
iMecho: An Associative Memory Based Desktop Search
System

Jidong Chen, Hang Guo
EMC Research China, Beijing, China

{chen_jidong,guo_hang}@emc.com

Wentao Wu, Wei Wang
Fudan University, Shanghai, China

{wentaowu,weiwang1}@fudan.edu.cn

ABSTRACT
Traditional desktop search engines only support keyword
based search that needs exact keyword matching to find re-
sources. However, users generally have a vague picture of
what is stored but forget the exact location and keywords
of the resource. According to observations of human asso-
ciative memory, people tend to remember things from some
memory fragments in their brains and these memory frag-
ments are connected by memory cues of user activity con-
text. We developed iMecho (My Memory Echo), an associa-
tive memory based desktop search system, which exploits
such associations and contexts to enhance traditional desk-
top search. Desktop resources are connected with semantic
links mined from explicit and implicit user activities accord-
ing to specific access patterns. Using these semantic links,
associations among memory fragments can be built or re-
built in a user’s brain during a search. Moreover, our link-
based ranking scheme uses these links together with a user’s
personal preferences to rank results by both relevance and
importance to the user. In addition, the system provides
a faceted search feature and association graph navigation
to help users refine and associate search results generated
by full-text keyword search. Our experiments investigating
precision and recall quality of iMecho prototype show that
the association-based search system is superior to the tradi-
tional keyword search in personal search engines since it is
closer to the way that human associative memory works.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms, Design

Keywords
associative search, desktop search, personalized ranking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$5.00.

1. INTRODUCTION
As most of the digital universe are created by individu-

als, personal information management (PIM) has become
a hot topic. Searching desktop resources, including local
files, emails, instant messages, cached web pages, etc., has
become an important but time-consuming task [6, 7, 8]. Per-
sonal search is different from web search. People generally
have a vague picture of what is stored in their computers
but they always forget the exact location and keyword of
the resource content. Existing desktop search systems such
as Google Desktop, Microsoft Windows Desktop Search, and
Spotlight for Apple’s OS only support keyword search that
needs exact keyword matching to find resources.

Considering human memory recall, people appear to re-
member something through some associative memory frag-
ments left in their brains as well as memory cues relating to
the context of information capture or subsequent access. For
example, a user wants to find a web page he had read while
writing an important report, but he cannot remember the
keywords about the web page. Interestingly, he does remem-
ber the connection and therefore finds the web page through
the report. Psychology research has shown that people often
remember things through chains of associations [18]. Our
idea is to exploit such associations and contexts to simulate
human associative memory to enhance desktop search.

Current desktop file systems do not provide a means to
link semantically related files. However, user activities in
the desktop, to some extent, reflect his associative mem-
ory when he searches resources later. We developed the
iMecho (My Memory Echo), an associative memory based
desktop search system. Desktop resources are connected in
iMecho with semantic links by analyzing user activities and
the contexts in which the user works. Using these semantic
links, associations among memory fragments can be built
or rebuilt in a user’s brain during a search. The person-
alized ranking scheme uses these links together with user’s
personal preferences to rank results by both relevance and
importance. iMecho provides a two-step search paradigm.
The user first uses faceted search filters to quickly locate an
easy-to-remember intermediate resource from the full-text
keyword search results. Then the user can find the target
resource by multiple navigation in the association graphs in
iMecho.

In some recent PIM systems, e.g. Stuff I’ve Seen [8],
MyLifeBits [10], Haystack [13], Semex [9], Beagle++ [7]
and Feldspar [6], contextual cues such as time, author and
association information are exploited to search and present
personal information. However, the above systems only sup-

port a few kinds of simple predefined associations. iMe-
cho enhances desktop search by building associative links of
resources from implicit access patterns of user activity se-
quences. In iMecho, there are three types of associations:
Content-based Associations (CA), Explicit Activity-based
Associations (EAA) and Implicit Activity-based Associa-
tions (IAA). CAs refer to associations that can be extracted
from the content and attributes of resources. EAAs are ex-
plicit associations in the sense that they are bound with
certain user activities such as jumping to another webpage.
IAAs denote some implicit associations between resources,
which can be discovered through user access pattern analysis
and resource provenance analysis. These semantic associa-
tions are designed in accordance with a common mode of
thinking in human minds so that the associative memory
can be exploited to help find the target resource. Our ex-
periments investigating precision and recall quality of iMe-
cho show encouraging improvements over traditional key-
word desktop search.

In summary, iMecho has the following contributions:

• iMecho enhances desktop search by building associa-
tive links of resources from user activities. Besides
CAs and EAs, iMecho discovers two types of IIAs,
same task and provenance of, by mining patterns of
user activities. For the same task link, iMecho uses a
clustering based algorithm for initial task analysis and
an Hidden Markov Model (HMM) method for further
optimization.

• Besides the traditional keywords-based searching para-
digm, iMecho provides a two-step searching paradigm.
The user locates an intermediate resource by keywords
and faceted filters in the first step. Then he can use
the association graph navigation to find semantically
associative resources, which simulates human associa-
tive memory.

• iMecho combines a link-based ranking scheme with
the common content-based ranking scheme to generate
personalized ranking results for every user. Therefore
the top results are not only related to the query but
also important to the user.

The remainder of the paper is organized as follows: In Sec-
tion 2 we present the architectural overview of the iMecho
system. Section 3 describes the key implementation tech-
nologies. Section 4 evaluates its performance. Section 5
discusses the state of the art. Finally, Section 6 concludes
this paper.

2. SYSTEM OVERVIEW

2.1 Architecture
There are different kinds of physical resources available on

the PC desktop. Currently, iMecho mainly deals with gen-
eral files and file hierarchies in the file system, email mes-
sages and attachments in the email store and offline web
pages in the web cache. The architecture of iMecho is given
in Figure 1. Like a traditional full-text search engine, the
system need crawlers and extractors to parse the full-text
content from different data sources. iMecho can extract con-
tent from PDF, Word, Excel, Powerpoint, RTF, TXT, Java,
CHM as well as ZIP, RAR, and many other archives. The

Figure 1: Architecture

indexer module is used to build up indexes for these data
sources and to store them in the Lucene full-text index. Files
inside ZIP, RAR, CHM and other archives are extracted dur-
ing indexing and can be preserved for searches. When user
inputs keywords in the user interface, the searcher and query
processor will find the results through the Lucene full-text
index. In addition, a relevance score is computed for each
desktop item by ranking module, supporting an enhanced
ordering of results based on term frequency.

Besides the traditional desktop search components (left
rectangle), iMecho has several additional components (right
rectangle) for tracking user activities and generating seman-
tic links. iMecho uses the activity event monitor to record
desktop events and association analyzer to create semantic
links from the recorded events. Then the resource associ-
ations and attributes are represented as RDF triples and
stored in an RDF repository. The searcher and query proces-
sor module delegates keyword searches and RDF queries to
the full-text index and RDF repository respectively. RDF
queries are used to retrieve the semantic links of a given
resource. iMecho provides two different ways to help users
find resources. Faceted search filters are used to refine the
full-text search results through multi-dimensional classifica-
tion. On the other hand, the association graph navigation is
used to extend the searching results to associative resources
via semantic links. The user interface (showed in Figure 2)
visualizes search results and associative context in these two
ways as well.

2.2 Activity Event Monitor
In order to construct semantic associations, iMecho needs

to monitor user activities on their desktops. Currently, the
event monitor can track both system-level and application-
level activities. System-level activities include all file system
operations and Window related activities such as Window
creation, activation and closing. Application-level activities
are restricted to specific applications. The monitor provides
“plugins” for each of the applications to track user activities
on MS-Office documents, Emails (Outlook), Adobe pdf files
and cached webpages (Firefox). The plugins also extract
application-specific metadata and associations between re-
sources. When an email is received, for example, the Out-
look plugin automatically extracts email metadata, e.g. “to”,
“from” and “subject” from corresponding email fields, and
connects the attached documents with the email.

Figure 2: System User Interface

2.3 Association Analyzer
iMecho enhances desktop search by building associative

links of resources from user activity context. Through con-
tent analysis, user access pattern analysis and lineage analy-
sis, we get the following three types of links.

CA CAs represent the content-based associations created
by analyzing the content and attributes of desktop resources.
For example, in Figure 3, the similar to link connects two
resources that are similar in terms of contents, file names
and locations (e.g. same directory). A similarity function
regarding these three factors are used to compute the dis-
tance between two resources. By analyzing the attributes
of email messages and files, we can get has attachment, re-

ply to, received from, owned by and contained in CA links.
EAA EAAs are explicit and deterministic activity based

associations. EAA links are set when specific user events
are observed. We create three types of EAAs in iMecho:
jump to, copy from and save as. Each of them is bound with
a type of user activity tracked by the event monitor. For
instance when the user goes from one webpage to another,
the two pages are connected by a jump to link. When the
attachment of an email (or a webpage) is saved as a local
file, a save as link will be created connecting the attachment
(or webpage) and the file. Similarly the copy from link is
created based on “file copy” events.

IAA IAAs denote some implicit and nondeterministic as-
sociations between resources, which can be discovered by
user access pattern analysis (e.g. the same task link) and
resource lineage analysis (e.g. the provenance of link). We
find that users tend to access and manipulate different re-
sources to complete a task. We define the same task link
to cluster resources by their related tasks. The same task

is usually very helpful for the user because we organize our
memory in a similar way. The provenance of link can rep-
resent the origin of a resource. Users always create multiple
versions of a document through several “file copy” and “save
as” operations. By analyzing the lineage sequence of save as

and copy from activities, we can create the provenance of

link between a document and its original copy. Actually, an
IAA link is responding to a pattern of user activity sequence.

2.4 Personalized Ranking

Existing desktop search engines only employ the content-
based algorithms such as cosine similarity to rank personal
desktop resources. However, the content-based ranking could
not reflect the user’s personal preference. For desktop search,
a top ranked document should be not only relevant to the
query but also relatively important to the user. The link-
based ranking algorithms, such as PageRank, are good ways
to find authoritative results. With the established links from
user activity, iMecho can combine the two ranking schemes
to generate personalized ranking results for every user. The
final score of a document is the product of the relevance
score and the global authority score. Similar to the Ob-
jectRank [5] algorithm, different weights are manually as-
signed to different types of links since different links may
have different impacts on the global authority score. There-
fore more important links, such as same task, are given rel-
atively higher weights. By this means, desktop resources
are connected by weighted links. Then we can employ a
link-based ranking algorithm to find important results.

Our ranking algorithm is personalized because the user
can manually adjust the weights of different types of as-
sociations, which explicitly show the user preferences. In
addition, user activities can implicitly influence the rank-
ing computation since some semantic links are created by
analyzing user access patterns and some parameters in the
algorithm are decided by the user access frequency as well.

2.5 Faceted Search
Faceted Search enables users to navigate in a multi-di-

mensional information space by combining text search with
a progressive narrowing of choices in each dimension. In
iMecho, we apply faceted search to desktop search to re-
fine results from keyword search. It combines the effective-
ness and flexibility of full-text search with the ease-of-use of
faceted navigation: the ability to find information based on
attributes such as its location, file type, modification dates,
file size, author, etc. Unlike web facets, desktop facets in
iMecho are well organized into a facet tree, which further
classifies facets of the same taxonomy. In addition, users
can select multiple facet terms from different taxonomies at
the same time to quickly filter the result set. In iMecho,
there are two kinds of desktop facets, predefined desktop
facets (e.g. file size, modified date, file type) and dynami-
cally generated facets, such as the senders of email messages,
in the sense that their values vary according to the result set.

2.6 Association Graph Navigation
In desktop search, users tend to associate resources in

their minds and try to follow these associations when look-
ing for specific resources. There are some examples here. “I
remember that I have browsed several webpages weeks ago,
but I forgot either its URL or its content. On the other hand,
I remember that when I browsed the page, I was writing a
technical report, and I remember some keywords of that
document”, “Several images were downloaded from attach-
ments of an email several months ago. Now I want to find
a paper with the same folder as these images. But I could
not remember either its name or its directory. I only know
that Peter sent the email and talked about desktop search
topic”. iMecho manages to process such searches. The asso-
ciation graph shows all directly related resources to a spe-
cific resource (showed in Figure 2). A user can first locate
an intermediate resource by keywords and faceted search,

Figure 3: The Desktop Ontology

and then switch to the association graph to get its related
resource. When the user selects one of the associative re-
sources, say resource r, the graph will be updated and all
related resources of r will be displayed. By this means, the
user can navigate in the association graph, which simulates
the associative memory in the mind of the user.

3. KEY IMPLEMENTATION TECHNOLO-
GIES

3.1 Desktop links analysis
Desktop search could potentially profit from a lot of im-

plicit and explicit semantic information available in emails,
folder hierarchies, browser cache contexts and others (con-
textual metadata, provenience of information as well as so-
phisticated classification hierarchies). Figure 3 shows the
desktop ontology in iMecho, which represents desktop re-
source attributes and semantic associations among emails,
folder and file hierarchies, cached web pages, etc.

As mentioned above, associations among desktop resources
include CAs, EAs and IAs. Since iMecho is a desktop search
engine rather than a data integration prototype, we mainly
focus on associations related to user activities (i.e. EAAs
and IAAs), in particular, the IAA links. IAAs can be mined
by recognizing specific patterns in the user log. In this sec-
tion, we will describe the task mining algorithm and its op-
timization in generating the same task IAA link in detail.
To the best of our knowledge, this work remains unexplored
up until now.

Users tend to access and manipulate different resources to
complete a task. For instance, when writing a paper, a user
may look for related presentations, references, web pages and
emails from colleagues. These resources are all somehow re-
lated to this task. This type of links is defined as same task,
which corresponds to a special pattern of user activity se-
quences. A task can be taken as a series of user activities
with a specific goal. Two document resources are associ-
ated via same task if they are involved in a same working
task. To generate the same task links, we propose a clus-
tering based algorithm for initial task mining and a Hidden
Markov Model based method for further optimization.

A Clustering based Algorithm for Initial Task Min-

ing

A user always switches between different tasks in a given
period of time. For instance, a researcher starts to read a
paper in the Monday morning. Then he gets a email regard-
ing an upcoming presentation. After finishing the slides he
gets some good ideas and turns to write a working draft. In
the end he goes to the paper he read in the first place. This
example shows how difficult it is to decide which resources
are related to the same task.

We try to ease the problem by introducing the notion of
“key resources”. A key resource is the goal of a task. All
other resources related to this task work as references or
appendixes to the key resource. It can be a report, a read-
only paper, an Email message and so on.

Definition 1. A task T is defined as a set of resources. If
resource a is accessed by the user when he is accomplishing
task T, we denote a ∈ T .

Resource a may belong to several tasks, which means a is
used several times for different purposes.

Definition 2. The lifecycle of a resource a (denoted as
Lk(a), k is the occurrence index of a in the log) is the gap
between opening time (Ok(a)) and closing time (Ck(a)) of
its time window, i.e., Lk(a) = Ck(a)−Ok(a). |Lk(a)| is the
length of Lk(a). The index k can be omitted if no misun-
derstanding occurs.

If L(b) is completely covered by L(a), then L(b) ⊂ L(a) or
L(a) ⊃ L(b). If L(a) and L(b) are overlapped, which means
that the user opens b before closing a or vice versus, L(a) ∼
L(b). If L(a) ⊃ L(b) or L(b) ⊃ L(a), then L(a) ∼ L(b).

A resource may have several lifecycles in a given period of
time with different k.

We make several assumptions about key resources.

Assumption 1. There is only one key resource in a given
task. The key resource of task T is denoted as K(T).

According to the definition, the key resource serves as the
goal of the task. We assume that a user has one task at one
time. Therefore there is only one key resource in a task.

Assumption 2. A key resource has the longest lifecy-
cle among all the resources in the corresponding task, i.e.,
∀a ∈ T, |L(K(T))| ≥ |L(a)|.

In most cases the user opens the key resource and keep
editing it until it is finished.

Assumption 3. Task T starts when its key resource
K(T) is opened and T stops when K(T) is closed. All
the overlapping resources of K(T) go to task T , i.e., ∀a,
if K(a) ∼ K(T) then a ∈ T .

This assumption comes from the observation that the user
usually opens resources that are related to the key resource
he is working on. When the key resource is closed, the cur-
rent task is accomplished. Of course the user may open the
key resource in the future but that is treated as another task
so far.

Because usually when a user is working on a task, he opens

all resources involved. Therefore what we should do is to de-
cide the boundary of each task and get the corresponding
resources inside the boundary. A initial algorithm is used
to discover tasks and create the same task links. We cluster
resources by their lifecycles. If the lifecycle of resource a is
completely covered by that of resource b, then a and b go
to one cluster. The resource that has the longest lifecycle
is the key of the cluster. If the lifecycles of two keys are
overlapped, we use some rules to decide whether the two
clusters should be merged or not. When no clusters can be
merged, each cluster is output as one task. All resources in
the cluster are connected by the same task link. Since the
boundary of a task is determined by its key resource accord-
ing to assumption 3, we should get all the key resources first.
To make sure that these key resources satisfies assumption
2, they should be ranked by their lifecycles in the first place.
The initial task mining algorithm is showed in Algorithm 1.

Algorithm 1. TaskMining

Input: Resource list R, Lifecycle map L. Suppose r ∈ R,
L(r) stands for the lifecyle of r.

Output: Task list T
T = φ

WHILE (TRUE)
IF |L| = 0

OUTPUT T
EXIT

END IF
m = −1;
FOR EACH r ∈ R

IF (m < |L(r)|)
m = |L(r)|, Rm = r

END IF
END FOR
L.remove(Rm)
t = new Task
FOR EACH r ∈ R

IF (L(r) ∼ Rm)
t.insert(r)

END IF
END FOR
T .insert(t).

END WHILE

Sometimes the lifecycles of resources are too short that
few of them are overlapped. It usually happens when the
algorithm is coming to an end because lifecycles are sorted
in descending order. A simple solution is to set a threshold
for the minimal size of a task. The default value of this
threshold is 2, which means all tasks with less than two
resources will be removed from the output.

An HMM-based Optimization for Task Mining Af-
ter getting the initial tasks results, we optimize the tasks
using a well-studied mathematical model, Hidden Markov
Model (HMM), which is proved to yield task mining results
that are closer in line with the user logs.

HMM is a widely-used stochastic model in which the set
and sequence of states in a system can be estimated by
studying the observed behaviors of the system. In desktop
systems, states can be represented as tasks and the observed
behaviors are user activity logs on desktop resources. Users
tend to access different resources to complete a task and
usually keep switching between different tasks.

Figure 4: The Optimization Process of Task Mining

The output of the initial task mining can be represented
as a triple (T, R, W). T stands for the set of mined tasks. R
is the set of resources related to T . W is the weight matrix.
Wij is the weight that resource Rj is in task Ti. The weight
Wij is calculated as following:

Wij =

� 1
NT (i)

: Rj ∈ Ti

0 : otherwise

Here NT (i) is the number of resources in task Ti. If Wij >
0, resource Rj is related to task Ti. The HMM model can be
represented as λ = (T, R, W, A) , in which T , R and W are
the inputs of the initial task mining step. A is the transfer
matrix. Aij denotes for the possibility that the user switches
from task Ti to task Tj . The user log L is a sequence of the
elements of R. |L| stands for the length of the log.

The optimized task mining process is shown in Figure 4.
The initial task mining results are generated in the first
place. Then an HMM is built on the results. After opti-
mizing the model with user log L, the weight matrix W and
transfer matrix A are updated to W ′ and A′ respectively.
In the end the optimized HMM model λ′ = (T, R, W ′, A′)
is output. The task set T and the resource set T is not
changed during the optimization process. But the weight
matrix W is updated as W ′ , which is the key of the task
mining result. The last step of task mining is to cluster all
resources according to W ′. For task Ti, resource Rj ∈ Ti if
W ′

ij ≥ NT (i). NT (i) is the number of resources of Ti before
optimizing.

The goal of the optimization is to make the model more
precise. The Baum-Welch algorithm [8] is used to optimize
the parameters of HMM to make it “closer” to the log. It
is proved that P (L|λ′) ≥ P (L|λ). In other words, the op-
timized model is more likely to generate the observed user
log than the initial model. In addition, the transfer matrix
A is less important in the optimization process. Uniform
initial estimate of the matrix A is adequate for giving useful
optimization of these parameters in almost all cases.

3.2 Personalized Ranking
The ranking algorithm is one of the key technologies to

search engines. Current desktop search products, such as
Google Desktop and Windows Desktop Search, are now com-
parable to first generation web search engines, which pro-
vided full-text indexing, but only relied on textual infor-
mation retrieval to rank their results, e.g. content-based
ranking algorithms. These algorithms use heuristic distance
functions to compare how“close”the query and indexed doc-
uments are. The most frequently-used distance function is
called cosine similarity, which uses the cosine of the angle
between the two term vectors as the distance. Content-based

ranking algorithms, no matter which distance function they
employ, only rank documents by their “relevance” to the
given query. It is widely accepted that users are also inter-
ested in the “importance” of the pages. The more important
the page is, the higher rank in the result set it should have.
PageRank [17] is one of the most famous algorithm which
ranks pages by their importance. It calculates the probabil-
ity that each node is visited by the “Random Surfer” model,
which is used as the score of importance. The “Random
Surfer” model can simulate the behavior of a web user such
that the ranking score of a page is approximately the prob-
ability that it is visited by the user in his tour on the Web.
The “Random Surfer” model assumes that the surfer follows
three rules when navigating on the Web.

1. He starts with a random page.

2. He may click one of the links in the existing page with
equal probabilities Or

3. He is not interested in the current page and its links
so he goes to a random page.

However, current desktop search engines can not benefit
from this ranking scheme because there are no established
links among those isolated desktop resources (files, emails,
etc.). iMecho overcomes this problem by building seman-
tically associative links among desktop resources from the
analysis of user activity context. Then a new personalized
link-based ranking algorithm - iRank is formed based on
such link structures together with the user preferences. Dif-
ferent from the the random surfer model in PageRank, iRank
employs the following user model:

1. He starts with a random resource.

2. He may either access one of the resources that are re-
lated to the current one with certain probabilities. The
probabilities are in direct proportion to the importance
of the outgoing links.

3. Or he goes to a resource with a probability that is
proportional to the frequency the resource appears in
the user log.

In iMecho, a top ranked document should be not only
relevant to the query but also relatively important to the
user in the result set. Specifically, iRank uses a combination
of the TF*IDF score returned by Lucene and an extension
of PageRank. Given query q, the ranking score of a resource
e is denoted as Sq(e). Suppose Eq(e) is the relevance score
between e and q, R(e) is the importance score of e, then

Sq(e) = Eq(e) ∗ R(e)

Eq(e) is given by Lucene at the query time. And R(e)
is calculated by the link-based algorithm, which will be in-
troduced later. As PageRank, iRank is an offline algorithm
which runs periodically on the dataset.

For ranking personal desktop information, iRank has two
advantages over PageRank.

• Users can manually assign different weights to differ-
ent types of links such that important links contribute
more to the final results. The weights explicitly show
the user preferences.

• Our algorithm makes full use of the implicit user feed-
backs by tuning ranking parameters according to user
activity logs. So different users will get different rank-
ing results given the same query.

Weighted Links There are different types of links in
iMecho. iMecho extends the desktop ontology of Figure 3
by adding weights and edges in order to express how impor-
tance propagates among the entities and resources inside
the desktop ontology. For example, authority of an email is
split among the sender of the email, its attachment, and the
email to which it was replied. So, if an email is important,
the sender might be an important person, the attachment be
an important one. And the previous email in the thread hi-
erarchy also become important. In iMecho, different weights
are manually assigned to different types of links. Every edge
from the ontology graph is split into two edges, one for each
direction. This is motivated by the observation that author-
ity potentially flows in both directions and not only in the
direction that appears in the original desktop ontology (if we
know that a particular person is important, we also want to
have all emails we receive from this person ranked higher).

Figure 5 shows the links between different types of re-
sources in Imecho and weights of these links as well. The
user is more likely to follow the links with higher weight
according to our model. Therefore nodes pointed by these
links are more likely to be visited by the user.

There are a couple of issues should be noted in Figure 5.

• The number of links in Figure 5 is twice as many as
that in Figure 3. For any link in Figure 3(dashed line),
there is an opposite rev link (real line) in Figure 5.
Let’s take copy from as an example. Suppose file A is

a copy of file B, i.e. A
copy from

−→ B, then the importance
of A may affect B and vice versus.

• The opposite link may have different weight compar-
ing to the original link. For instance, the weight of
copy from is 0.7 and that of rev copy from is 0.2. Sup-
pose file A is a copy of file B, A may have some new
contents which are not in B. If the user has opened B,
he is probably interested in A too. However, if the user
has read A, he may not be so interested in B because
A is newer.

• The weights of all outgoing links of a node in Figure 5
are not summarized to 1. Figure 5 is the global view of
the “importance” of all types of links so that different
kinds of links can be comparable in terms of impor-
tance. Users can easily find that same task is more
important than owned by. If the weights are normal-
ized, the importance of links from different resources
(such as same task and owned by) can not be com-
pared.

Personalization Different authority transfer weights ex-
press different preferences of the user, translating into per-
sonalized ranking. As mentioned before, the user activities
that influence the ranking computation have also to be taken
into account, which translates to assign different weights
to different contexts. The weights explicitly show the user
preferences. In addition, the ranking is implicitly person-
alized by analyzing the user activity logs. Before running
iRank, we study the activity logs and calculate the access
frequency of each resource. According to our user model, the

Figure 5: Weighted Desktop Ontology

user prefers to the most frequently visited resource when he
decides not to follow the existing links. Then we use this ac-
cess frequency information to adjust our ranking algorithm
so these user-preferred resources will get higher ranks.

Computation Algorithms The computation of rank-
ings in iRank is based on the link structure of the resources
as specified by the defined ontologies and the correspond-
ing metadata. G is the directed graph of connected desktop
resources. Suppose n is the number of nodes in the graph
G, ~rk(n + 1) denotes the access probability vector, i.e. the
importance score vector, after k rounds, there is

~r0 = (1/n, . . . , 1/n)T (1)

~rk = (d ∗ ~AT + (1 − d) ∗ E) × ~rk−1 (2)

Here d is the dumping factor and it is set to 0.85 in general
cases. Matrix A also known as the Transition Matrix, which
denotes the weighted graph of indexed files. After some
algebra, equation 2 turns to:

~rk = d ∗ ~AT × ~rk−1 + (1 − d) ∗ ~E (3)

~E is the unit matrix, a Personalization Vector and ei =
ci/
P
i

ci (ci is the number of occurrences of resource i in

the user log). The random jump to an arbitrary resource in

the resource graph is modeled by ~E in the Random Surfer
model, which shows the probabilities that pages are visited
by the surfer when he is not following the links of the cur-
rent page. This usually happens when the user gets bored
with the page he is reading and then goes to a familiar site.
In web search, users go to different pages with equal proba-
bilities so ~E is a uniform vector in PageRank. The result is
that every user will get exactly the same ranking list given
the same query. While for desktop search, with the help of
user logs, we can easily get the preference of the user and
set the value of ~E according to the user access frequency.
In iRank, by appropriately modifying the ~E with different
weights assigned to different data sources according to their
access frequency, it can model user’s preference and person-
alization.

The iRank algorithm consists of two parts. The first is
the initialization phase, which initializes the transition ma-
trix A. The second is the iteration phase, which iteratively
calculates ranking scores of every node.

• The Initialization Phase Suppose i
k
→ j means di-

rected edge i → j is of type k , dk
i means the number

of outgoing type k links from node i and wk stands for
the weight of type k links in Figure 5, then transition
matrix ~A is computed by Algorithm 2.

Algorithm 2: Transition Matrix Initialization

Input: Resource Graph G and Weighted Ontology
Graph W (wk and dk

i)

Output: Transition Matrix A
FOR i FROM 1 TO n

FOR j FROM 1 TO n

IF i → j is not an edge of G

Aij = 0 // i and j are not connected

ELSE

i
k
→ j

Aij = wk/dk
i // Different from PageR-

ank

END IF

END FOR

Wi =
nP

j=1

Aij

FOR j FROM 1 TO n

Aij = Aij/Wi // Normalize Each Vector

END FOR

END FOR

A is the adjacency matrix which connects all avail-
able instances of the existing context ontology on the
user’s desktop. The weights of the links between the
instances correspond to the weights specified in the
weighted desktop ontology divided by the number of
the links of the same type. When instantiating the on-
tology for the resources existing on the user’s desktop,
the corresponding matrix A will have element values
which can be either 0, if there is no edge between the
corresponding entities in the graph, or the weight as-
signed to the edge determined by these entities, in the
ontology, divided by the number of outgoing links of
the same type. To help understand the algorithm, we
give a simple example. Suppose node i has 5 outgoing
links, 2 of them are of type A and others are of type B.
The weights of type A and B are 0.4 and 0.6 respec-
tively. Then after normalization the weight of every
outgoing link is 0.2.

• The Iteration Phase After the initialization of ~A we
go to the iteration phrase showed in Algorithm 3.

Algorithm 3 iRank Computation

Input: Transition Matrix A, dumping factor d, Per-
sonalization Vector e and the threshold ǫ.

Output: Ranking score vector ~r
~r = (1/n, 1/n, . . . , 1/n)

~r′ = (0, 0, . . . , 1)

WHILE TRUE

~r′ = d ∗ ~AT × ~r + (1 − d) ∗ ~e

IF (|~r′ − ~r| ≤ ǫ) // has converged already

BREAK

ELSE ~r = ~r′

END IF

END WHILE

In the iRank algorithms, we note that the initial value of ~r,
i.e. ~r0 in Equation 1, does not affect the final ranking score.
But it does affect the rate of convergence. In addition, the
personalization vector MUST NOT have any zero elements,
otherwise iRank might NOT converge. Therefore, if resource
i is not accessed according to the user log, i.e. ci = 0, we
set ei = 1/

P
i

ci.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
We did an initial evaluation of our system by conducting

a small scale user study. Five of students in Fudan Uni-
versity provided a set of their locally indexed documents,
some of which they received as attachments to emails. The
average data set contains 9431 desktop files in 1019 directo-
ries. The average directory depth is 9 with the longest being
15. On average, directories contain 10.3 sub-directories and
files, with the largest containing 241 ones. 75% of the files
are smaller than 16KB, and 95% of the files are smaller
than 40 KB. The largest file is of size 21.5MB. The user log
produced by the event monitor records totally 1601 desk-
top events. Then, each user issues search queries, related to
their activities, over the indexed dataset. In total, 10 queries
were issued (”beagle indexing”, ”beagle ranking”, ”PageR-
ank model”, ”random walk”, ”desktop search application”
are some sample queries). The average query length was
1.9 keywords, which is slightly more than the average of 1.7
keywords reported in other larger scale studies (e.g. in [8]).
For comparison purposes, we sent each of these queries to
Windows Desktop, Google Desktop and the Lucene-based
desktop search systems (content-based ranking), and the
iMecho system (containing semantic links from user activity
context and personalized ranking) respectively. For every
query, each user rated the top 5 output results for each sys-
tem using grades from 0 to 1 where 0 for an irrelevant result,
0.5 for a relevant one, and 1 for a highly relevant one.

4.2 Evaluation of Personalized Ranking
Even when semantic links are integrated as part of a search

system, the traditional measures from information retrieval
theory can and should still be applied when evaluating sys-
tem performance. We therefore used the ratings of our users
to compute average precision and relative recall values at
each output rank. Both measures can be calculated at any
rank k, i.e., considering only the top k results output by
the application. Restricting the calculation of precision and
recall to various ranks is useful in order to investigate the
quality of the system at different levels. It is a common prac-
tise to focus only on the top-k results. In the experiment
we follow the practise to use the top-5 results only. An-
other important aspect is when calculating the recall mea-
sure, we need to know the total number of relevant results,
which is extremely difficult to know. We use the total num-
ber of unique relevant results returned by the four ranking

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 4 3 2 1

P
re

ci
si

on

Top K

Lucene
Windows Desktop

Google Desktop
iMecho

(a) Average precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 4 3 2 1

R
el

at
iv

e
R

ec
al

l

Top K

Lucene
Windows Desktop

Google Desktop
iMecho

(b) Average relative re-
call

Figure 6: Comparisons of average precision and rel-

ative recall

schemes. For every query, each returns 5 results. So the
overall relevant number is 20 at most. That is the base of
relative recall [7].

We averaged the precision values at each rank from one
to five for all 10 queries submitted by our users. The re-
sults are depicted in Figure 6(a). We first notice that the
Desktop Search with Lucene, Google and Windows Desk-
top are poor, containing more qualitative results towards
rank 4 to 5, rather than at the top of the result list. This
is, in fact, explainable since Lucene, Google and Windows
Desktop only uses TF*IDF to rank its results, thus missing
any kind of global importance measure for the desktop re-
sources. On the contrary, our iMecho system enhanced with
semantic metadata and links, performs much better. An im-
portant reason for this high improvement is that metadata
are mostly generated for those resources with high impor-
tance to the user, whereas the other automatically installed
files (e.g., help files) are not associated with metadata, and
thus ranked lower. When we have metadata describing a
desktop item, more text is inherently available to search for,
and thus this item is also easier to find. In addition, person-
alized ranking pushes our resources of interest more towards
the top of the list, yielding higher desktop search output
quality. We drew similar conclusions with respect to the av-
erage recall values (depicted in Figure 6(b)). The recalls
of the Lucene and Google desktop search system are very
low, whereas that of iMecho system is almost twice better
(owing to the additional semantic links mined from user ac-
tivity context). We thus conclude that iMecho significantly
increases its recall (as semantic links and other metadata
usually represent additional, highly relevant text associated
to each desktop file), whereas adding desktop ranking fur-
ther contributes with a visible improvement in terms of pre-
cision.

4.3 An Example of Task Mining
iMecho employs a task mining algorithm to generate the

same task associations between resources. To give the reader
a feeling of the tasks detected by the algorithm, Table 1
shows the tasks mined from one of the users’ (user A) ac-
tivity log. To save space, only relative path of the resource
is used. The descriptions of the tasks are added after an
interview with user A about the semantics of these tasks,

Table 1: Tasks mined from user activity log for generating the same task links.

Task Resources involved Brief description

T1

Documents/Beagle/RDFRepository/RDFRepository JavaDoc.html Lucene and Sesame

Tools/openrdf-sesame-2.1.3/docs/users/ch07.html studying
Tools/openrdf-sesame-2.1.3/docs/users/ch08.html
Materials/Lucene in Action.pdf
Documents/Beagle/Minack 2008 LuceneSail.pdf
Materials/RDF/RDF Query Language Compare.htm
Tools/openrdf-sesame-2.1.3/docs/users/index.html
Tools/openrdf-sesame-2.1.3/docs/users/ch09.html
Tools/openrdf-sesame-2.1.3/docs/users/ch06.html

T2

Papers/PageRank/RandomWalks.ppt Survey of popular
Papers/PageRank/The PageRank Citation Ranking- Bringing Order to the Web (1998).pdf ranking schemes
Downloaded/auth.pdf
Papers/PageRank/Inside PageRank.pdf
Papers/PageRank/ObjectRank.pdf

T3

Documents/Beagle/Beagle Doc/Backend Tutorial.htm Investigation of
Materials/BeagleInvestigation/BeagleInv.pdf Beagle’s indexing
Documents/Beagle/Beagle Doc/Indexing Data.htm module
Documents/Beagle/Beagle Doc/Architecture Overview.htm
Documents/Beagle/WhitePapers/Beagle++ - Indexing and Querying your Desktop.pdf
Documents/Beagle/Beagle Doc/Filter Tutorial.htm

T4

Papers/SemanticDesktop/chi08-feldspar.pdf Investigation of
Slides/Comparions of Desktop Search Tools.ppt several desktop
Papers/Beagle++/ESWC06- Beagle++.pdf search tools
Slides/semantic search.ppt
Slides/Beagle++Toolbox.ppt
Papers/Beagle++/ESWC05-Activity-Based Metadata for Semantic Desktop Search.pdf

T5

Documents/Beagle/WhitePapers/Beagle++Ranking.pdf Investigation of
Documents/Beagle/Beagle Doc/Searching Data.htm Beagle’s ranking
Documents/Beagle/Beagle Doc/Backend Tutorial.htm module
Materials/BeagleInvestigation/BeagleInv.pdf
Documents/Beagle/Beagle Doc/Architecture Overview.htm
Papers/PageRank/ObjectRank.pdf

who was recently engaged in a project on desktop search en-
gines. Specifically, in T1, Lucene is a full-text search engine,
and Sesame is a well known RDF repository incorporating
efficient RDF storage and query processing functionalities.
LuceneSail is simply a combination of these two technolo-
gies. These resources are all related to that task. Other
discovered tasks also make sense. T2 is the writing of a
survey of popular ranking schemes widely used by current
web search engines; T3 and T5 are the writing of two re-
ports about Beagle, which is a desktop search engine on the
Linux platform. They focus on Beagle’s indexing and rank-
ing methods respectively. Finally, T4 is an investigation of
different desktop search tools. Tasks mined from other user’s
logs also give positive results and we omit the details here
due to space limitation.

5. RELATED WORK
The difficulty of accessing information on our comput-

ers has prompted several first releases of desktop search ap-
plications recently. The most prominent examples include
Google desktop search [3] and Microsoft Windows Desktop
Search [4] (proprietary, for Windows) and the Beagle open
source project for Linux [2]. Yet they include no metadata
and associations whatsoever in their system, but just a reg-
ular text-based index. Apple Inc. integrated an advanced
desktop search application (named Spotlight Search [1]) into

their operating system, Mac OS Tiger. Even though they
also added semantics into their tool, only explicit informa-
tion is used, such as file size, creator, or metadata embedded
into specific files. While this is indeed an improvement over
regular search, it still misses contextual information often
resulting or inferable from explicit and implicit user actions.

Some PIM systems have been constructed in order to fa-
cilitate re-finding of various stored resources on the desktop.
Stuff I’ve Seen [8] for example provides a unified index of the
data that a person has seen on her computer, regardless of
its type. Based on the fact that the user has already seen the
information, contextual cues such as time, author, thumb-
nails and previews can be used to search for and present
information. Similarly, MyLifeBits [10] targets storing lo-
cally all digital media of each person, including documents,
images, sounds and videos. They organize these data into
collections and, like us, connect related resources with links.
Haystack [13] emphasizes the relationship between a particu-
lar individual and her corpus. It is similar to our approach in
the sense that it automatically creates connections between
documents with similar content and it exploits usage analy-
sis to extend the desktop search results set. Feldspar [6] is
one kind of link-based desktop search prototype with new
interface. Users can propose associative queries via a well-
designed interface rather than simple keywords. Because
user activities are not tracked in Feldspar, only CAs are sup-

ported. Semex [9] is also link-based person information sys-
tem. It employs a fancy reference reconciliation algorithm to
integrate data from different sources and construct content-
based associations by extracting metadata. As Feldspar, it
only supports CAs and has not activity-based associations
mining from user access patterns. Beagle++ [7] is another
kind of link-based desktop search prototype, which is closer
to our work. It proposed various activity specific heuristics
to generate links between resources that associates desktop
resources (i.e. local files, emails and cached web pages) via
CAs and EAAs. Beagle++ also logs user activities such as
attachment saving, file downloading to generate EAAs, but
it only focuses on associations from predefined user actions
between web pages, email messages and files, not mining
from a sequence of user access activities. Their approach
was limited to specific desktop contexts (e.g., publications,
or web pages), whereas in our methods we explore much
more general sources of linkage information such as file ac-
cess patterns, which are applicable to any desktop resource.

All of the above systems only support a few kinds of sim-
ple predefined associations, not semantic associations mining
from special patterns of user activity sequences. In iMecho,
by exploiting file access patterns and user implicit tasks,
many more associations are constructed to better simulate
human associative memory in the search. In addition, iMe-
cho combines association navigation with faceted search to
incrementally filter search results.

Personalization techniques have been developed in diversi-
fied ways for web search. In a nutshell, the techniques can be
classified into three categories, namely, content based per-
sonalization, link-based personalization, and function-based
personalization [14]. Content-based personalization deals
with the “relevance” measure of Web pages and the user’s
queries. In order to manage user interests, a content-based
personalization technique is used to construct user profiles,
which store user interests derived from each user’s search
history [15]. Link-based personalization performs personal-
ization based on link analysis techniques. They redefine the
importance of Web pages according to different users’ pref-
erences such as bookmarks as a set of preferred pages [11].
The function-based personalization first discovers user pref-
erences on the search results from clickthrough data and
then the ranking function is optimized according to the dis-
covered preferences [12, 16]. However, these personalized
techniques still miss contextual information often resulting
or inferable from explicit and implicit user activities. For
personalization in desktop search, the desktop environment
is comparably “limited” in the sense that we will be able to
describe most relevant contexts more easily. It is possible
to obtain the complete trace of user activity on his desktop,
and therefore his accurate interests, goals, and preferences
can be discovered during a search.

6. CONCLUSIONS
We developed an associative memory based desktop search

system, iMecho, which enhances the conventional full-text
keyword search with semantic associations discovered from
user activity contexts. In addition, the system provides the
faceted search and association graph navigation to help users
refine and associate search results generated by the keyword
search. iMecho is superior to the traditional keyword based
search engines because it is closer to the way that human
associative memory works.

7. REFERENCES
[1] Apple spotlight search.

http://developer.apple.com/macosx/tiger/spotlight.html.

[2] Gnome beagle desktop search.
http://www.gnome.org/projects/beagle/

[3] Google desktop search. http://desktop.google.com/

[4] Windows desktop Search.
http://www.microsoft.com/windows/products/
winfamily/desktopsearch/default.mspx

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in
databases. In VLDB 2004.

[6] D. H. Chau, B. Myers and Faulring, A. What to Do
When Search Fails: Finding Information by
Association. In CHI 2008.

[7] P. A. Chirita, S. Ghita, W. Nejdl, and R. Paiu.
Beagle++: Semantically enhanced searching and
ranking on the desktop. In ESWC 2006.

[8] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin,
and D. Robbins. Stuff i’ve seen: a system for personal
information retrieval and re-use. In SIGIR 2003.

[9] X. Dong and A. Halevy. A Platform for Personal
Information Management and Integration. In CIDR
2005.

[10] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C.
Wong. Mylifebits: fulfilling the memex vision. In ACM
Conference on Multimedia 2002.

[11] T. Haveliwala. Topic-sensitive pagerank. In WWW
2002.

[12] T. Joachims. Optimizing search engines using
clickthrough data. In ACM SIGKDD 2002.

[13] D. R. Karger. Haystack: A Customizable
General-Purpose Information Management Tool for
End Users of Semistructured Data. In CIDR 2005.

[14] Y. Ke, L. Deng, W. Ng, D. L. Lee. Web dynamics and
their ramifications for the development of Web search
engines. Comput. Netw. J. (Special Issue on Web
Dynamics), 2005 (50).

[15] F. LIU, C. YU, and W. MENG. Personalized web
search for improving retrieval effectiveness. IEEE
Trans. Knowl. Data Eng., 2004 (16).

[16] W. NG, L. DENG, and D. L. LEE. Mining user
preference using spy voting for search engine
personalization. ACM Transactions on Internet
Technology, 2007, 7(4).

[17] Larry Page, et al. The PageRank Citation Ranking:
Bringing Order to the Web, Tech Report, 1998.

[18] E. Tulving and D. Thomson. Encoding specificity and
retrieval processes in episodic memory. Psychological
Review 80, 1973.

[19] L. Welch. Hidden Markov Models and the
Baum-Welch Algorithm, In IEEE Information Theory
Society Newsletter 2003, 53(4).

