
Personalization as a Service:
the Architecture and a Case Study

Hang Guo, Jidong Chen
EMC Research China, Beijing, China

{guo_hang, chen_jidong}@emc.com

Wentao Wu, Wei Wang
Fudan University, Shanghai, China

{wentaowu,weiwang1}@fudan.edu.cn

ABSTRACT
Cloud computing has become a hot topic in the IT industry.
Great efforts have been made to establish cloud comput-
ing platforms for enterprise users, mostly small businesses.
However, there are few researches about the impact of cloud
computing over individual users. In this paper we focus on
how to provide personalized services for individual users in
the cloud environment. We argue that a personalized cloud
service shall compose of two parts. The client side program
records user activities on personal devices such as PC. Be-
sides that, the user model is also computed on the client side
to avoid server overhead. The cloud side program fetches the
user model periodically and adjusts its results accordingly.
We build a personalized cloud data search engine prototype
to prove our idea.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Design, Human Factors

Keywords
Cloud Computing, Personalization as a Service

1. INTRODUCTION
Cloud computing has the potential to change the IT in-

dustry. The hardware and software resources in the cloud
data centers can be packaged as services. Business runners
can purchase these services with considerably lower prices
(taking the maintenance cost into consideration) and man-
age the services with great flexibility. Business runners do
not have to make a plan far ahead. They can start with
less computing services and purchase more when needed.
Indeed, enterprise users, especially small business runners,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudDB’09, November 2, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-802-5/09/11 ...$10.00.

will benefit from cloud computing. On the other hand, it is
still unclear that whether the notion of cloud computing will
greatly influence the lives of individual users in the future.

Individual users will create most of the digital universe.
A recent report from IDC1 shows that “nearly 70% of the
digital universe will be generated by individuals by 2010”.
However, individual users are not capable of managing their
own data. The same report claims that “organizations will
be responsible for the security, privacy, reliability and com-
pliance of at least 85% of the information.” Cloud comput-
ing will impose great impact on the IT industry. And it will
affect the user experiences of individual users as well.

Nowadays, there are many applications and services for
individual users. Some are bounded with certain platforms
such as PCs and mobile phones. Some are web-based ser-
vices such as email, blog. According to Berkeley’s vision of
cloud computing [1], web-based services will be the main-
stream at the age of cloud. Currently only large service
providers i.e., Google, Amazon, can afford to build up-front
data centers and maintain their services with high quality.
Cloud computing enables small groups to step in the end
user market. Small companies can also set up highly avail-
able services. As a result, individual users will have much
more choices than they have today. In other words, the
competition in this area will be fierce.

Individual users have some important concerns when they
are choosing between different service providers. Among
them, personalization is critical. The demand for personal-
ized services increases as information explodes on the cloud.
A study from IDC 2 shows that “not enough ability to cus-
tomize” is among the top 5 challenges ascribed to the cloud
service model. Nowadays the most popular practice is to
customize services with user profiles. Users have to choose
their interests from predefined templates such as “Sports”,
“Games”, etc. This approach is adopted by many large ser-
vices providers but it will face many challenges in the cloud
age.

• Every service provider has its own user repository. It is
extremely hard, if possible, to integrate one repository
with others. As a result, users have to maintain their
information for all the services they used.

• Users will be too tired to edit profiles for all kinds of
cloud services. It will be better if the model is build
automatically.

1http://alexbarnett.net/blog/archive/2007/03/06/The-
Expanding-Digital-Universe.aspx
2http://blogs.idc.com/ie/?p=210

• Users prefer unique experiences. However, sometimes
they are only treated as groups.

• User information gathering is the key to build user
models. Cloud-side activity recorder only works when
the user is on-line. However, users will spend most of
their time offline or working with other cloud services.

• The service provider will be overcharged if the user
repository is maintained on the cloud.

These challenges will bring great opportunities to develop
new personalization solutions for cloud service providers. In
this paper we first analyze the above challenges. We argue
that the new personalized solution should be built on the
client side instead of the cloud side.

The personalized module consists of three parts: the user
information collector, the user model builder and the model
synchronizer. The user information collector gathers all the
user activities on the user’s PC. The model builder com-
putes/updates the user model periodically according to the
recent user activities. When a cloud service needs the user’s
data at a specific moment, say 2 days ago, the model syn-
chronizer will upload the corresponding users model to the
cloud. We call this personalization paradigm Personaliza-
tion as a Service (PaaS).

In this way the personalization module is independent
from various types of cloud services. Its major task is long-
term user information gathering and modeling. The user
model is shared by all cloud services. So the user is able to
enjoy the same experience in different cloud services. More-
over, the user model is built on his own log. Therefore every
user has unique user experience. Another advantage of this
paradigm is performance. The server in the cloud is not over-
loaded with the model construction/update costs of millions
of users. The model is built and updated at the client side.

We implement this architecture with a client-side person-
alization module and a cloud-side user data search module.
The cloud-side application backups use data at regular inter-
vals. Users can search their data with the built-in full-text
search engine. With the help of the personalization module,
the search result of every user is personalized. The docu-
ments are re-ranked by their relevances to the user’s current
interests.

The paper is organized as following. In the second sec-
tion we analyze the challenges of personalized services in
the cloud age. Section 3 introduces our PaaS architecture.
Section 4 gives a case study on personalized search. The
related work is shown in Section 5. Finally the paper is
concluded in Section 6.

2. CHALLENGES
Personalization is essential for individual users. As men-

tioned in the first section, cloud computing brings new chal-
lenges on personalization to the cloud service providers. In
this section we go through all these challenges and analyze
their potential impacts.

2.1 Shared Model VS Private User Model
Today most service providers have their private user repos-

itory which includes all users’ information. The repository
is composed by user models. The user model may be a
user’s profile based on predefined template, or a complicated

Figure 1: Shared User Models VS Private User mod-
els

mathematical model. No matter what kind of model is em-
ployed, the user repository is regarded as a critical asset
of the company and never shared with others for business
purpose. Therefore a user have to register all the services
separately. Moreover, when the user’s preference changes,
he must update his information in all the repositories.

The second problem is that the structure of the user repos-
itory is rigid. If the service provider wants to know more
about his customers to support new services, there are two
solutions. First, the provider collects more user activities
to build more powerful models. Second, all users must go
back to the registration page and update their profiles. Both
solutions take a long time.

The third problem comes from small business owners.
Cloud computing makes it much easier for small business
owners to set up stable web services for individual users.
However, it is not easy to customize their services from
scratch. It may take years to collect enough user infor-
mation to build a user repository. Moreover, the service
provider has to update the user repository periodically to
keep it up-to-date. It may be a great burden as the number
of users increases.

Our idea is to decentralize the user repository and push
all user models down to client side, as shown in Fig 1. It
is the user himself who deals with his own preference. The
user model is built and maintained by the client-side appli-
cation. When the user is interested in some cloud services,
he can upload his model so the service provider can pick
up some of his preferences and put that into its user reposi-
tory on the cloud. When the user’s interests change, he only
needs to update the local user model and synchronize it with
all registered services. The service provider will have more
flexibility to choose different aspects from the user models
to facilitate new services. Start-ups and small companies
can also benefit from this idea. They can have detailed user
information in the first day. And users will maintain their
information themselves.

2.2 Ubiquitous Information Collection VS
Service-Specific Information Collection

Current service providers rely on built-in personalization
modules to customize services for different users. The per-
sonalization module usually includes a backend information
collector and a user model constructor. Personal informa-
tion is the key to build user models. Service providers make

a lot of efforts to collect user information. As soon as the
user signed in, the information collector begins to gather his
information. With more user information, there is better
chance to estimate the user preferences correctly. In most
cases, when the user signed out, the information collector
cannot get his information any more. If the user frequently
switches between services, each service can only get limited
information about the user. If the user is working offline,
his information is not available for any service.

An intuitive idea is to run the use information collector
at the client side. This collector is independent with any
services. Its only responsibility is to gather all the user in-
formation no matter whether the user is online and which
service is being used. This information is used to build a
user model that describes the user’s interests in general.

An important concern about ubiquitous information col-
lection is the user’s privacy. Indeed service providers know
more about the user himself by employing the ubiquitous
information collection approach. However, they do not have
access the original user information such as browsing logs,
contents of documents read/written by the user. These
original information are analyzed at the client side. Ser-
vice providers only have the user model which describes the
user’s preference. In this way the user’s privacy is protected
as much as possible.

2.3 Explicit Information Collection VS Implicit
Information Collection

Another question is what kind of information should be
collected at the client side. Many web portals explicitly
ask their users to provide their personal information when
subscribing their services. Use profiles are built accordingly.
Then subscribers can get personalized services based on their
profiles. A good example of such portals is MyYahoo! 3.

Another explicit way of collecting user information is to
ask them for feedbacks. A lot of web service providers design
fancy interfaces to encourage users to rate their objects, e.g.
web pages, videos, product descriptions. These feedbacks
are often used to train a user model which estimates the
user’s personal interests. The problem is that it takes many
feedbacks from a single user to train a well-functioning user
model.

Both of these explicit methods place additional burden
on the user. And because the user model is not shared by
service providers, the user has do it all over again when he
subscribes a new service. It can be a problem when new ser-
vice providers emerges on the cloud. Some service providers
may not get enough user information if they employs the
explicit information collection methods described above.

Implicit user information collection methods, which do
not require any explicit human intervention, may be a solu-
tion to the problem. There are already many researches on
implicit user feedbacks [4] such as browsing history, click-
through data, search history, etc. The implicit method is an
important supplementary to the explicit method. It helps
to get more information from the lazy users, which can be
used to train better user models.

A client-side user information collector works as follow-
ing. The user can configure his profile by selecting his areas
of interests, which is used to initialize the user model. The
implicit user activity collector gathers all the user activities,

3http://my.yahoo.com

including file access log, email log, web browsing log, etc.
These activities are used to further optimize the model. By
observing implicit user feedbacks for a long time, the collec-
tor may have enough user information to build a model that
is able to predict the user’s behavior. Service providers can
give make better personalized services with the model.

2.4 Distributed Modeling VS Centralized Mod-
eling

Building a user model is a time consuming task. It costs
a lot of CPU time to build thousands of user models, let
alone update these models periodically. Cloud infrastructure
providers, such as Amazon, charge by the CPU time and
the I/O bandwidth. Therefore it is expensive to build and
update all user models on the cloud side.

By building and updating the user model on the client
side, the service provider is able to save most of the cost.
There may be extra I/O when uploading the user model.
However, most user models takes very little spaces. In our
case, the user model takes only a few kilobytes. The extra
cost is trivial comparing to the CPU time cost on the cloud.

2.5 Unique Experience VS Group Experience
As for personalized services, a user usually prefers to be

treated as an unique individual rather than one from a spe-
cific interest group. An ideal personalized system shall not
provide two users with the same content. However, many
service providers, such as MyYahoo!, only serve groups of
users. There are two main reasons. First, the number of
users is too large so the service provider cannot afford to
give unique user experience to every user. Second, there is
not enough user information for every single user.

As mentioned above, PaaS may solve these two problems.
First of all, the user model is computed on the client side.
Most of the CPU time is saved. Second, a client-side infor-
mation collector can produce enough user information for
one user. By carefully analyzing the information, it is pos-
sible for every user to have unique experience.

In general, PaaS has following advantages comparing with
traditional server-side personalization methods in the com-
ing cloud age. First, it makes it possible for different service
providers to share an existing user model. Second, the client
side user information collector produces more information
than cloud side collectors. It is possible to build better user
models. Third, the information collector makes full use of
the implicit user feedbacks in the client side. It saves a lot
of human efforts. Fourth, PaaS helps the service provider
save a lot of expenses of building and maintaining the user
model. Fifth, PaaS brings unique user experience to every
single user.

3. THE ARCHITECTURE
In this section we introduce our PaaS architecture. Fig 2

gives a basic picture of PaaS. The dashed rectangles/polygons
are the main components of PaaS.

The user model is computed at regular intervals, which
are called Update Cycles. In each cycle, the user’s informa-
tion are captured by the user information collector. Based
on the information, the model builder constructs the user
model, which is stored in the user model store. If the user
wants to share his model with trusted service providers, the
model synchronizer uploads selected models to the service
providers. In this way the providers know better about that

Figure 2: PaaS Architecture

user and they are able to provider personalized service with
relatively lower cost.

3.1 User Information Collector
The user information collector gathers all the information

of the user, which may include

• interested topics. Users may select some topics from
predefined templates.

• explicit feedbacks. Explicit feedbacks refer to the ex-
plicit interventions of the user. Tags that manually
assigned to documents by the user are such examples.

• implicit feedbacks. Implicit feedbacks are mostly user
logs such as file access log, browsing log, email log,
message log, etc. Plug-ins may be required to get some
application-specific activities.

• documents read by the user. These documents include
office documents, pdf files, emails, received instance
messages, web pages, etc. By analyzing the contents
of these documents, the user model may estimate the
user’s special interests.

• documents written by the user. These documents in-
clude office documents, emails, instance messages send
by the user, etc. These documents are more important
than others because the user’s ideas are in these doc-
uments.

3.2 Model Builder
Considering the fact that the user’s interests changes over

time, the model builder computes a user model in every
update cycle. A model only manifests the user’s interests
in the corresponding update cycle. Every user model has a
timestamp when it is created, which is used as the index of
user models in the user model store.

With plenty of user information, it is possible to build
complex user models. Some mathematical models, such as
Hidden Markov Model [7] (HMM), are very effective in es-
timating user’s behavior. Service providers cannot afford to
build such complex model on the cloud.

It is also possible to use different models to analyze differ-
ent activities. Some models [10] are effective in processing
clickthrough data. Other models like SVM [9] are good at
analyzing the contents of documents. By combining these
models, the service provider can have a better understand-
ing of the user’s preferences. These models take much less
spaces than original user logs, therefore it is possible to build
a store of user models on the client side.

3.3 User Model Store
The user model store is a repository of user models of

different update cycles. In our case study, we use MySQL 4

as the user model store. It is also possible to employ key-
value stores such as Berkeley DB 5.

The indexes are very important for the user model store.
As mentioned in Section 3.2, timestamp is used as the index
of user models. However, sometimes there is no clear clue
about the exact time. Other indexes could be documents
that are frequently accessed in every update cycle, important
keywords read/written by the user, special events happened
at that time, etc.

3.4 Model Synchronizer
The model synchronizer sends user models to the services

on the cloud. Its main responsibilities are:

• privacy control. This module is configured by the user
himself. If the user wants to share his model with a
trusted service provider, he puts it into the white list of
the synchronizer. The user can share part of the model
with a service provider. The black list is used to block
unwelcome services. For instance, if the user doesn’t
want anyone know the contents of his documents, the
corresponding model such as SVM will not be shared.

• user model retrieval. The model synchronizer can use
standard query language to retrieve models from the
user model store. For example, if the store is a rela-
tional database system, it uses SQL.

• user model dispatching. The synchronizer handles all
the connections with remote servers. It should sup-
port multiple protocols such as TCP/IP, sockets, web
services, etc.

4. A CASE STUDY
In this section we give a example of PaaS, our personalized

cloud search prototype. Today personal data has become
one of the most important personal assets. Many compa-
nies are providing their on-line backup services. Our proto-
type backups user’s desktop resources, i.e. local files, emails,
browsed web pages, on the cloud and builds full text indexes
for these resources. Different from other on-line backup ser-
vices, our prototype also provides personalized search ser-
vice.

Our service employs a HMM model to estimate the user’s
behavior. According to our model, the user has several tasks
to do in each update cycle. Every desktop resource is related
to one or more tasks. The user jumps from one task to an-
other when he is opening desktop resources. A example of

4http://www.mysql.com
5http://www.oracle.com/technology/products/berkeley-
db/

Figure 3: An Example of HMM

Figure 4: How to Build the Model

HMM is shown in Fig 3. The user starts to work on one
task (T1 or T2 or T3) according to the predefined proba-
bilities (the left table in Fig 3). As a result, he accesses a
resource (R1 or R2 or R3 or R4) which is related to that
task. The numbers on the dashed lines show the probabil-
ities that the resources are related to the tasks. After that
the user transforms to another task. The numbers on the
real lines show the probabilities of the transformation from
one task to another.

Our prototype works as following. First the user’s desktop
resources are uploaded to the cloud. Then the cloud side
search engine build full text indexes on the cloud. When
the user is using his PC, the information collector gathers
the user information on the client side. At the end of an
update cycle the model builder computes the user model.
The detail is not introduced in this paper. When the new
model is finished, it is uploaded to the cloud.

When the user submits a query to the remote search en-
gine, the client estimates his current task according to our
user model and then submit the query as well as his current
task to the cloud. Then the search engine returns a rank
list which is a combination of the resource’s similarity score
and relevance score. Suppose S is the score of a document
in the result list,

S = α ∗Relevance Score + (1− α) ∗ Similarity Score

The similarity score shows how this resource is related
to the query. And the relevance score measures how this
resource is related to the user’s current task. In this way
the user can have the resource which is most relevant to his
current statues.

This personalized search method has been integrated into
iMecho, an associative memory based desktop search sys-

Figure 5: How to Use the Model

tem [2]. Figure 6 shows the user interface of the iMecho
prototype system.

Figure 6: System User Interface

4.1 User Study Design
Five of our colleagues are invited to take part in the exper-

iment, which is divided into two sessions. The first session
is the training stage which lasts a whole day. Our iMecho
prototype are installed on each PC of these five users. We
briefly introduce the main idea of our system, especially the
concepts of context and tasks, and give necessary training
to help them with iMecho. Next, we ask them to upload a
folder that contains all desktop resources they will open in
both sessions. Then each of them uses iMecho to build in-
dexes on the selected folder. In this session, the participants
just perform their daily tasks and iMecho’s event monitor
records the user’s desktop activity.

The second session is conducted in the following day.Before
the session begins, the activity log produced by the event
monitor in the first session are used to train the user model,
which will be used in this session. They are also told to work
as yesterday and in the same folder. When using iMecho to
search for their resources, each participant is given a survey
form to fill each query submitted in the session, together
with a short description of what he is really doing when sub-
mitting the query. Our ranking results are compared with
the results of Lucene, a popular open source full-text search
engine. In our experiment, Lucene only ranks results by
similarity scores. The participants should decide which one
is better. A simple yes-or-no relevance standard is used. As

for the personalized ranking method, the participants should
set the tuning factor α to 0.2, 0.5 and 0.8 for every query.
Furthermore, We encourage the participants to submit the
same query when they perform different tasks.

Experiments were run on a Intel PC with 2GB of memory,
running the Window Vista and Sun’s Java 1.6.0 JVM. The
average data set contains 9,431 desktop files in 1,019 directo-
ries. The average directory depth is 9 with the longest being
15. On average, directories contain 10.3 sub-directories and
files, with the largest containing 241. 75% of the files are
smaller than 16 KB, and 95% of the files are smaller than 40
KB. The largest file is of size 21.5MB. The user log produced
by the event monitor records totally 1,601 desktop events.

4.2 Evaluation of User Model
We conduct our model construction algorithms on the

dataset described above. All 5 tasks from user A is shown
in Table 1. To save space, we only list the relative path of
the resources.

A quick look at the file paths and names in each task
gives us an impression that the resources within the same
task are semantically relevant. We further interviewed with
user A and confirmed that these tasks indeed reflected his
behavior in the first session. Since user A was recently en-
gaged in a project on desktop search engines, the majority
of his activities was concentrated on this topic, as shown in
the 5 tasks. Specifically, in T1, Lucene is a full-text search
engine, and Sesame is a well know RDF repository incor-
porating efficient RDF storage and query processing func-
tionalities. LuceneSail is simply a combination of these two
technologies. These resources are all related to that task.
Other discovered tasks also make sense. T2 is the writing of
a survey of popular ranking scheme widely used by current
web search engines; T3 and T5 are the writing of two re-
ports about Beagle, which is a desktop search engine on the
Linux platform. They focus on Beagle’s indexing and rank-
ing methods respectively. Finally, T4 is an investigation of
different desktop search tools. These results obviously prove
the effectiveness of the task mining strategy we proposed
during the model construction process.

4.3 Evaluation of Personalized Ranking
We next evaluate the effectiveness of our ranking scheme

by comparing with similarity-based ranking scheme used in
Lucene. We also study the effectiveness of our the person-
alized ranking approach. This is done by analyzing the rel-
evance of the returned results to the keyword queries sub-
mitted by the participants during the second session. In
average, 5 queries are issued (Table 2 lists the queries of
user A) and the average query length is 2.2 keywords.

Table 2: Queries issued by user A in the second
session

Query Length
beagle indexing 2
beagle ranking 2
desktop search application 3
PageRank model 2
random walk 2

0 2 4 6 8 10

0.
3

0.
4

0.
5

A
ve

ra
ge

 P
re

ci
si

on

Rank

 Lucene
 HMM

(a) Average precision

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 R
ec

al
l

Rank

 Lucene
 HMM

(b) Average relative recall

Figure 7: Average precision and relative recall when
α = 0.5

4.3.1 Comparison to Similarity-based Ranking
Although semantic information such as task relevance is

used in our ranking model, the traditional measures such as
precision and recall can also apply when evaluating ranking
quality. We therefore compute average precision and relative
recall of all queries.

In general, precision measures the ability of a system to
return only relevant results. It is defined as:

Precision =
of relevant returned results

of all returned results
.

On the other hand, recall measures the ability of a system
to return all relevant results, and is defined as:

RelativeRecall =
of relevant results

of relevant results returned by all methods
.

It is a common practice to focus only on the top-k results.
In the experiment we follow the practice to use the top-10
results only. Another important aspect is when calculating
the recall measure, we need to know the total number of
relevant results, which is extremely difficult to know. We
use the total number of unique relevant results returned by
the two ranking schemes. For every query, each returns 10
results. so the overall relevant number is 20 at most. That
is the base of relative recall.

Figure 7 shows the results about the average top-k pre-
cision and relative recall for all user queries when α = 0.5
(the default setting). Note that the results returned by the
personalized ranking method will be affected by the current
state (i.e., task) of the user. When computing the results
for the personalized ranking method, we get the average re-
sult for all the tasks. From the results, we can see that the
personalized ranking method outperformed the traditional
method. That is because our ranking results take into con-
sideration not only the query terms but also the context of
that user. The number of relevant results returned by our
method is larger than that of the similarity-based ranking
method in Lucene. So the ranking quality is improved.

4.3.2 Effect of User Model
The major advantage of our ranking scheme is that it

could utilize the desktop user model to track the user’s cur-
rent desktop activity and then use this information to pre-
dict the desktop resources that the user is most likely to
access. These resources will be moved to a higher rank.
Due to the lack of standard desktop benchmark datasets, it
is very difficult to give theoretical or experimental analysis
to the quality of the ranking result in a quantized way. Here

Table 1: Tasks discovered after refinement
Task Resources involved Brief description

T1

Documents/Beagle/RDFRepository/RDFRepository JavaDoc.html Lucene and Sesame
Tools/openrdf-sesame-2.1.3/docs/users/ch07.html studying
Tools/openrdf-sesame-2.1.3/docs/users/ch08.html
Materials/Lucene in Action.pdf
Documents/Beagle/Minack 2008 LuceneSail.pdf
Materials/RDF/RDF Query Language Compare.htm
Tools/openrdf-sesame-2.1.3/docs/users/index.html
Tools/openrdf-sesame-2.1.3/docs/users/ch09.html
Tools/openrdf-sesame-2.1.3/docs/users/ch06.html

T2

Papers/PageRank/RandomWalks.ppt Survey of popular
Papers/PageRank/The PageRank Citation Ranking- Bringing Order to the Web (1998).pdf ranking schemes
Downloaded/auth.pdf
Papers/PageRank/Inside PageRank.pdf
Papers/PageRank/ObjectRank.pdf

T3

Documents/Beagle/Beagle Doc/Backend Tutorial.htm Investigation of
Materials/BeagleInvestigation/BeagleInv.pdf Beagle’s indexing
Documents/Beagle/Beagle Doc/Indexing Data.htm module
Documents/Beagle/Beagle Doc/Architecture Overview.htm
Documents/Beagle/WhitePapers/Beagle++ - Indexing and Querying your Desktop.pdf
Documents/Beagle/Beagle Doc/Filter Tutorial.htm

T4

Papers/SemanticDesktop/chi08-feldspar.pdf Investigation of
Slides/Comparions of Desktop Search Tools.ppt several desktop
Papers/Beagle++/ESWC06- Beagle++.pdf search tools
Slides/semantic search.ppt
Slides/Beagle++Toolbox.ppt
Papers/Beagle++/ESWC05-Activity-Based Metadata for Semantic Desktop Search.pdf

T5

Documents/Beagle/WhitePapers/Beagle++Ranking.pdf Investigation of
Documents/Beagle/Beagle Doc/Searching Data.htm Beagle’s ranking
Documents/Beagle/Beagle Doc/Backend Tutorial.htm module
Materials/BeagleInvestigation/BeagleInv.pdf
Documents/Beagle/Beagle Doc/Architecture Overview.htm
Papers/PageRank/ObjectRank.pdf

we first demonstrate the effect of our desktop activity pred-
ication model by showing a real case found when analyzing
user A′s survey form. Then, we investigate the impact of
the tuning factor α to the ranking results.

As shown in Table 3, we found that user A issued the query
“PageRank model” two times in the second session of the
experiment. His descriptions about his needs at the time of
querying were: first, get some ideas about the technology in
Beagle++. Second, compare the popular ranking algorithms
including PageRank and HITS.

The first task is about the technology used in Beagle++.
User A submits the query to find documents about the im-
plementation of the PageRank in Beagle++. The second
one is to investigate popular ranking algorithms. It is about
the model, features of different ranking methods. Obviously
user A wants different results but he uses the same query.

Our personalized ranking method clearly distinguishes the
two queries. The ranking results (α = 0.8) are then shown
in Table 3. To save space, only the top 5 results are listed
in each case. Both the ranking results from Lucene and the
results from the personalized ranking are listed. As for our
method, both the final scores and the relevance scores are
listed.

The first results from the personalized ranking (when the
user was in state T1) is exactly the same as the ranking
results from Lucene. This is due to the fact that no re-

sources containing the query keywords have a high proba-
bility score when the current user state is T1. But when the
user is in state T2, our results are much more reasonable
than Lucene’s results. Resources about different ranking al-
gorithms are moved far ahead in the ranking list. Table 3
shows that the probability scores of these resources are quite
high while their similarity scores (Lucene’s score) are rela-
tively low. Our method produces a balanced list which are
more favorable to the user.

This example shows that our model understands the user’s
real needs better by knowing the context of the user at the
querying time. Traditional desktop search applications only
rely on relevance to keywords to rank resources. This simple
ranking schema does not work well sometimes. In the above
example, Lucene performs bad because the keyword“model”
is a common word. It appears in many documents. Lucene
can not tell the relevant documents from the large number
of candidates only by similarity scores.

We further investigate the impact of the tuning factor
α to the ranking results. As shown in Figure 8, when α
increases, i.e., the weight of the relevance score is increased,
the precision is significantly improved and the recall is also
slightly improved as well. This means our ranking scheme is
more effective in “guessing” the real needs of the user when
he issues a query.

Table 3: The case of user A
Ranking Scheme Ranking Result List Lucene score Our score

(relevance score)

Lucene

Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896

N/A
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786
openrdf-sesame-2.1.3/docs/system/ch06.html 0.709
Jena-2.5.5/doc/images/Ont-model-layers-import.png 0.616
Jena-2.5.5/doc/images/Ont-model-layers.png 0.616

HMM (T1)

Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896 0.187(0.010)
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786 0.165(0.010)
openrdf-sesame-2.1.3/docs/system/ch06.html 0.709 0.150(0.010)
Jena-2.5.5/doc/images/Ont-model-layers-import.png 0.616 0.131(0.010)
Jena-2.5.5/doc/images/Ont-model-layers.png 0.616 0.131(0.010)

HMM (T2)

The PageRank Citation Ranking- Bringing Order to the Web (1998).pdf 0.142 0.305(0.345)
Inside PageRank.pdf 0.427 0.272(0.233)
RandomWalks.ppt 0.267 0.212(0.199)
Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896 0.179(0.0004)
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786 0.158(0.0004)

0 2 4 6 8 10

0.
4

0.
5

0.
6

0.
7

0.
8

A
ve

ra
ge

 P
re

ci
si

on

Rank

 =0.2
 =0.5
 =0.8

(a) Average precision

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 R
ec

al
l

Rank

 =0.2
 =0.5
 =0.8

(b) Average relative recall

Figure 8: Average precision and relative recall with
different α

5. RELATED WORK
Some previous researches try to build client side informa-

tion collector for user modeling. Mitchell et al. [6] try to
extract user knowledge from raw workstation contents such
as emails and local files. Shen et al. [8] focus on implicit
user feedbacks and email messages. IRIS [3] models the
user desktop activities as RDF tuples. However, it requires
specially instrumented desktop applications. PLUM [5] is
another ubiquitous user information collector for Mac OS
and Windows. As IRIS, the user activities are also modeled
into RDF tuples. Different from other work, PLUM ob-
serves a large range of user information, including running
processes, nearby WIFI access point, application-specific ac-
tivities, etc. These user information collector can be used
directly in our PaaS architecture.

6. CONCLUSION
This paper introduces PaaS, an architecture of person-

alized services for the cloud age. In PaaS, there are four
important modules in the client side. The user informa-
tion collector gathers the user’s personal information. The
user model builder constructs the user model according to
the information and keep it in the user model store. The
model synchronizer serves cloud side services by executing
their queries for user models. We implemented a cloud data
search prototype as our case study. The user is able to enjoy
much better personalized experience with our prototype.

7. REFERENCES
[1] M. Armbrust, A. Fox, and R. G. et al. Above the

clouds: A berkeley view of cloud computing. Technical
report, Electrical Engineering and Computer Sciences
Univeristy of California at Berkeley, 2009.

[2] J. Chen, H. Guo, W. Wu, and C. Xie. Search your
memory ! - an associative memory based desktop
search system. In Proceedings of the ACM SIG
conference on Mangement of Data, 2009.

[3] A. Cheyer, J. Park, and R. Giuli. Iris: Integrate.
relate. infer. share. In 1st Workshop on The Semantic
Desktop. 4th International Semantic Web Conference,
2005.

[4] D. Kelly and J. Teevan. Implicit feedback for interring
user preference: a bibliography. In ACM SIGIR
Forum, volume 37, pages 18–28, 2003.

[5] M. V. Kleek and H. E. Shrobe. A practical activity
capture framework for personal, lifetime user
modeling. Lecture Notes in Computer Science, 4511,
2007.

[6] T. Mitchell, S. Wang, Y. Huang, and A. Cheyer.
Extracting knowledge about users ↪aŕ activities from
raw workstation contents. In Proceedings of the 21st
National Conference on Artificial Intelligence, 2006.

[7] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989 1989.

[8] J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A
hybrid learning system for recognizing user tasks from
desktop activities and email messages. In Proceedings
of the 11th international conference on Intelligent user
interfaces, 2006.

[9] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. The
Journal of Machine Learning Research, 2:45–66, 2002.

[10] G. Xue, H. Zeng, Z. Chen, and Y. Y. et al. Optimizing
web search using web click-through data. In
Proceedings of the thirteenth ACM international
conference on Information and knowledge
management, pages 118–126, 2004.

