work better than the
others. Therefore, we evaluated several existing models that
are well accepted as among the best ones for general ma-
chine learning applications, and we gave detailed compari-
son and analysis for their performance. We think the lessons
learned from this study can provide useful insights for future
researches on this problem.

The rest of the paper is organized as follows. Section 2
analyzes the problem in detail. We focus on discussing the
dataset we have, and metrics that could be used to measure
the performance of the models. Section 3 describes the ma-
chine learning algorithms we will use in our experiments.
We also discuss related issues such as the features employed
to represent each data record. Section 4 reports the results



from our experimental evaluation, and Section 5 gives them
a thorough analysis. We conclude the paper in Section 6.

2 Problem
In this section, we first describe the dataset in hand, and then
discuss possible problem settings and performance metrics.

2.1 Dataset
The dataset is publicly available at (HPN 2011). Here we
give it a brief overview. As shown in Appendix A, there are
5 tables in the dataset: Members, Claims, Drug Count, Lab
Count, and Outcome:

• The Members table contains basic information such as
member ID and gender for each patient. It also contains
the member’s age when his first claim was made.

• The Claims table contains information describing each
claim. Except for attributes like the time and place that the
claim was made, it also includes other important features
such as the primary condition group and the Charlson in-
dex of the patient.

• The Drug Count table includes information about pre-
scription drugs.

• The Lab Count table includes information about labora-
tory and pathology tests.

• The Outcome table contains information about the days
the patient stay in hospital in the two years Y1 and Y2.

2.2 Problem Analysis

The predictive problem is defined as to use a patient’s
record in the year Y1 to predict how many days he/she will
stay in hospital in the year Y2. At a first glance, it is quite
natural to model the problem as a regression task, since we
are trying to predict numerical values instead of categori-
cal labels. However, as shown in the Outcome table (see Ta-
ble 15 in Appendix A), since the possible number of days
that a patient can stay in hospital is limited to up to 15, it is
also reasonable to model the problem as a multi-class clas-
sification task. In this paper, we will investigate learning al-
gorithms in both ways, and we will compare the difference
in performance when we view the problem in these two dif-
ferent aspects.

2.3 Performance Metrics
In machine learning literature, several performance metrics
have been frequently used to measure the performance of
the predictive models. For instance, the well-known off-the-
shell Weka package (Hall et al. 2009) uses the following four
metrics to indicate the errors caused by incorrect prediction:

• Mean Absolute Error (MAE), defined as:

EMAE =
1

n

n∑
i=1

|Pi − Ti|.

• Root Mean Squared Error (RMSE), defined as:

ERMSE =

√√√√ 1

n

n∑
i=1

(Pi − Ti)2.

• Relative Absolute Error (RAE), defined as:

ERAE =

∑n
i=1 |Pi − Ti|∑n
i=1 |Ti − T̄ |

.

• Root Relative Squared Error (RRSE), defined as:

ERRSE =

√∑n
i=1(Pi − Ti)2∑n
i=1(Ti − T̄ )2

.

Here Pi and Ti are the predicted value and actual value of
the testing example i, respectively, while T̄ = 1

n

∑n
i is the

mean of the actual values of the testing examples.
Different performance metrics have different emphasis.

Intuitively, squared errors will emphasize more on the pre-
dictions for the outliers, while relative errors try to take the
inherent variance within the test examples into considera-
tion. Therefore, they can give us different insights into the
performance of a learning algorithm. In this study, for each
algorithm we investigated, we will report all these perfor-
mance metrics. Meanwhile, we also leverage a fifth metric
named Root Mean Squared Logarithmic Error (RMSLE),
which is defined as

ERMSLE =

√√√√ 1

n

n∑
i=1

[ln(Pi + 1)− ln(Ti + 1)]2.

The only difference of ERMSLE from ERMSE is that it
applies the logarithmic function to both the predicted and
actual values before calculating the root mean squared error.
The “+1” here just ensures that the logarithmic function is
always applied to a value that is greater than 0.

The effect of introducing the logarithm function is to bal-
ance the emphasis on small and big predictive errors. For ex-
ample, consider a testing example with actual value 0. Sup-
pose the predicted value is 15 (i.e., the upper bound of the
target value in our predictive problem), and assume this is
the only example we have in our testing set (i.e., n = 1 in
the above formulas). Then EMAE = ERMSE = 15, while
ERMSLE = 2.77. On the other hand, if the predicted value
is 1, then EMAE = ERMSE = 1, while ERMSLE = 0.69.
As we can see, metrics like EMAE and ERMSE are dom-
inated by big predictive errors, while ERMSLE is less af-
fected by such kind of errors. Since big predictive errors
often come from a small fraction of outliers in the testing
data, ERMSLE can justify the performance of the algorithm
more fairly. Due to this reason, ERMSLE is also used as the
performance metric in the official online competition (HPN
2011).

3 Method
We describe our method in this section. The two major
problems of leveraging machine learning in an application



are feature selection and model selection. Feature selection
picks up a set of relevant features that are (ideally) statisti-
cally correlated with the target attribute to be predicted, and
model selection chooses a good learning algorithm with re-
spect to the characteristics of the available features and the
constraints on available computational resources. Therefore,
we will focus ourselves on discussing these two problems.

3.1 Feature Selection
The goal of feature selection in our problem is to select
a set of relevant features that can effectively characterize
each patient. Since the information about a patient is scat-
tered across the five tables, we first join them based on the
MemberID attribute in each table. We load the data into
the MySQL database, and then issue a SQL query (see Ap-
pendix B) to perform this join operation. The result is a big
table with each row containing the information about one
claim made by one patient. However, since our prediction
is for each patient, not for each claim, we need some way to
aggregate the information from the claims made by the same
patient. We next describe our aggregation method in detail.

While some attributes such as Sex are single-valued,
which can be directly used as features, most of the other
attributes are multi-valued. For instance, there are 12 pos-
sible values for the attribute Specialty. For such attributes,
we use multiple features to represent one single attribute,
with one feature corresponding to one possible value of the
multi-valued attribute. In addition to the attributes that can
be directly obtained from the data set, we also add new fea-
tures based on aggregated information such as the number of
claims made by a patient. Table 1 to 3 list the set of features
we used in detail.

Here, the features are divided into 3 groups, with the first
group mostly including features from individual patient’s
personal information, the second group including features
from the information of the place whether the treatment is
served, and the third group mostly including features aggre-
gated from claims made by each patient. The three groups
contain 86, 22, and 30 features, respectively, and therefore
we have 138 features in total. As shown in the tables, fea-
tures can be either binary (denoted by BIN) or numerical
(denoted by NUM). A binary feature can only take the vale
0 or 1, while a numerical feature can take any real number.

3.2 Model Selection
As mentioned in Section 2.2, our predictive problem can be
modeled either as a regression task or a multi-class classi-
fication task. We discuss algorithms in both categories, re-
spectively.

When deciding the algorithms to be used, besides its accu-
racy on prediction, we also need consider two other impor-
tant factors. First, the conditions assumed by the algorithm
should roughly hold on the available dataset. For example,
Naive Bayes assumes that, given the target attribute, the fea-
tures are independent of each other, while such assumptions
may not hold on a particular dataset. Second, the algorithm
should be relatively efficient, with respect to the given re-
striction on computational resources such as the available
amount of memory. Considering the large amount of data

Table 1: Individual Features
ID Name Type Description

1
-10 Age BIN

10 features indicating
whether the age at the first
claim is from 0 to 9, from
10 to 19, from 20 to 29,
from 30 to 39, from 40 to
49, from 50 to 59, from 60
to 69, from 70 to 79, above
80, or missing.

11
-13 Gender BIN

3 features indicating
whether the gender is
male, female, or missing.

14 ClaimTrunc BIN Whether the claims are
truncated.

15
-60 PCG NUM

45 counts for Primary
Condition Groups of
ICD-9-CM Codes, plus 1
count for missing PCG.

61
-78 PG NUM

17 counts for Procedure
Groups CPT Codes, plus 1
count for missing PG.

79 N Claim NUM # of claims made.
80 N Provider NUM # of providers.
81 N Vendor NUM # of vendors.
82 N PCP NUM # of PCP’s.
83 N Spec NUM # of specialty.
84 N Svc NUM # of places of service.
85 N PCG NUM # of PCG’s.
86 N PG NUM # of PG’s.

Table 2: Service Features
ID Name Type Description

87
-99 Specialty NUM

12 counts for Specialty
Groups of, plus 1 count
for missing specialty.

100
-108 PlaceSvc NUM

8 counts for Place of
Service Groups, plus 1
count for missing value.

we have (around 76,000 members and 780,000 claims for
the year Y1), efficiency is an important factor affecting our
choice on the learning algorithms.

Multi-class Classification For the purpose of multi-class
classification, we choose to use Support Vector Machines
(SVMs) and Random Forests (RFs) as our learners.

• SVM (Cortes and Vapnik 1995) is well recognized as
among the classifiers with best performance in general-
purpose binary classification applications. However, us-
ing standard Quadratic Programming (QP) approaches to
train SVM is too slow. For efficiency purpose, we use
the Sequential Minimal Optimization (SMO) proposed
in (Platt 1999) to train the SVM. The multi-class classi-
fication problem is reduced into multiple binary classifi-
cation problems by leveraging a one-versus-all approach,
namely, we build binary classifiers that distinguish be-



Table 3: Aggregation Features
ID Name Type Description

109
-113 LenOfStay NUM

Minimum, maximum,
mean, range, deviation
for the length of stay.

114 N LOS M NUM Counts for missing
LenOfStay.

115 N LOS K NUM Counts for known
LenOfStay.

116 N LOS S NUM Counts for supressed
LenOfStay.

117
-121 DSFS NUM

Minimum, maximum,
mean, range, deviation
for DSFS.

122
-126 Charlson NUM

Minimum, maximum,
mean, range, deviation
for Charlson index.

127
-131 LabCount NUM

Minimum, maximum,
mean, range, deviation
for LabCount.

132 N LabRec NUM # of lab records.

133
-137 DrugCount NUM

Minimum, maximum,
mean, range, deviation
for DrugCount.

138 N DrugRec NUM # of drug records.

tween one of the classes to the rest. Classification is then
done by a winner-takes-all strategy, in which the classifier
with the highest output function assigns the class.

• RF (Breiman 2001) is an ensemble classifier that consists
of a lot of decision trees and outputs the class by lever-
aging a simple voting strategy, i.e., it will output the class
that receives the most number of votes from individual
trees. The basic idea behind RF is to use bagging and ran-
dom selection of features (as roots of subtrees) to increase
the diversity of the trees so built. RF is also recognized
as one of the best learning algorithms available. Another
reason for us to choose it is its efficiency. RF can still run
very fast even on datasets containing tens of thousands
of training examples, which may be prohibitive for many
other classifiers.

Regression Regression is generally admitted as more dif-
ficult than classification problems, and there are fewer ma-
ture approaches that are generally recognized as powerful.
Therefore, we leverage two simple models with regarding
to linear and nonlinear aspects of the problem. For the linear
case, we use simple linear regression, while for the nonlinear
case, we use regression trees. Regression trees share similar
idiocrasy as decision trees, with the difference that they put
numerical values in their leaves, instead of categorical labels
as in decision trees. We consider both Reduced Error Prun-
ing (REP) trees (Quinlan 1987), which is a variant of stan-
dard regression trees plus some pruning strategy, and Model
trees (Quinlan 1992), which takes the idea to replace some
subtrees with linear regression models.

Ensembles In addition to using a single model to do pre-
diction, we also use ensembles of models to build more pow-
erful predictive models. In particular, we focus on Boost-
ing (Freund and Schapire 1995). The idea of boosting is to
build a series of classifiers where subsequent classifiers built
are tweaked in favor of those training examples misclassi-
fied by previous classifiers. The output is combined from
individual classifiers with a weighted-voting strategy, where
the output from each classifier is weighted according to its
performance on the training data. Bagging, which is another
popular ensemble approach, has been exploited in Random
Forests, and hence we do not consider it again here when
assembling the individual models we discussed in this sec-
tion.

4 Experiments
We conduct extensive experiments to compare the perfor-
mance of the models discussed in the previous section. In
this section, we report and analyze the results we obtained.

4.1 Statistics of Data
As mentioned in previous sections, we use the data in Y1 as
our training set, and use the data in Y2 as our testing set. In
total, we have 76,038 records (i.e., members) in the training
set, and 71,435 records in the testing set. Table 4 further
shows the distribution of members, according to the days
they are admitted in hospital in Y1 and Y2, respectively.

Table 4: Distribution of members
Days # of Members (Y1) # of Members (Y2)

0 64,269 60,706
1 4,835 4,464
2 2,366 2,182
3 1,453 1,429
4 977 842
5 565 528
6 373 287
7 256 218
8 173 143
9 148 115

10 106 103
11 80 65
12 73 62
13 61 50
14 42 23
15 261 218

As we can see from Table 4, the data exhibits two impor-
tant characteristics. On one hand, the distributions of mem-
bers in Y1 and Y2 are very similar, which means the number
of days patients stay in hospital are statistically stable. This
is good news if we wish to build some statistical model to do
the prediction. However, on the other hand, the distribution
of members in each year is highly skewed, with a dominant
value covering most of the records. Here, each year, almost
85% of the patients are actually not admitted in hospital.
This skewness, as we will see in later sections, raises great
challenge for existing state-of-the-art machine learning al-
gorithms.



4.2 Baseline Approaches
We leverage two naive approaches as our baselines. The first
approach blindly predicts the target attribute with the most
frequent value appearing in the training data. As shown in
Table 4, among the 76,038 members with at least one claim
in the year Y11, 64,269 (about 84.5%) of them were actually
not admitted into hospital. Therefore, this approach will pre-
dict everything as 0, and we name it as AllZero. The second
baseline approach simply uses the number of days a patient
stay in hospital in the year Y1 as its prediction for the num-
ber of days this patient will stay in hospital in the year Y2.
We name this approach as SameAsY1.

Table 5: Results of baseline approaches
Model MAE RMSE RAE RRSE RMSLE
AllZero 0.460 1.642 0.591 1.042 0.520
SameAsY1 0.719 1.980 0.925 1.256 0.611

Table 5 shows the performance of the baseline ap-
proaches. SameAsY1 performs worse than AllZero. This in-
dicates that, although the distributions of members in Y1 and
Y2 are close, for an individual patient, the days he/she stays
in hospital each year can be quite different.

4.3 Results of Single Models
We extract features in the way described in Section 3.1, and
we implement the models discussed in Section 3.2 by lever-
aging libraries from Weka. For support vector machines, we
use the RBF kernel (i.e., Gaussian kernel). Parameters for
each algorithm are set to be their default values in Weka.

Table 6 to 8 shows the results for single models with-
out ensembles. Here, SVM is short for support vector ma-
chine, RF is short for random forest, LR is short for linear
regression, REP is short for regression tree, and M5P is short
for model tree. As discussed in Section 3.1, SVM and RF
are multi-class classification algorithms, while LR, REP and
M5P are regression algorithms. For SVM, we are not able
to run it over the entire training set, and the results reported
are based on a smaller training set consisting of 10,000 ran-
domly sampled records.

Table 6: Results of single models (86 features)
Model MAE RMSE RAE RRSE RMSLE
SVM 0.438 1.593 0.588 1.040 0.506
RF 0.449 1.610 0.603 1.051 0.509
LR 0.479 1.522 0.644 0.994 0.487
REP 0.479 1.535 0.644 1.002 0.488
M5P 0.492 1.529 0.661 0.998 0.490

We have some interesting observations from Table 6 to 8.
First, regression algorithms perform better than multi-class
classification algorithms. One possible interpretation for this
may be that, in this problem, the target attribute is con-
tinuous by its semantic, although it only has discrete val-
ues. Multi-class classification algorithms usually treat target

1Recall that we use the records from Y1 as training set, and the
records from Y2 as testing set.

Table 7: Results of single models (108 features)
Model MAE RMSE RAE RRSE RMSLE
SVM 0.438 1.593 0.588 1.040 0.506
RF 0.447 1.600 0.600 1.045 0.509
LR 0.479 1.521 0.644 0.993 0.487
REP 0.484 1.530 0.651 0.999 0.491
M5P 0.479 1.521 0.644 0.993 0.487

Table 8: Results of single models (138 features)
Model MAE RMSE RAE RRSE RMSLE
SVM 0.438 1.593 0.588 1.040 0.506
RF 0.444 1.599 0.597 1.044 0.508
LR 0.482 1.513 0.647 0.988 0.485
REP 0.482 1.529 0.647 0.998 0.491
M5P 0.494 1.537 0.664 1.003 0.494

classes as completely irrelevant, which may be not true here.
Second, the algorithms within each category (i.e., regres-
sion or multi-class classification) have close performance.
Third, increasing the number of features has different ef-
fect for different algorithms. For SVM and RF, it seems
that they are insensitive to the new features added. For LR,
adding features slightly improves its performance. For REP
and M5P, however, introducing new features actually down-
grades their performance. Fourth, quite surprisingly, LR (i.e.,
linear regression), the simplest model we used, outperforms
all the other more complicated models.

4.4 Results of Ensembles
We further tested ensemble algorithms. Since regression al-
gorithms perform better than multi-class classification algo-
rithms, we focus on applying Boosting to regression algo-
rithms. Specifically, we use Additive Regression (Friedman
1999) (i.e., Stochastic Gradient Boosting), which is a variant
of Boosting that can be applied to regression models. Table 9
summarizes the results.

Table 9: Results of additive regression
Model MAE RMSE RAE RRSE RMSLE

86 Features
LR + AR 0.479 1.522 0.644 0.993 0.487
REP + AR 0.480 1.528 0.645 0.997 0.486
M5P + AR 0.489 1.524 0.657 0.995 0.489

108 Features
LR + AR 0.480 1.521 0.645 0.993 0.487
REP + AR 0.479 1.524 0.644 0.995 0.487
M5P + AR 0.479 1.520 0.644 0.992 0.487

138 Features
LR + AR 0.482 1.513 0.647 0.988 0.485
REP + AR 0.473 1.537 0.635 1.003 0.487
M5P + AR 0.482 1.513 0.647 0.988 0.485

Basically, boosting performs no worse than the original
models without boosting, as expected by the theoretical jus-
tification of ensemble algorithms that they usually outper-
form underlying weaker learners. Nonetheless, the perfor-



mance gain obtained by leveraging boosting seems not re-
markable. Actually, in some cases, it does not enhance per-
formance at all.

Finally, we test ensembles with 4 different underlying
models: RF, LR, REP, and M5P. This gives us 0.482 RM-
SLE, which is the best performance we obtained so far.

5 Discussion
Based on the results from our experiments, the best perfor-
mance is about 0.482 in terms of RMSLE. This sounds not
very exciting, since the baseline approach AllZero already
gives performance at about 0.520. On the other hand, how-
ever, since the best result known so far is 0.454 (HPN 2011),
our result seems already not bad.

The problem, of course, is then, why is it so difficult to
improve the performance over the baseline? Actually, this
question is not difficult to answer. As we have mentioned in
Section 4.1, according to Table 4, around 85% of the patients
will finally not be admitted in hospital. This is the same for
both the training and testing data. As a result, if we measure
the performance in terms of accuracy instead of RMSLE, Al-
lZero can predict 85% of the patients correctly, which is al-
ready an amazing number. Therefore, a classifier that wants
to beat the baseline has to predict correctly for more than
85% of the patients.

Recall that the two key steps in developing a good pre-
dictive program is to first pick a set of good features and
then pick a good machine learning algorithm. Hence, to en-
hance performance, a natural question to ask is whether our
features and learning algorithms can be improved. We next
discuss these two factors one by one.

5.1 Features
With respect to the results from the previous section, differ-
ent sets of features do affect the performance, although the
effect may be either positive or negative, depending on the
specific learning algorithms employed. As a result, it is pos-
sible that by carefully picking a subset of features, we can
achieve better performance.

We developed a simple greedy feature selection algorithm
(see Algorithm 1). Basically, it starts with a set S of seed
features, and repeatedly iterates over all the features that are
not picked yet. During each iteration, it tries to find some
feature f that minimizes RMSLE of the model M on fea-
tures F ∪ {f} (line 5 to 14). If the minimum RMSLE εmin

is less than the RMSLE ε fromM on current features F , f
is then included into F (line 15 to 17). This procedure ter-
minates when F does not change any more.

Table 10 gives some results by leveraging this simple fea-
ture selection algorithm on different sets of seed features.
Here, linear regression is used as the specific machine learn-
ing model for the purpose of this study on feature selection.
The numbers in S and F are the ID’s of the features listed in
Table 1 through 3. Due to space limitation, for performance
metrics, we only report RMSLE by leveraging linear regres-
sion with the set of features F on the testing set.

As can be seen, starting from different seed features yields
different set of final features, and linear regression can have

Algorithm 1: Feature Selection
Input: S, the set of seed features;M, the machine

learning model
Output: F , the set of features minimizing RMSLE on

M
1 TrainM with features S;
2 Compute RMSLE ε onM;
3 F ← S;
4 repeat
5 εmin ←∞; fmin ← null;
6 foreach feature f do
7 if f 6∈ F then
8 TrainM with features F ∪ {f};
9 Compute RMSLE ε′ onM;

10 if ε′ < εmin then
11 εmin ← ε′; fmin ← f ;
12 end
13 end
14 end
15 if εmin < ε then
16 ε← εmin; F ← F ∪ {fmin};
17 end
18 until no changes to F ;
19 return F ;

Table 10: Results of feature selection (with LR)
S F RMSLE

∅ {8, 14, 21, 32, 35, 38, 54, 55, 97,
100, 101, 106, 134} 0.4892

{1-14}
{1-14, 16, 18, 30, 37, 41, 43, 45,
52, 55, 57, 68, 71, 72, 76, 81,
89, 90, 100, 109, 122, 133, 135}

0.4832

{15-78}
{15-78, 1, 5, 9, 10, 13, 81, 84, 90,
91, 97, 102, 116, 120, 124, 132,
134, 135}

0.4819

{1-78} {1-78, 81, 86, 102, 124, 132, 135} 0.4843

different performance with different “best” features. The
0.4819 RMSLE is the best performance observed so far in
our study (the previous 0.482 is indeed 0.4821 before round-
ing). However, we are a bit over optimistic here since we
are using the testing set to help us pick the features, in-
stead of using a tuning set or cross validation on the training
set. Nonetheless, the current results still serve our purpose
of showing that different selections of features do affect the
performance. It is interesting to see that with more strict and
complicated feature selection algorithms, whether there is
some other set of features that can produce even better re-
sults, and we treat it as one of our future work.

5.2 Models
The choice on models is more tricky. In this study, we pick
models based on our own knowledge and experience, and in
Section 3.2 we have justified our rational for choosing these
models. However, several other kinds of models have not
been tried in this study may have potential in gaining better



performance. In particular, we are interested in leveraging
Inductive Logic Programming (ILP) (Muggleton and Raedt
1994) and Statistical Relational Learning (SRL) approaches
(e.g., Probabilistic Relational Models (PRM) (Friedman et
al. 1999)) for this problem. The motivation for trying these
two kinds of algorithms is quite natural. For ILP, intuitively
there should be certain kind of rules that can work quite well
on the data. For instance, a patient with heart disease or can-
cer is more likely to stay longer in hospital than a patient
with skin infection. At present, a practical difficulty for us
to apply ILP is that Weka has not included a library for ILP
yet. The motivation for using SRL is also straightforward,
since the dataset we have has already been organized into
relational format (i.e., a set of relations with schemas). How-
ever, due to the large number of data we have, directly run-
ning existing SRL algorithms may be intractable in practice.
Therefore, we leave these two directions as our future work.

6 Conclusion

In this paper, we studied the problem of predicting the
number of days that a patient will be admitted in hospital
the next year, by leveraging his/her admission records in
the past year(s). We modeled the predictive problem as ei-
ther a multi-class classification task or a regression task, and
we tested various machine learning algorithms in both cate-
gories. We also discussed related problems such as feature
selection and ensembles. Experimental results show that,
modeling the problem as a regression task can slightly out-
perform the way of modeling the problem as a multi-class
classification task, and leveraging ensembles such as Boost-
ing can slightly outperform individual models. We hope our
results can provide useful insights into this problem for fu-
ture researchers.
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A Dataset Description
The description of the dataset is from (HPN 2011). We in-
clude it here for convenience of reference. As shown from
Table 11 to Table 15, the dataset contains five tables: Mem-
bers, Claims, Drug Count, Lab Count, and Outcome. A
piece of brief description for each table can also be found
in Section 2.1.

Table 11: Members
Attribute Description
MemberID Member pseudonym.

AgeAtFirstClaim

Age in years at the time of the first
claim’s date of service computed
from the date of birth; Generalized
into ten year age intervals.

Sex Biological sex of member:
M = Male; F = Female.

B SQL Queries
We use the following SQL query to join the 5 relations in
our dataset to obtain the information for each patient.

SELECT *
FROM Members M, Claims C,

DaysInHospital_Y1 D1,
DaysInHospital_Y2 D2,
DrugCount DC, LabCount LC

WHERE M.MemberID = C.MemberID
AND M.MemberID = D1.MemberID
AND M.MemberID = D2.MemberID
AND M.MemberID = DC.MemberID
AND M.MemberID = LC.MemberID

Before issuing this query, we create a database in MySQL.
We then create 5 tables based on the schema specified in
Appendix A, and load the data into each table accordingly.
The SQL statements for creating tables and loading data are
so straightforward that we omit the details here.



Table 12: Claims
Attribute Description
MemberID Member pseudonym.
ProviderID Provider pseudonym.
Vendor Vendor pseudonym.

PCP Primary care physician
pseudonym.

Year Year in which the claim was
made: Y1; Y2.

Specialty Generalized specialty.
PlaceSvc Generalized place of service.

PayDelay

Number of days delay between
the date of service (the date the
actual procedure was performed
or service provided) and date of
payment. Values above 161 days
(the 95% percentile) are
top-coded as “162+”.

LengthOfStay

Length of stay (discharge date -
admission date + 1), generalized
to: days up to six days; (1-2]
weeks; (2-4] weeks; (4-8] weeks;
(8-12 weeks]; (12-26] weeks;
more than 26 weeks (26+ weeks).

DSFS

Days since first claim, computed
from the first claim for that
member for each year,
generalized to: [0-1] month, (1-2]
months, (2-3] months, (3-4]
months, (4-5] months, (5-6]
months, (6-7] months, (7-8]
months, (8-9] months, (9-10]
months, (10-11] months, (11-12]
months.

PrimaryConditionGroup

Broad diagnostic categories,
based on the relative similarity
of diseases and mortality rates,
that generalize the primary
diagnosis codes (ICD-9-CM)
(Escobar et al. 2008).

CharlsonIndex

A measure of the affect diseases
have on overall illness, grouped
by significance, that generalizes
additional diagnoses. Scores
greater than zero are carried
forward (for up to a year) in
subsequent claims with a
comorbidity score of zero
(Charlson et al. 2008).

ProcedureGroup

Broad categories of procedures,
grouped according to the
hierarchical structure defined by
the Current Procedural
Terminology (CPT)
(Gordy 2006).

SupLOS

Indicates if the NULL value for
the LengthOfStay variable is due
to suppression done during the
de-identification process. A
value of 1 indicates that
suppression was applied.

Table 13: Drug Count
Attribute Description
MemberID Member pseudonym.

Year Year in which the drug prescription
was filled: Y1; Y2.

DSFS

Days since first service (or claim),
computed from the first claim for
that member for each year,
generalized to: [0-1] month, (1-2]
months, (2-3] months, (3-4]
months, (4-5] months, (5-6]
months, (6-7] months, (7-8]
months, (8-9] months, (9-10]
months, (10-11] months, (11-12]
months.

DrugCount

Count of unique prescription drugs
filled by DSFS. No count is provided
if prescriptions were filled before
DSFS zero. Values above 6, the 95%
percentile after excluding counts of
zero, are top-coded as “7+”.

Table 14: Lab Count
Attribute Description
MemberID Member pseudonym.

Year Year in which the drug prescription
was filled: Y1; Y2.

DSFS

Days since first service (or claim),
computed from the first claim for
that member for each year,
generalized to [0-1] month, (1-2]
months, (2-3] months, (3-4] months,
(4-5] months, (5-6] months, (6-7]
months, (7-8] months, (8-9] months,
(9-10] months, (10-11] months, (11-12]
months.

LabCount

Count of unique laboratory and pathology
tests by DSFS. Values above 9, the 95%
percentile after excluding counts of zero,
are top-coded as “10+”.

Table 15: Outcome
Attribute Description
MemberID Member pseudonym.

DaysInHospital Y1

Days in hospital, the main outcome,
for members with claims in Y1.
Values above 14 days (the 99%
percentile) are top-coded as “15+”.

DaysInHospital Y2

Days in hospital, the main outcome,
for members with claims in Y2.
Values above 14 days (the 99%
percentile) are top-coded as “15+”.

ClaimedTruncated

Members with truncated claims in
the year prior to the main outcome
are assigned a value of 1, and 0
otherwise.


